
Migration Modeling and Learning Algorithms
for Containers in Fog Computing

Zhiqing Tang , Xiaojie Zhou , Fuming Zhang ,

Weijia Jia , Senior Member, IEEE, and Wei Zhao , Fellow, IEEE

Abstract—Fog Computing (FC) is a flexible architecture to support distributed domain-specific applications with cloud-like quality of

service. However, current FC still lacks the mobility support mechanism when facing many mobile users with diversified application

quality requirements. Such mobility support mechanism can be critical such as in the industrial internet where human, products, and

devices are moveable. To fill in such gaps, in this paper we propose novel container migration algorithms and architecture to

support mobility tasks with various application requirements. Our algorithms are realized from three aspects: 1) We consider mobile

application tasks can be hosted in a container of a corresponding fog node that can be migrated, taking the communication delay and

computational power consumption into consideration; 2) We further model such container migration strategy as multiple dimensional

Markov Decision Process (MDP) spaces. To effectively reduce the large MDP spaces, efficient deep reinforcement learning algorithms

are devised to achieve fast decision-making and 3) We implement the model and algorithms as a container migration prototype system

and test its feasibility and performance. Extensive experiments show that our strategy outperforms the existing baseline approaches

2.9, 48.5 and 58.4 percent on average in terms of delay, power consumption, and migration cost, respectively.

Index Terms—Fog computing, user mobility, container migration, delay, power consumption, deep reinforcement learning

Ç

1 INTRODUCTION

WITH the development of cloud computing, cloud com-
puting based mobile applications, such as real-time

video streaming [1], real-time face recognition [2], have
become popular recent years. Mobile users can offload
some tasks to remote cloud data centers to gain larger com-
putation capacity [3]. However, in many domain-specific
applications, such as industrial application scenarios, cloud
computing may not be able to respond mobile users on
time, and the delay could be unacceptable. Besides, a cen-
tralized cloud is very hard to manage the various service
requests from billions of mobile users. Moreover, cloud
computing centralized data-centers are lacking in flexibility
and unable to support mobility for mobile users [4].

To solve the problem, CISCO proposed fog computing
(FC) architecture [5]. In FC, a significant number of light
computation and storage infrastructures, called fog nodes,
are deployed close to mobile users [6]. In this case, mobile
application tasks can be offloaded to suitable nodes to shorten

significant access delay. Besides, nodes are flexible, scalable,
and capable of supporting themobility formobile users [7].

For better service provision and utilization of resource
like CPU, memory, bandwidth, tasks are loaded in virtual
machines (VM) and share the resource of the corresponding
node with other VMs, instead of fully occupying all the
resource [8]. Meanwhile, VMs can be migrated. On the one
hand, the utilization of resource can be further improved
and plenty of cost like power consumption can be saved [9].
Statistical results show that a lot of idle power is wasted
when nodes run at a very low load [10]. Even at 10 percent
CPU utilization, the consumed power exceeds 50 percent of
peak power [11]. Therefore, if the VMs can be dynamically
consolidated, plenty of nodes can be switched off and power
consumption can be saved significantly [11]. On the other
hand, the corresponding contents, which are located in VMs,
could be migrated to the place close to mobile users. And the
quality of service (QoS) is improved during themovement of
the mobile users [4]. As a result, the quality of communica-
tion connection is upgraded, which further reduces the com-
munication delay betweenmobile users and the nodes.

In the area of VM migration, recent studies mainly focus
on assuming a prior distribution of resource requirements
or learning resource requirements based on history utiliza-
tion [12], [13], [14]. For assuming a prior distribution, the
available resource is changed dynamically due to the unsta-
ble network and the mobility of the mobile users [15]. As a
result, it is difficult to make an accurate assumption of prior
distribution [13]. For learning resource requirements based
on history utilization, some heuristic algorithms are pro-
posed [13], [14]. However, most of these algorithms are suf-
fered from the curse of dimensions when dealing with the

� Z. Tang, X. Zhou, and F. Zhang are with the Department of Computer Sci-
ence and Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China. E-mail: {domain, szxjzhou, zhangfuming-alex}@sjtu.edu.cn.

� W. Jia is with the Centre of Data Science, University of Macau, SAR Macau
999078, China, and also with the Department of Computer Science and Engi-
neering, Shanghai Jiao TongUniversity, Shanghai 200240, China.
E-mail: jia-wj@cs.sjtu.edu.cn.

� W. Zhao is with the American University of Sharjah, PO Box 26666,
Sharjah 26666, UAE. E-mail: weizhao@umac.mo.

Manuscript received 15 Dec. 2017; revised 29 Mar. 2018; accepted 8 Apr.
2018. Date of publication 16 Apr. 2018; date of current version 9 Oct. 2019.
(Corresponding author: Weijia Jia.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2018.2827070

712 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2019

1939-1374� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0003-1000-3937
https://orcid.org/0000-0003-1000-3937
https://orcid.org/0000-0003-1000-3937
https://orcid.org/0000-0003-1000-3937
https://orcid.org/0000-0003-1000-3937
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
mailto:
mailto:
mailto:

large-scale migration problems, and such challenge results
in long decision delay, which is unacceptable for many
applications.

In FC scenarios, the management cost of traditional virtu-
alization technology could be very high [16]. For this prob-
lem, a lightweight virtualization technology named Linux
Container is a promising solution [17]. Compared with
other heavyweight counterparts such as VM, containers
have advantages in short time implementation, economical
resource utilization, and low management cost [18]. More-
over, similar to VM, containers can also be migrated to
improve service provision and resource utilization.

For the delay-sensitivity of mobile applications and the
instability of actual network environment, the complexity
and robustness of migration algorithms should be carefully
designed to achieve fast migration decision-making [9]. Not
only the delay and the power consumption, but also the
migration cost and the mobility of mobile users need to be
taken into consideration [4]. Meanwhile, the first-order tran-
sition probability of VMs’ resource demands is also quasi-
static for an extended period and non-uniformly distrib-
uted [13]. Moreover, the movement of mobile users is a
sequential decision-making process and has memoryless
property [19]. Therefore, it is suitable for us to adopt rein-
forcement learning algorithms in making migration deci-
sions, which are algorithms with low computational
complexity based on Markov chain model. In reinforcement
learning algorithms, an agent takes charge of selecting the
action according to the current state as well as specific strat-
egy, keeping monitoring the system state, and updating the
strategy [20]. Among varieties of reinforcement learning
algorithms, Q-learning algorithm has the advantage in
rapid decision-making [21]. Nevertheless, traditional Q-
learning algorithm is infeasible to solve large-scale Markov
decision process (MDP) problems for the enormous size of
state set and action set. Thanks to the development of neural
network technology, deep learning is capable of learning
very complex functions and handling high-dimension data
samples by using deep neural networks (DNNs) [22].

In this paper, we design and implement a container
migration manager prototype system, where application
tasks are laid in migratable containers and located in nodes.
Besides, we consider the container migration in FC as a sto-
chastic optimization problem. In this problem, the commu-
nication delay, the power consumption, and the movement
of mobile users are taken as the transition parameters when
we use Markov process to model the migration issues. Our
algorithms are designed based on Q-learning and deep
learning strategies, to handle large-scale container migra-
tion problem due to large MDP space for making the fast
migration decisions. Such algorithms are implemented and
tested in our prototype system. Our contributions can be
summarized as follows:

(1) We consider each mobile application task can be
hosted in a container of a corresponding node that can
be migrated to another node in response to finding
the best tradeoff between the total round-trip delay
and the total power consumption. Differ from the
existing algorithms, the task mobility requirements
and the migration cost are taken into consideration,

which are neglected inmost of the previousmigration
algorithms for FC architectures.

(2) We further model such container migration strategy
as multiple dimensional MDP spaces. To efficiently
reduce the large MDP spaces in large-scale migration
problem, robust and efficient deep reinforcement
learning algorithms are devised to achieve fast
migration decision-making.

(3) We implement the model and algorithms as a con-
tainer migration manager prototype system and test
its feasibility and performance. Real-world data
experimental results show that our strategy outper-
forms the existing baseline approaches 2.9, 48.5 and
58.4 percent on average in terms of delay, power con-
sumption, and the migration cost, respectively.

The remainder of this paper is organized as follows. In
Section 2, we model the FC architecture, formulate and ana-
lyze the container migration problem. Then, the container
migration algorithms are devised in Section 3. The experi-
mental setup and experimental results of our algorithms are
described in Section 4. We review the related work in Sec-
tion 5, discuss some issues in Section 6, and conclude the
paper in Section 7.

2 MODELING AND PROBLEM DEFINITIONS

We first present the system model in Section 2.1. Then, the
container migration problem based on the FC architecture is
formulated and analyzed in Sections 2.2 and 2.3, respectively.

2.1 System Model

We consider container based FC architecture with three
layers: mobile user layer, fog layer, and cloud layer, as
shown in Fig. 1. In FC, a container can serve multiple mobile
users. Tasks are produced by mobile users, and parts of
them are offloaded to corresponding containers via access
networks [3]. Besides, each task is loaded in one correspond-
ing container, which shares the physical resource with other
containers in the same node [17]. Container migration man-
ager in fog layer not only monitors the mobility behavior of
mobile users, the delay, and the power consumption of
nodes, as well as the resource requirement of containers, but
also determines the container migration strategy [8]. For
example, in Fig. 1, a mobile user moves from Location1 to
Location2, resulting in long communication path between
the mobile user and F1. In this case, we assume the

Fig. 1. System architecture.

TANG ET AL.: MIGRATION MODELING AND LEARNING ALGORITHMS FOR CONTAINERS IN FOG COMPUTING 713

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

information about moving behaviors will be caught by the
manager through GPS signal. According to pre-defined
migration algorithms, the manager may migrate the corre-
sponding container from F1 to F3, which shortens the dis-
tance to d3, upgrades the quality of communication and
reduces the round-trip delay. As illustrated in Fig. 2, com-
pared with VM migration, only the necessary applications
and the run-time libraries are migrated in container migra-
tion, except for the whole guest operating system (guest OS).
The remote cloud data centers connect nodes via the core net-
work. Instead of computing, cloud data centers mainly act
for data replication and load balancing [8].

For better service provision and utilization of the
resource, we design and implement container migration
algorithms in this paper. Let FF ¼ fF1; F2; :::; Fmg; CC ¼
fC1; C2; :::; Cng;MM ¼ fM1;M2; :::;Mlg, which are the set of
fog nodes with wired and wireless communication capabil-
ity; the set of containers that reside in the nodes and run the
user tasks; and the set of concurrent mobile users who may
request connection to any of the nodes anytime, respec-
tively.1 Each node Fi has its location Fi:l and resource capac-
ity Fi:c. There exists four main kinds of resource: CPU,
memory, storage, and bandwidth. Since scheduling of com-
putation resource is the main factor, we can assume that
there are sufficient memory, storage and network capacity
for the containers in each node [13], [23]. We consider that
different resource allocations to a mobile user will result in
different delay and power consumption for the user’s tasks.
In this paper, containers are allocated to user tasks and
migrated in order to reduce the power consumption while
providing user tasks with satisfactory service regarding the
delay. Container Ci’s location at time t is denoted as
Ci:lðtÞ 2 fFFg. Different from node’s identical resource
capacity, the resource requirements and allocations of the
containers are changed by time. Thus, let Ci:rðtÞ and Ci:aðtÞ
denote Ci’s resource requirement and allocation at t, respec-
tively. Besides, unlike cloud computing, the moving of
mobile users need to be taken into consideration. Conse-
quently, we assume that Mi:lðtÞ and Mi:rðtÞ are the location
and container request of mobile userMi at t, respectively.

2.2 Problem Formulation

The utilization of resource and the delay have the benefits of
container migration. Plenty of nodes can be switched off,
and lots of power consumption can be reduced through
container consolidation [10]. However, if too many contain-
ers are merged into a node, the risk of resource over-
requirement will be risen dramatically, leading to the per-
formance degradation and longer delay for task

processing [13]. Moreover, unsuitable migration strategy
may extend the distance between mobile users and corre-
sponding nodes, which results in weak network connec-
tion [4]. Therefore, there exists a tradeoff between the delay
and the power consumption. With an objective to finding
the best tradeoff, we define the delay and the power con-
sumption in this section. In addition, non-negligible migra-
tion cost is incurred during the container migration, which
is also defined in this section. Taking the delay, power con-
sumption, and migration cost into account, our container
migration problem can be formulated as shown below.

Fig. 2. Comparison between container and VM.

TABLE 1
Notations

FF Fog node set
m Number of nodes
Fi ith node (i 2 ½1; m�)
Fi:l Location of Fi

Fi:c Resource capacity of Fi

CC Container set
n Number of containers
Ci ith container (i 2 ½1; n�)
t Real time
Ci:lðtÞ Location of Ci at t (Ci:lðtÞ 2 fFFg)
Ci:rðtÞ Resource requirement of Ci at t
Ci:aðtÞ Resource allocation of Ci at t
Ci:mðtÞ List of mobile applications of Ci at t
MM Mobile user set
l Number of mobile user
Mi ith mobile user (i 2 ½1; l�)
Mi:lðtÞ Location ofMi at t
Mi:rðtÞ Container request ofMi at t
dtotal Total delay
dnet Total network delay between mobile

users and corresponding nodes
dcomp Total computation delay of mobile application tasks
ptotal Total power consumption
uiðtÞ Resource utilization of Fi at t
mtotal Total migration cost
C Total cost
v1 Weight of delay in C
v2 Weight of power consumption in C
Tt tth time slice
t Serial number of Tt

jT j Length of Tt

XðtÞ System state of delay during Tt

St System state during Tt

At Action set during Tt

Rt Reward during Tt

QðSt ; AtÞ Q-value of St and At

Qm A best-action dictionary
a Learning rate
g Discount parameter
Qmi

A key-value pair hQmi
:s; ðQmi

:a;Qmi
:vÞi

Qmi
:a Best action of state Qmi

:s
Qmi

:v Corresponding Q-value of Qmi
:s and Qmi

:a
thunder Under-utilization threshold
thover Over-utilization threshold
mtotali;j ðt0Þ Estimated migration cost during Tt
DRi;jðtÞ Migration revenue of migrating Ci to Fj during Tt

dtotali;j ðt0Þ Estimated delay during Tt
ptotali;j ðt0Þ Estimated power consumption during Tt
Feai;jðtÞ Feasibility of migrating Ci to Fj during Tt
LðuÞ Loss function of the DNN
D Experience replay memory
u Weights of the DNN

1. The major notations used in this paper are summarized in Table 1.

714 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

Delay. The total delay dtotal consists of twoparts: 1) the total
network delay dnet between mobile users and corresponding
nodes, 2) the total computation delay dcomp of the mobile
application tasks. As for dnet, the delay in wireless access net-
work is related to the path loss, which is defined as [24]:

dnet ¼
Xl
i¼1

Z
ðknetlog 10diðtÞ þ bnetÞdt; (1)

where knet and bnet are defined as:

knet ¼ 44:9� 6:55log 10ðhbÞ;
bnet ¼ 46:3þ 33:9 log 10ðfÞ � 13:82 log 10ðhbÞ � ahm þ cm;

in which f is the signal frequency in MHz; diðtÞ is the dis-
tance between Mi and corresponding node; hb is the height
of antenna of the node; cm is set to 3 dB for normal circum-
stances and ahm is defined as [25]:

ahm ¼ 3:20ðlog 10ð11:75hrÞÞ2 � 4:97; f > 400 MHz;

where hr is height of the mobile users.
dcomp is influenced by the computation capacity of nodes

and the degree of resource shortage. In this paper, we con-
sider a heterogeneous FC architecture, where all the nodes
have different computation capacity. The degree of resource
shortage is modeled by SLA violation SLAV , which is
defined as [14]:

SLAV ¼
Pn

i¼1
R
Ci:rðtÞ � Ci:aðtÞð ÞdtPn
i¼1
R
Ci:rðtÞð Þdt : (2)

We further prove that the computation delay is propor-
tional to SLA violation, as shown in Theorem 1.

Theorem 1. Computation delay is proportional to SLA violation
in FC architecture.

Proof. If there exists no SLA violation, Ci:aðtÞ ¼ Ci:rðtÞ, so
SLAV ¼ 0. For the general case, we usually pre-allocate
resource to each container based on container’s immedi-
ate CPU requirement. Assume that at time t, the immedi-
ate resource requirement of Ci is random variable Xi

with mean mi. To avoid severe SLA violation, we would
allocate more resource thanXi. Assume the resource allo-
cation of Ci isXi þ "i. From Eq. (2) we can obtain:

SLAV ¼
Xn
i¼1

Z
1� Ci:aðtÞ

Ci:rðtÞ
� �

dt:

Since resource requirement of each container at different
time is independent with others [13], we can further
obtain:

E SLAV½ � ¼
Xn
i¼1

E

Z
1� Ci:aðtÞ

Ci:rðtÞ
� �

dt

� �

¼
Xn
i¼1

Z
E 1� Ci:aðtÞ

Ci:rðtÞ
� �� �

dt ¼
Xn
i¼1

Z
1�E½Xi þ "i�

E½Xi�
� �

dt

¼
Xn
i¼1

Z
1� E½Xi� þ E½"i�

E½Xi�
� �

dt ¼ �
Xn
i¼1

Z
E½"i�
mi

� �
dt:

In addition, the expectation of delayed mobile applica-
tion tasks is:

Xn
i¼1

Z
E½Xi � ðXi þ "iÞ�ð Þdt ¼ �

Xn
i¼1

mi

Z
E½"i�
mi

� �
dt:

As a result, this expectation is proportional to SLA viola-
tion. Since delayed time is proportional to the amount of
delayed mobile application tasks, it is also proportional
to SLA violation. tu
Therefore, dcomp is defined as:

dcomp ¼ kSLAV � SLAV

¼ kSLAV �
Pn

i¼1
R

Ci:rðtÞ � Ci:aðtÞð ÞdtPn
i¼1
R

Ci:rðtÞð Þdt ; (3)

where kSLAV is the parameter controlling the weight of
SLAV .

In short, based on Eqs. (1) and (3), dtotal is obtained as:

dtotal ¼ dnet þ kcomp � dcomp; (4)

where kcomp controls the weight of dcomp.
Power Consumption. The total power consumption ptotal is

equivalent to the addition of each node’s power consump-
tion. If Fi is switched off or set in sleep mode, its power con-
sumption ptotali � 0 [13]. Otherwise, its power consumption
is proportional to resource utilization as indicated in [23]:

ptotal ¼
Z Xm

i¼1
pidle þ ðpmax � pidleÞ � uiðtÞð Þ

 !
dt; (5)

where pidle; pmax represent the power consumption of 0%
and 100% CPU utilization of Fi, respectively. Besides, uiðtÞ
is the resource utilization of Fi at t, which is defined as:

uiðtÞ ¼ min 1;

P
1fCj:lðtÞ¼Fig Cj:aðtÞ

Fi:c

()
;

where 1f�g is Iverson bracket, which is equivalent to 1 when
the condition is satisfied. Otherwise, it is equivalent to 0.

Container Migration Cost. For Ci, when Ci:lðt� 1Þ 6¼
Ci:lðtÞ, Ci is migrated from Ci:lðt� 1Þ to Ci:lðtÞ at t. Other-
wise, no migration happens to Ci at t. Migration can actu-
ally incur some non-negligible migration cost mtotal, which
is defined as:

mtotal ¼
Z Xn

i¼1
mmigi � 1 Ci:lðtÞ 6¼ Ci:lðt� 1Þf g� � !

dt; (6)

where mmigi is the migration time of Ci, which includes the
transmission delay. Compared with transmission delay, the
migration decision-making delay can be ignored [26].

Problem Definition. Our algorithms aim to reduce the cost
of power consumption and delay. Besides, themigration cost
of containers is taken into account. In short, the total cost C is
the weighted sum of dtotal, ptotal, andmtotal defined in Eqs. (4),
(5), and (6), respectively. The target is to find the best strategy
which can minimize C. Meanwhile, for each Fi, the resource

constraint 0 �P1fCj:lðtÞ¼Fig
Cj:aðtÞ
Fi:c
� 1 should be obeyed.

TANG ET AL.: MIGRATION MODELING AND LEARNING ALGORITHMS FOR CONTAINERS IN FOG COMPUTING 715

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

Therefore, the dynamic container migration problem of
mobile applications in FC architecture is defined as follows:

Problem 1.

min C ¼ v1dtotal þ v2ptotal þmtotal

s:t: 0 �P1fCj:lðtÞ¼Fig
Cj:aðtÞ
Fi:c

� 1 i ¼ 1; 2; :::; m ;
(7)

where v1 and v2 are the parameters controlling the weight
of dtotal and ptotal, respectively.

2.3 Problem Analysis

Problem 1 is an advanced bin-packing problem,which is NP-
hard and can only be solved heuristically. However, most of
existing heuristic algorithms are unstable in real network
environment, and unable to handle large-scale problems
which slowdown the decision-making. In this problem, dtotal,
ptotal, and mtotal can be represented as the addition of delay
dtotalðtÞ, power consumption ptotalðtÞ, and migration cost
mtotalðtÞ during each time slice Ttðt ¼ 0; :::; kÞ, which are
shown as:

dtotal ¼
Xk
t¼0

Xl
i¼1

dnetiðtÞ þ kcomp �
Xn
i¼1

dcompiðtÞ
 !

; (8)

ptotal ¼
Xk
t¼0

Xm
i¼1

ptotaliðtÞ; (9)

mtotal ¼
Xk
t¼0

Xn
i¼1

mtotaliðtÞ; (10)

where dnetiðtÞ; dcompiðtÞ are the network delay and the com-
putation delay of Ci, respectively. ptotaliðtÞ is the power con-
sumption of Fi, and mtotaliðtÞ is the migration cost of Ci

during Tt , which are shown as:

dnetiðtÞ ¼
Z t0þðtþ1Þ Tj j

t0þt Tj j
ðknetlog 10diðtÞ þ bnetÞdt; (11)

dcompiðtÞ ¼
R t0þðtþ1Þ Tj j
t0þt Tj j Ci:rðtÞ � Ci:aðtÞð ÞdtR t0þðtþ1Þ Tj j

t0þt Tj j Ci:rðtÞð Þdt
; (12)

ptotaliðtÞ ¼
Z t0þðtþ1ÞjT j

t0þtjT j
ðpidle þ ðpmax � pidleÞ

� uiðtÞÞdt;
(13)

mtotaliðtÞ ¼
Z t0þðtþ1Þ Tj j

t0þt Tj j
mmigi

�
� 1 Ci:lðtÞ 6¼ Ci:lðt� 1Þf gÞdt;

(14)

where t0 is the start time of the system, and Tj j is the length
of time slice.

Assume that CðtÞ is the total cost until Tt . From Eqs. (8)-
(14), we can conclude that CðtÞ obeys first-order Markov
process as:

CðtÞ ¼ 1ft > 0gCðt � 1Þ þ v1

 Xl
i¼1

dnetiðtÞ

þ kcomp

Xn
i¼1

dcompiðtÞ
!
þ v2

Xm
i¼1

ptotaliðtÞ

þ
Xn
i¼1

mtotaliðtÞ:

In addition, the first-order transition probability of the con-
tainers’ resource demands is also quasi-static for a long
period and non-uniformly distribution by properly choos-
ing the time slice duration [13]. Moreover, the movement of
mobile users is a sequential decision-making process, and
has memoryless property [19]. Therefore, we are able to
adopt reinforcement learning algorithms in solving this
problem as presented in the next session.

3 CONTAINER MIGRATION ALGORITHMS IN FOG

COMPUTING ARCHITECTURE

In this section, reinforcement learning algorithms are
adopted to attain the migration decisions. Moreover, the
deep Q-learning algorithm, combined with Q-learning algo-
rithm and DNN, has the advantage in rapid decision-mak-
ing, which is suitable for unstable FC environment. The
reinforcement learning settings and deep Q-learning algo-
rithm are introduced in 3.1. With the help of DNN, the sig-
nificant amount of information is abstracted to a
processable size. In addition, to avoid the ‘evil’ actions, the
optimization of action selection is described in 3.2. Besides,
the update of Q-network and the optimization of the train-
ing process are described in 3.3. Finally, the deep Q-learning
based container migration algorithms are proposed and
analyzed in 3.4 and 3.5, respectively.

3.1 Reinforcement Learning Settings

In reinforcement learning algorithms, for each Tt , the agent
collects system state St, and calculates the reward during
last time slice Rt�1. Then, the agent selects action At accord-
ing to pre-defined strategy. After performing the action, the
system would transit to the new state Stþ1 in the next time
slice. Similarly, the agent calculates reward Rt and chooses
new action Atþ1 according to Stþ1.

In this paper, the system state is based on the delay, the
power consumption and the migration cost. Delay is related
toMi:lðtÞ and Ci:rðtÞ. Thus, let

XðtÞ ¼
X 1;1ðtÞ � � � X 1;nðtÞ

..

. . .
. ..

.

Xm;1ðtÞ � � � Xm;nðtÞ

2
64

3
75

denotes the system state of delay, whose element X i;jðtÞ rep-
resents the state of delay of Fi andCj, which is defined as:

X i;jðtÞ ¼
bPMk2Cj:mðt0þt Tj jÞ

dnetk ðtÞþkcomp�dcompj ðtÞ
Xscale

c;

Cj:lðt0 þ t Tj jÞ ¼ Fi

0; Cj:lðt0 þ t Tj jÞ 6¼ Fi;

8>>>><
>>>>:

716 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

where Cj:mðt0 þ t Tj jÞ denotes the list of mobile application
tasks running in Cj during Tt, b�c is the floor function, and
Xscale is the discretization parameter. b�c and Xscale map
dnetkðtÞ þ kcomp � dcompjðtÞ to the corresponding delay level.
Since the power consumption and the migration cost are
related to C:lðtÞ and C:aðtÞ, the system state during Tt can
be uniquely specified by:

St ¼ fXðtÞ; C:lðt0 þ t Tj jÞ; C:aðt0 þ t Tj jÞg 2 S;

where S denotes the space of the system states.
The action set during Tt is At ¼ fC:lðt0 þ t Tj jÞg 2 A,

where A is the set of all possible actions.
We focus on minimizing the total cost over time, so the

reward during Tt is defined as:

Rt ¼ �ðv1dtotalðtÞ þ v2ptotalðtÞ þmtotalðtÞÞ: (15)

Among all kinds of reinforcement learning algorithms,
Q-learning algorithm [21] has an advantage in fast com-
putation, which is consistent with the requirement of
rapid decision-making in FC. In such algorithm, the
quality of each state-action pair is indicated by Q-value
QðSt; AtÞ, which is stored in Q-matrix. The Q-matrix is
initialized to a zero matrix, and each element in Q-
matrix indicates the QðSt; AtÞ of corresponding state-
action pair.

Obviously, the large size of S and A could result in the
large size of Q-matrix. One possible solution is to discretize
S and store parts of the Q-values. However, it may lose
plenty of information, which makes the result inaccurate.
To solve this problem, abstracting and storing the informa-
tion with neural network is considered as an effective solu-
tion [27]. Therefore, deep Q-learning algorithm, comprised
of DNN phase and Q-learning phase, is adopted in this
paper. In deep Q-learning algorithm, the Q-matrix is
replaced by a Q-network, which is consisted of a DNN with
weights u and used to efficiently store the Q-value
information.

The deep Q-learning algorithm is shown in Algorithm
1. For each episode, the agent first observes S0. Then, for
each Tt, the agent selects At according to pre-defined
strategy, and observes the next state Stþ1. The reward Rt

is calculated by Eq. (15). After that, Q-network is
updated and outputs At finally. The action selection and
the Q-network update are two main parts of the algo-
rithm, whose details will be described in Sections 3.2
and 3.3, respectively.

3.2 Action Selection

In Q-learning algorithm, the action is selected based on
�-greedy algorithm, which consists of exploration and
exploitation [28]. In �-greedy algorithm, a threshold � is set
in advance, and a random number f is generated each time.
The details of action selection are described as below:

� When f > �, the action is selected by exploitation. The
agent selects the best action At ¼ argmaxAtQðSt; AtÞ
according to the Q-values stored inQ-matrix.

� Otherwise, the action is selected by exploration. The
agent attempts to get rid of local optimization by
selecting a random action.

Algorithm 1. Deep Q-Learning

Input: u
Output: At

1: for episode = 1;M do
2: Observe S0

3: for t ¼ 1; k do
4: /* Action Selection */
5: Select At according to pre-defined strategy
6: Observe Stþ1
7: Calculate Rt by Eq. (15)
8: /* Q-network Update */
9: Update Q-network
10: Output At

11: end for
12: end for
13: end

Optimization of Exploitation. In exploitation, for St,
At ¼ argmaxAtQðSt; AtÞ is selected by the agent. In tradi-
tional deep Q-learning algorithm, DNN outputs Q-values of
all possible actions based on the input St , which has lots of
repeated calculations, and is impossible for large A in FC.
To solve this problem, in addition to applying DNN, we
maintain a best-action dictionary Qm ¼ Qm1

;
�

Qm2
; :::; Qmpg.

Since St is unique, it can be used as key, and each entry Qmi

is a key-value pair Qmi
:s; ðQmi

:a;Qmi
:vÞ	

, where Qmi
:a and

Qmi
:v are the best action and corresponding Q-value of state

Qmi
:s, respectively. In such strategy, the best action of St

can be easily obtained by retrieving Qm with St.
Optimization of Exploration. in exploration, the agent of

traditional deep Q-learning algorithm randomly selects an
action. Besides, to satisfy the resource constraints in Eq. (7),
each random action needs to follow the constraints:

X
Cx2CkCk

Cx:aðt0 þ t Tj jÞ
Fj:c

þ
X
Cx2CiCi

Cx:aðt0 þ t Tj jÞ
Fj:c

�
X

Cx2ChCh

Cx:aðt0 þ t Tj jÞ
Fj:c

� 1; j ¼ 1; 2; :::;m;

where CkCk is the set of containers located in Fj. CiCi and ChCh are
the sets of containers that selected to be migrated into/out
of Fj, respectively.

Nevertheless, in the most of FC scenarios, the migration
system could be ruined by selection of ‘evil’ actions. For
example, massive migration could bring about significant
migration cost. Besides, migrating the containers far from
users or consolidating too many containers into a node may
result in unacceptable round-trip delay [9]. To solve this
problem and select an acceptable action in a short time, the
agent handles different nodes with different utilization level
through different strategies, as shown in Algorithm 2.

In Algorithm 2, FF is classified as under-utilization, nor-
mal-utilization, and over-utilization groups according to
the under threshold thunder and over threshold thover. 1) For
under-utilization nodes, the purpose is to migrate all con-
tainers located in them to other nodes, without any over-uti-
lization nodes addition. So that a lot of power consumption
can be saved by powering off these nodes. 2) Meanwhile,
for over-utilization nodes, the purpose is to reduce the utili-
zation by migrating some of the containers located in them

TANG ET AL.: MIGRATION MODELING AND LEARNING ALGORITHMS FOR CONTAINERS IN FOG COMPUTING 717

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

to other nodes. Algorithm 2 includes two main steps. First,
the nodes are classified into three groups according to
resource usage, as shown in line 6 - 13. Then, in line 14 - 29,
for each group, the selection policy and allocation policy of
the containers are applied to determine the destination
nodes of containers which need to be migrated.

Algorithm 2. ActionSelectionðSt; QmÞ
Input: St; Qm

Output: At

1: Generate random number f
2: if f > � and Qm:St 6¼ ; then
3: At ¼ Qm:St:A
4: else
5: thUnderFlag ¼ false
6: for Fj 2 FF do
7: if

P
i Ci:rCi:lðt0þt Tj jÞ¼Fj > thover then

8: add Fj to FFover

9: else if
P

i Ci:rCi:lðt0þt Tj jÞ¼Fj < thunder then
10: add Fj to FFunder

11: thUnderFlag ¼ true
12: end if
13: end for
14: if thUnderFlag ¼ true then
15: Randomly choose Fi from FFunder

16: for Cj in Fi do
17: CalculateRi;jðtÞ by Eq. (17)
18: Select At by Eq. (18)
19: end for
20: else
21: if Fover 6¼ ; then
22: Randomly choose Fi from FFover

23: else
24: Randomly choose Fi from FF
25: end if
26: select C ¼ arg min mtotali;jðt0Þ by Eq. (16)
27: CalculateRi;jðtÞ by Eq. (17)
28: Select At by Eq. (18)
29: end if
30: end if
31: Return At

32: end

Selection Policy. It is applied to select the containers which
need to be migrated out from each source node. For each
under-utilization node, we try to migrate all containers
located in it to other nodes. Meanwhile, for each over-utili-
zation node, we calculate the estimated migration cost for
each container located in it and then migrate the container
with minimal estimated migration cost. The estimated
migration costmtotali;jðt0Þ is defined as:

mtotali;jðt0Þ ¼
Z t0þðtþ1Þ Tj j

t0þt Tj j
mmigi;jðtÞ
� �

dt; (16)

where mmigi;jðtÞ is the migration cost of migrating Ci to Fj,
which is calculated as:

mmigi;jðtÞ ¼
Ci:size

minðCi:lðtÞ:b; Fj:bÞ ;

where Ci:size is the size of Ci; Ci:lðtÞ:b and Fj:b are the band-
width of Ci:lðtÞ and Fj, respectively. Without losing general-
ity, we assume they are constants for simplicity [13].

Allocation Policy. After selecting the migrated containers,
we apply allocation policy to determine the destination
node of each container. We estimate the migration revenue
DRi;jðtÞ of migrating Ci to Fj; j ¼ 1; :::;m, which is defined
as:

DRi;jðtÞ ¼ v1dtotalðtÞ þ v2ptotalðtÞ � v1dtotali;jðt0Þ
� v2ptotali;jðt0Þ �mtotali;jðt0Þ;

(17)

where dtotali;jðt0Þ, ptotali;jðt0Þ, and mtotali;jðt0Þ are the estimated
delay, power consumption, and migration cost of migrating
Ci to Fj, respectively. In Eq. (17), dtotali;jðt0Þ is defined as:

dtotali;jðt0Þ ¼
Xl
k¼1

dnetkðt0Þ
� �þXn

k¼1
kcomp � dcompkðt0Þ
� �

;

where
Pl

k¼1ðdnetkðt0ÞÞ is the estimated network delay, which
is the original network delay plus the change due to migra-
tion, and is defined as:

Xl
k¼1

dnetkðt0Þ
� � ¼Xl

k¼1
dnetkðtÞ
� �

þ
X

Mk2Ci:mðt0þt Tj jÞ
knetlog 10jMk:lðt0 þ t Tj jÞð

� Fj:lj þ bnet � dnetkðtÞ
�
:

And
Pn

k¼1ðdcompkðt0ÞÞ is the estimated computation delay,
which is defined as:

Xn
k¼1

dcompkðt0Þ
� � ¼ X

Ck2CCnðCxCx[CyCyÞ
ðdcompkðtÞÞ

þ
X

Ck2CxCx[CyCy

R t0þðtþ1Þ Tj j
t0þt Tj j Ck:rðtÞ � wkðtÞCk:aðtÞð ÞdtR t0þðtþ1Þ Tj j

t0þt Tj j Ck:rðtÞð Þdt
;

where CxCx and CyCy are the sets of containers located in
Ci:lðt0 þ t Tj jÞ and Fj, respectively. wkðtÞ is used to estimate
the allocated resource of Ck, which is defined as:

wkðtÞ ¼

P
Cz2CxCx

Cz:rðt0þt Tj jÞP
Cz2CxCx

ðCz:rðt0þt Tj jÞÞ�Ci:rðt0þt Tj jÞ
; Ck 2 CxCxP

Cz2CyCy
Cz:rðt0þt Tj jÞP

Cz2CyCy
ðCz:rðt0þt Tj jÞÞþCi:rðt0þt Tj jÞ

; Ck 2 CyCy

8>>><
>>>:

:

If Ck 2 CxCx, the estimated allocated resource of Ck should be
incresed. Otherwise, the estimated allocated resource
should be reduced. Besides, ptotali;jðt0Þ is defined as:

ptotali;jðt0Þ ¼
X

Ck2CCnðCxCx[CyCyÞ
ðptotalkðtÞÞ

þ
X

Ck2CxCx[CyCy

Z t0þðtþ1Þ Tj j

t0þt Tj j
pidle þ ðpmax � pidleÞ � u0kðtÞ
� �

dt;

where u0kðtÞ is the estimated resource utilization, which is
defined as:

u0kðtÞ ¼
min 1; u#fCi:lðt0þt Tj jÞgðtÞ � Ci:aðtÞ

Ci:lðt0þt Tj jÞ:c
n o

;

Ck 2 CxCx

min 1; ujðtÞ þ Ci:aðtÞ
Fj:c

n o
; Ck 2 CyCy

8>>><
>>>:

;

718 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

where #fCi:lðt0 þ t Tj jÞg is the number of Ci:lðt0 þ t Tj jÞ,
e.g., if Ci:lðt0 þ t Tj jÞ ¼ Fx, then#fCi:lðt0 þ t Tj jÞg ¼ x. Since
Ci is migrated from Ci:lðt0 þ t Tj jÞ to Fj, if Ck 2 CxCx, u

0
kðtÞ is

the original resource utilization u#fCk:lðt0þt Tj jÞgðtÞ minus the
resource utilization of Ci. Otherwise, u0kðtÞ is ujðtÞ plus the
resource utilization of Ci.

The total cost can be effectively reduced with larger
DRi;jðtÞ. By choosing the largest DRi;jðtÞ, we can migrate
the selected container to the corresponding node. Some-
times, some nodes could not load any other container. Thus,
we measure the feasibility of migrating Ci to each Fj as:

Feai;jðtÞ ¼ 1fujðt0 þ t Tj jÞFj:cþ Ci:aðt0 þ t Tj jÞ
� thoverg � 1fujðt0 þ t Tj jÞFj:c 6¼ 0g:

If Feai;jðtÞ ¼ 1, it is feasible to migrate Ci to Fj. For nodes
which are feasible to receive the container, we select the
node with the largest DRi;jðtÞ as the destination. Finally, the
destination node is selected as:

FdiðtÞ ¼ argmaxFjfRi;jðtÞjFeai;jðtÞ ¼ 1g:

If no feasible nodes available, we power on one node with
minimal migration cost. Moreover, if no other nodes in shut-
downmode, we randomly select a node as the destination.

After all containers are processed, At is obtained by:

At ¼ A1ðtÞ;A2ðtÞ; :::;AnðtÞf g; (18)

where AiðtÞ; i ¼ 1; :::; n is defined as:

AiðtÞ ¼
Ci:lðt0 þ t Tj jÞ; Ci is not selected

FdiðtÞ; Ci is selected:

After the selection of At, the agent observes Stþ1, and calcu-
lates Rt, as shown in Algorithm 1. Then, the Q-network is
updated, whose detail is described in the next sub-section.

3.3 Q-Network Update

In Q-learning algorithm, each QðSt�1; At�1Þ can be updated
online with the learning rule:

QðSt�1; At�1Þ ð1� aÞQðSt�1; At�1Þ
þ a Rt�1 þ g �maxAtQðSt; AtÞ½ �; (19)

where a is the learning rate and g is the discount parameter.
Meanwhile, in deep Q-learning algorithm, information of

Q-values is abstractly stored in the DNN. As the state of the
system is continually changed in each Tt , it is necessary for
DNN to be adaptively updated. Therefore, the training of
DNN based on historical information stored in experience
replay memory D is an essential part of deep Q-learning
algorithm [27].

The traditional objective of training is to minimize the
loss function LðuÞ, which is defined as:

LðuÞ ¼ E½ðyðtÞ �QðSt; At; uÞÞ2�;
where QðSt; At; uÞ is the output of DNN with weights u.
However, when only one DNN works as a whole, each
update to a point in the Q function also influences the whole
area around that point. This leads to a problem that with
each update, the target is likely to shift. To overcome this

problem, a target network [29] is used. The target network
provides stable QðSt; At; u

0Þ, and yðtÞ is defined as:

yðtÞ ¼ E½ð1� aÞQðSt�1; At�1; u0Þ þ a Rt�1ð
þ gmaxQðSt; At; u

0ÞÞjSt�1; At�1�;

where u0 is the weights of target network, which is reset to u

from time to time.

Algorithm 3. QNetworkUpdateðSt; At; Rt; Stþ1;DÞ
Input: St; At; Rt; Stþ1; D
Output: u
1: Store ðSt; At; Rt; Stþ1Þ inD½tmod jDj�
2: SampleDt 	 D by Eq. (23)

3: for ðSðjÞt�1; AðjÞt�1; RðjÞt�1; SðjÞt Þ inDt do

4: Calculate QðSðjÞt ; A
ðjÞ
t ; u0Þ

5: Calculate ydðtÞ by Eq. (20)
6: if Qmi

:s
ðjÞ
t ¼ ; or yðtÞ > Qmi

:v then
7: Qmi

:v ¼ ydðtÞ
8: Qmi

:a ¼ A
ðjÞ
t

9: end if
10: Compute errort;j by Eq. (21)
11: Update prt;j by Eq. (22)
12: end for
13: u ¼ argminuLðuÞ
14: From time to time reset u0 ¼ u

15: Return u

16: end

In addition, to help the agent perform better with faster
learning speed and more stability, we optimize the DNN
training with double Q-learning and prioritized experience
replay in Q-network update.

Optimization of DNN Training. The max operator
maxAtQðSt; AtÞ in standard Q-learning and deep Q-learning
uses the same Q-values both to choose and to evaluate an
action. This makes it more likely to select overestimated val-
ues, which will result in overoptimistic estimates. To solve
this problem, two Q-value functions are learned by assign-
ing experiences randomly to update one of them in Double
Q-learning [30]. One function is used to determine the maxi-
mizing action, and the other one is used to estimate its Q-
value. With these two functions, the selection is decoupled
from the evaluation.

In deep Q-learning algorithm, the target network pro-
vides a natural candidate for the second value function.
Therefore, the training DNN can be used to evaluate the
greedy policy, and the target network can be used to esti-
mate its value, as proposed in Double DQN [22]. The target
ydðtÞ is defined as:

ydðtÞ ¼ E½ð1� aÞQðSt�1; At�1; u0Þ þ a Rt�1ð
þ gQðSt; argmaxAtQðSt; At; uÞ; u0ÞjSt�1; At�1�:

(20)

The update to the target network stays unchanged from
deep Q-learning.

Optimization of Experience Replay. In deep Q-learning, the
experience replay is used and all the samples in experience
memory are treated equally. However, we can learn more
from some transitions than from others. Prioritized experi-
ence replay [31] is one strategy that tries to leverage this fact

TANG ET AL.: MIGRATION MODELING AND LEARNING ALGORITHMS FOR CONTAINERS IN FOG COMPUTING 719

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

by changing the sampling distribution. The main idea is that
we can learn most from the transitions that do not fit well to
our current estimate of the Q function. The error of a transi-

tion Trt;j ¼ ðSðjÞt�1; AðjÞt�1; RðjÞt�1; SðjÞt Þ is defined as:

errort;j ¼ jQðSt; At; u
0Þ � ydðtÞj: (21)

The error is then converted to priority Pt;j based on prt;j,
which is defined as:

prt;j ¼ ðerrort;j þ �prÞapr ; (22)

where �pr is a small positive constant that ensures no transi-
tion has zero priority, and 0 � apr � 1 controls how much
prioritization is used. Finally, the priority of Trt;j is calcu-
lated by the probability of being chosen for replay, which is
defined as:

Pt;j ¼ prt;jP
k prt;k

: (23)

The Q-network update algorithm is shown in Algorithm 3.
In Algorithm 3, for each Tt , the transition ðSt; At; Rt; Stþ1Þ is
stored inD. Then, a subsetDt is sampled fromD and used to
train the DNN. For each entry ðSðjÞt�1; AðjÞt�1; RðjÞt�1; SðjÞt Þ in Dt ,

the corresponding QðSðjÞt ; A
ðjÞ
t ; u0Þ and ydðtÞ are calculated

from the target network. Besides, due toQðSt; AtÞ of the state-
action pair ðSt; AtÞ is obtained through DNN, the best actions
stored in Qm are further updated according to ydðtÞ during
the DNN training. Finally, a gradient descent step is per-
formed in the training network, and the weights u of the cur-
rent network is copied to the target network from time to
time. The network is offline trained and online updated.

Based on the action selection and Q-network update, our
deep Q-learning based container migration algorithm is
proposed in Section 3.4.

3.4 Deep Q-Learning Based Container Migration
Algorithms

The deep Q-learning based container migration algorithm is
proposed in Algorithm 4. The algorithm consists of three
mainparts: action selection, next state observation and reward
calculation, and Q-network update. In action selection,
Algorithm 2 is used to select an effective action. Algorithm 3
is used to efficiently train and updateQ-network.

3.5 Convergence and Computational Complexity
Analysis

For the efficient deep Q-learning based container migration
algorithms, it has been proven that Q-learning will gradu-
ally converge to the optimal policy under stationary MDP
system and sufficiently small learning rate [21]. In addition,
the learning rule given in Eq. (19) converges to the
optimal Q-function as long as

P
t atðS;AÞ ¼ 1 andP

t a
2
tðS;AÞ � 1 for all ðS;AÞ 2 S� A [32], where atðS;AÞ

is the learning rate at Tt. Hence, the deep Q-learning con-
tainer migration algorithms will converge to the optimal
policy when (1) the system evolves as a stationary memory-
less MDP, (2) the learning rate is sufficiently small and
(3) the DNN is sufficiently accurate to return the action with
optimal QðSðtÞ; AðtÞÞ estimate. In this paper, the MDP
characteristics have been analyzed in 2.3. Besides, the

learning rate is sufficiently small (0 � at � 1) in our prob-
lem, and the convergence of deep Q-learning has been
illustrated in [27]. In short, the deep Q-learning based con-
tainer migration algorithms are convergent, and the experi-
mental results will demonstrate the effectiveness of the
algorithms.

Algorithm 4. Deep Q-Learning Based Container
Migration

Input: u; Qm;D
Output: At

1: Qm ¼ ;
2: for episode = 1;M do
3: Observe S0

4: D ¼ ;
5: for t ¼ 1; k do
6: /* Call Algorithm 2 */
7: At ¼ ActionSelectionðSt; QmÞ
8: Observe Stþ1
9: Calculate Rt by Eq. (15)
10: /* Call Algorithm 3 */
11: u ¼ QNetworkUpdateðSt; At; Rt; Stþ1; DÞ
12: Output At

13: end for
14: end for
15: end

For computational complexity, as illustrated in Section 2.1,
there arem nodes, n containers, and lmobile users. The main
process of the system consists of two parts: the implementa-
tion of the algorithms, and the update of the system state. For
the implementation of Algorithm 2 and Algorithm 3, the
main steps include getting system state, action selection, and
reward calculation. The time complexity of getting system
state is related to the size of the state, which is Oðm � nÞ. For
reward calculation, the time complexity is Oðmþ nþ lÞ.
And for action selection, when f > �, the best action is
selected by querying the dictionary Qm, which is Oð1Þ [33].
Otherwise, the random action is selected by Algorithm 2,
which has a complexity of Oðn2 � ðlþ nÞÞ. For the update of
the system state, it mainly includes the update of the lists
maintained by the agent, which are the container list, user list,
and node list. For the update of the container list, the time
complexity is Oðn � ðmþ nÞÞ. And for the update of the user
list, the time complexity is Oðl � ðmþ nþ n � log ðnÞÞÞ ¼
Oðl � ðmþ n � log ðnÞÞÞ. Besides, the time complexity for the
update of node list is Oðlþ l � n=mþ nÞ ¼ Oðl � n=mÞ. All the
steps are executed in order. In short, the algorithms have poly-
nomial-time complexity.

4 EXPERIMENTS

In this section, we first introduce the experimental settings
in Section 4.1. Then the experimental results of comparison
between container migration and VM migration are shown
in Section 4.2. The results of real-world driver trace are dis-
cussed in Section 4.3.

4.1 Experimental Settings

We explain the experimental settings of our container migra-
tion testbed and real-world driver trace in this sub-section.

720 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

Container Migration Testbed. To show the efficiency of con-
tainers, we compare the performance of CPU consumption
and migration cost between Docker containers and VMs.
The container migration testbed consists of a set of servers
with four VMs as fog nodes and a set of laptops with two
VMs as users. For each VM, its operating system is Ubuntu
14.04 LTS with Docker 1.9 and CRIU 2.2 [34]. CRIU is used to
checkpoint and restore the containers. Each node has a con-
tainer migration controller consisted of six components:
migration daemon, system check, filesystem handler, mem-
ory handler, handoff, and restore. The migration daemon is
responsible for receiving and sending the information of the
node and maintaining the network connectivity with other
nodes. The system check component is responsible for check-
ing the feasibility of migration, e.g., the kernel, Docker, and
CRIU requirements. The filesystem handler and memory
handler components are used to handle the root filesystem
and memory pages of the container, respectively. The hand-
off component is used to handle the migration process. And
the restore component is used to restore the container.

Once the migration controller receives the migration task,
it first checks the status and gets the container information.
Second, it handles the root filesystem, compresses the files,
and sends it to the destination node. Third, it pre-dumps
the memory [35], compresses the memory with LZ4 [36],
and sends the memory pages to the destination node. LZ4 is
a lossless data compression technology used for rapid com-
pression of the memory pages. Then, it dumps the memory
and sends it to the destination node. After that, the con-
tainer is restored in the destination node. The migration
time is the time from the beginning of dumping the memory
to the end of restoring the container.

Nginx web servers are run in the VMs in the computer,
and three types of containers are run behind the Nginx web
server: a WordPress website with MySQL database, a Ghost
website with SQLite 3 database, and a website with static
pages. Tasks of web pages refreshing are continuously sub-
mitted by Webbench [37] from laptops to the corresponding
Nginx web servers with different request numbers as differ-
ent workload. We use Linux traffic control [38] to control
the delay between users and nodes. Besides, we use Sysstat
[39] to get the CPU consumption.

Real-World Driver Trace. Moreover, we perform experi-
ments using real-world San Francisco taxi traces obtained
on May 31, 2008 [40] with Python. Similar to Wang et al.
[26], we assume that the nodes are deployed in a grid struc-
ture in the central area of San Francisco. The locations of the
taxi traces are collected via GPS, which vary from latitude
32.87 to latitude 50.31, and from longitude -127.08 to longi-
tude -122.0. The area is separated into 108 cells. We consider
67 nodes located in some of the cells, and 200 mobile users
(taxies) in total. The capacities of the nodes are a uniform
distribution in ½50; 100�. All mobile users are active, whose
requests are changed when the passengers are on board or
off the cab. A unique instance from the nearest node is allo-
cated to each request of mobile users. At a time, at most one
task is requested by the users.

As for parameters, for dnet, we set f ¼ 2:5MHz, hb ¼ 35m,
hr ¼ 1m, and cm ¼ 3dB [25]. diðtÞ is calculated by diðtÞ ¼
jMi:lðtÞ � Fj:lj, where Fj is the assigned node. Besides,
Xscale ¼ 3, and thover ¼ 0:9 [9]. In addition, for Q-learning

settings, parameters a; g; � is set to 0.1,0.9 and 0.9, respec-
tively. Moreover, the power models of each node are shown
in Table 2 [9].

For the DNN architecture, we use a four-layer fully con-
nected neural network. Our choices of four layers of neural
networks are based on our experimental data. We have run
many experiments with different depth of the neural net-
works, and the results show that the 4-layer network is
good enough to handle this problem. However, due to
space limitation, we are unable to put the detailed analysis
here, and Liu et al. [41] have done the similar analysis.
Besides, St and At are stored in a tuple and converted into a
12127� 1 vector as the input of DNN. A Rectified Linear
Unit (ReLU) activation function [42] is added between the
first layer and the second layer. The output of DNN is corre-
sponding to QðSt; AtÞ with tuple ðSt; AtÞ. Different nodes
share the same DNN architecture and weights.

We compare the deep Q-learning container migration
algorithms (DQLCM) with traditional deep Q-learning
based algorithm (TDQL), discretization based Q-learning
algorithm (QL) [21], static threshold algorithm (THR),
median absolute deviation algorithm (MAD) and interquar-
tile range regression algorithm (IQR) [43]. In QL, actions are
selected by action exploration and exploitation. To handle
the large state set and action set, discretization technique of
state set and action set is adopted in QL. Other algorithms
are based on the detection and resource allocation of under-
utilization and over-utilization of the nodes. In these algo-
rithms, some of the containers in over-utilized nodes, whose
utilization is higher than thover, are migrated to other nodes
to decrease the number of over-utilized nodes. Besides, all
the containers in under-utilized nodes, whose utilization is
lower than thunder, are migrated to other nodes to increase
the number of empty nodes. In THR algorithm, thunder, thover

are set statically for under-utilized and over-utilized nodes,
while thunder, thover are dynamically predicted in MAD and
IQR algorithms. TheMAD algorithmmeasures the statistical
dispersion of each task, which is a more robust estimator of
scale than the sample variance or standard deviation.
Besides, IQR algorithm also measures the statistical disper-
sion of each task, which has a breakdown point of 25%.

4.2 Comparison between Container and VM

The monitoring results of CPU consumption and migration
cost are shown in Fig. 3. The average CPU consumption
when running applications within containers and VMs are
shown in Fig. 3a. We can see that when workload grows, the
CPU consumption of VM becomesmuch larger than the con-
tainer. And Fig. 3b shows the average migration cost of con-
tainers and VMs. The migration cost mainly consists of the
stop time, filesystem handling andmemory handling time in

TABLE 2
The Power Consumption at Different CPU Utilization in Watts

CPU Utilizationð%Þ 0% 10% 20% 30% 40% 50%

HP ProLiant G4 86 89.4 92.6 96 99.5 102
HP ProLiant G5 93.7 97 101 105 110 116

CPU Utilizationð%Þ 60% 70% 80% 90% 100%

HP ProLiant G4 106 108 112 114 117
HP ProLiant G5 121 125 129 133 135

TANG ET AL.: MIGRATION MODELING AND LEARNING ALGORITHMS FOR CONTAINERS IN FOG COMPUTING 721

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

the source node, the file transmission time between two
nodes and the restore time, start time in the destination
node. Besides, the file transmission time of VM is muchmore
than container due to the transmission of extra guest OS files
of VM. In short, containers aremore efficient thanVMs in FC.

4.3 Experimental Results of Real-World Driver Trace

The performance of algorithms with different v1 and v2 is
shown in Figs. 4 and 5, respectively. Fig. 4 indicates when
v1 increases, the advantage of the delay in DQLCM
increases, which is reasonable since the larger v1, the
greater influence from the delay. We also illustrate the delay
of these algorithms in Fig. 4a. We can see that DQLCM has
less delay than all other algorithms. Fig. 4b demonstrates
the power consumption when v1 changes. The power con-
sumption of DQLCM is better than most of the baselines.
Since the IQR and MAD algorithms focus only on reducing
power consumption, while our DQLCM algorithm focuses
not only on power consumption, but also on delay and
migration cost, and the performance of DQLCM is about
the same with these baselines. As illustrated in Eq. (5), the
power consumption is obtained through the resource utili-
zation of nodes, which is the CPU utilization in this paper.
So through the performance of power consumption, we can
also conclude the performance of CPU for each node. As
shown in Fig. 4c, for average migration cost, DQLCM

outperforms all baselines. In Fig. 4d, the average total cost
of all algorithms is shown, and it is obvious that the
DQLCM is better than all other algorithms.

In Fig. 5, the performance with different v2 is shown. As
shown in Fig. 5a, DQLCM has less delay than the baseline
methods, i.e., DQLCM < TDQL < QL < THR < MAD <
IQR. In Fig. 5b, while increasing v2, DQLCM has less power
consumption than the three algorithms, which also gives
DQLCM < IQR < MAD < THR < TDQL < QL. This
reflects that the power consumption reduction in DQLCM
is the highest. And the migration cost of DQLCM is less
than all other baselines as shown in Fig. 5c. For the average
total cost, as shown in Fig. 5d, the DQLCM outperforms all
other algorithms.

The performance of algorithms with different under
threshold thunder is shown in Fig. 6. As shown in Figs. 6a
and 6b, the lower the thunder, the more advantage DQLCM
is in average delay and average power consumption. And
the migration cost of DQLCM is less than all other algo-
rithms, such that DQLCM < THR < MAD < TDQL <
QL, as shown in Fig. 6c. Also, the average total cost is shown
in Fig. 6d, which demonstrates that DQLCM is better than
all other algorithms.

In short, DQLCM has an overall best performance than
all baselines and outperforms the baseline approaches 2.9,
48.5 and 58.4 percent on average regarding the delay, power
consumption, and the migration cost, respectively.

In Fig. 7, the performance of delay andpower consumption
in one iteration is shown. We can see that the performance of
DQLCM outperforms the baselines when the iteration num-
ber grows. And it finally convergences to a stable state.

5 RELATED WORK

Fog Computing: There have been many types of research of
FC. Based on the architecture proposed by CISCO, HP labo-

Fig. 4. Performance with different v1.

Fig. 5. Performance with different v2.

Fig. 6. Performance with different under threshold.

Fig. 3. Performance of Docker Container against VM.

722 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

ratory further proposes the concept of FC [44]. Hong et al.
[45] design a mobile fog computing system which explained
that the FC model could provide support for mobility. In
addition, there are some concepts similar to FC such as
mobile computing [46], mobile cloud computing [3], edge
computing [47], etc. Compared with mobile computing, FC,
while maintaining the support for mobility, combines with
powerful computation and storage capabilities possessed by
cloud computing [4]. Mobile fog computing specifically aims
atmobile devices [48]. However, since the tasks are uploaded
to remote cloud data center, the problem of delay could not
be solved compared with FC. As for edge computing, it has
many similarities with FC, which combines the advantages
of mobile computing and cloud computing. Edge computing
is more concerned with users, while FC is more concerned
with the service providers of fog layer and the owners of all
kinds of equipment in the fog layer [49].

The research of FC is mainly about the hardware virtuali-
zation technology [16], and the allocation and monitoring of
hardware to reduce the delay and power consumption [14].
The virtual machine scheduling is the focus of FC. The pur-
pose is to allocate the virtual machines to complete the task
with minimal cost, and to achieve a higher QoS. Different
algorithms have different definitions of task benefits and
QoS, which results in a variety of scheduling algorithms. In
general, the task benefits and QoS are defined as follows:
storage capacity [15], delay [14], power consumption [13],
utility, network utilization and migration time [12].

For mobility of mobile applications in FC, there is a trade-
off between the QoS and container migration cost [26]. But
only a few existing researches have studied this problem
[26], [50], [51], [52]. A mobility-aware FC architecture is pro-
posed in [50]. The performance of nodes with user mobility
is studied in [51], but decisions on whether and where to
migrate the service in the node are not considered. All of the
approaches in [26], [52] do not explicitly consider multiple
users and assume specific structures of the cost function that
only related to the distance between users and nodes.

Container Migration. VMmigration is a resource-intensive
operation and is a critical issue in the data center. In FC, a
general architecture to support VMmigration was proposed
in [8]. VM Handoff [53] is a technique for transferring VM-
encapsulated execution when users move in FC.

Compared with VM, container is a lightweight virtuali-
zation technology [17] which is more suitable for FC. With
the help of Docker, more researches of container migration
are proposed [54]. But container migration in FC is a rela-
tively new area which is first considered in [55] with no
migration strategy. Besides, Ma et al. [56] implement a pro-
totype system of container migration across edge servers.

Reinforcement Learning. Reinforcement learning attracts
more and more attention recent years. It is often used in

controlling and routing [57]. The DNN is successfully com-
bined with reinforcement learning and achieved an excellent
result in winning game scores [27], [29]. Mao et al. [58] use
the deep reinforcement learning in network resource sched-
uling. Liu et al. [41] propose a novel hierarchical framework
in cloud data centerwhichweighs the overall resource alloca-
tion and power management issues. The best trade-off
between power consumption and processing delay can be
effectively achieved with deep reinforcement learning tech-
nology, combinedwith auto-encoding, LSTM, and other neu-
ral networks.

However, there are only a few researches of combining
reinforcement learning with container migration manage-
ment in FC. Some studies of VM migrations in data center
[13], [41] are proposed, but they do not support the mobile
application mobility.

6 DISCUSSION

From the experimental results, we can see the effectiveness
of our algorithms. The following issues deserved further
investigations.

Battery-Powered Nodes. In FC, there are indeed many
lightweight battery-powered nodes and clients. However,
we consider those battery-powered nodes without enough
computation resource to support containers will be shut
down when the battery runs out, which is not our focus.
Besides, we only focus on the power consumption of fog
nodes as they are the main roles of container migrations. In
our model, the weight of power consumption in Eq. (7) can
be adjusted to reflect the different levels of power consump-
tions, and the results are shown in 4.3.

Container versus VM. Containers are lighter than VMs, as
shown in Fig. 2. Moreover, a container is consisted of some
read-only layers and one read and write layer. When
migrating a container, only the read and write layer need to
be migrated [56]. This can further leverage the unique fea-
tures of containers so that the migration cost in Eq. (6) can
be further reduced.

Revenue Estimation. In Section 3, to select a better action,
we estimate the migration cost and the migration revenue.
The resource requirements, resource allocations, the trans-
mission size, and real-time bandwidth could be dynami-
cally changing during the execution. However, the aim of
revenue estimation is to select a better random action for
faster convergence of the network. Since we aim to optimize
the long-term revenue, even sometimes it is not so accurate,
it does not affect the results in the long term.

Placement of Migration Decision Service. The placement of
migration decision service remains a problem in FC. Truong
et al. [59] place a fog controller with an SDN controller
between the cloud and the fog nodes. The fog controller is
connected to the cloud and the fog nodes with broadband
communications. In this paper, we make the same assump-
tion and place the service in the nearest cloud.

7 CONCLUSION

In this paper, we have modeled the container migration
problem of mobile application tasks in FC as a large-scale
MDP problem. We first define the system model, whose
cost function consists of delay, power consumption, and

Fig. 7. Performance in one iteration.

TANG ET AL.: MIGRATION MODELING AND LEARNING ALGORITHMS FOR CONTAINERS IN FOG COMPUTING 723

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

migration cost. Then we proposed the deep Q-learning
based container migration algorithms. To achieve fast deci-
sion- making, we optimize random action selection in
exploration and DNN training strategy in Q-network
update. Experiments with real-world data trace have shown
that our algorithms substantially reduce the delay, power
consumption and migration cost as compared with the
existing baselines. Future work will consider the container
migration across the nodes and the cloud.

ACKNOWLEDGMENTS

This work is supported by DCT-MoST Joint-project No.
(025/2015/AMJ); Startup Funds of University of Macau
Nos: CPG2018-00032-FST & SRG2018-00111-FST; Chinese
National Research Fund (NSFC) Key Project No. 61532013;
National China 973 Project No. 2015CB352401; Shanghai Sci-
entific Innovation Act of STCSM No.15JC1402400 and 985
Project of Shanghai Jiao Tong University: WF220103001.

REFERENCES

[1] H. Zhang, Q. Zhang, and X. Du, “Toward vehicle-assisted cloud
computing for smartphones,” IEEE Trans. Veh. Technol., vol. 64,
no. 12, pp. 5610–5618, Dec. 2015.

[2] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, “Foggy: A
framework for continuous automated IoT application deployment
in fog computing,” in Proc. IEEE Int. Conf. AI Mobile Serv., 2017,
pp. 38–45.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: Architecture, applications, and approaches,”
Wireless Commun.Mobile Comput., vol. 13, no. 18, pp. 1587–1611, 2013.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. ACM SIGCOMM
Workshop Mobile Cloud Comput., 2012, pp. 13–16.

[5] F. Bonomi, “Connected vehicles, the internet of things, and fog
computing,” in Proc. ACM Int. Workshop Veh. Inter-Netw., 2011,
pp. 13–15.

[6] J. Li, J. Jin, D. Yuan, M. Palaniswami, and K. Moessner, “Ehopes:
Data-centered fog platform for smart living,” in Proc. IEEE Int. Tel-
ecommun. Netw. Appl. Conf., 2015, pp. 308–313.

[7] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog
computing: A viewpoint of vehicles as the infrastructures,” IEEE
Trans. Veh. Technol., vol. 65, no. 6, pp. 3860–3873, 2016.

[8] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards
virtual machine migration in fog computing,” in Proc. IEEE Int.
Conf. P2P Parallel Grid Cloud Internet Comput., 2015, pp. 1–8.

[9] X. Zhou, K. Wang, W. Jia, and M. Guo, “Reinforcement learning-
based adaptive resource management of differentiated services in
geo-distributed data centers,” in Proc. IEEE Int. Symp. Quality
Serv., 2017, pp. 1–6.

[10] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,
“Harmony: Dynamic heterogeneity-aware resource provisioning
in the cloud,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2013,
pp. 510–519.

[11] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao,
“Energy-aware server provisioning and load dispatching for con-
nection-intensive internet services,” in Proc. USENIX Symp. Netw.
Syst. Des. Implementation, 2008, pp. 337–350.

[12] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal work-
load allocation in fog-cloud computing toward balanced delay
and power consumption,” IEEE Internet Things J., vol. 3, no. 6,
pp. 1171–1181, Dec. 2016.

[13] Z.Han,H. Tan,G. Chen, R.Wang, Y. Chen, and F.C. Lau, “Dynamic
virtual machine management via approximate markov decision
process,” inProc. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[14] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient vir-
tual machines consolidation in cloud data centers using reinforce-
ment learning,” in Proc. IEEE Int. Euromicro Conf. Parallel Distrib.
Netw.-Based Process., 2014, pp. 500–507.

[15] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proc. ACM Workshop Mobile Big Data,
2015, pp. 37–42.

[16] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Proc. IEEE Workshop Hot Top. Web Syst. Technol.,
2015, pp. 73–78.

[17] D. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: A multi-tenant
platform to dynamically install third party services on wireless
gateways,” in Proc. ACM Int. Workshop Mobility Evolving Internet
Archit., 2014, pp. 43–48.

[18] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux contain-
ers,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2015,
pp. 171–172.

[19] Y. Zhai, Y. Wang, I. You, J. Yuan, Y. Ren, and X. Shan, “A DHT
and MDP-based mobility management scheme for large-scale
mobile internet,” in Proc. IEEE Conf. Comput. Commun. Workshops.,
2011, pp. 379–384.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, vol. 1, no. 1. Cambridge, MA, USA: MIT Press, 1998.

[21] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3/4, pp. 279–292, 1992.

[22] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” in Proc. AAAI Conf. Artif. Intell.,
2016, pp. 2094–2100.

[23] R. Buyya, A. Beloglazov, and J. H. Abawajy, “Energy-efficient man-
agement of data center resources for cloud computing: A vision,
architectural elements, and open challenges,” in Proc. Int. Conf.
Parallel and Distrib. Process. Tech. and Appl., Las Vegas, Nevada,
USA, July 12–15, 2010, vol. 2, pp. 6–20, 2010.

[24] C. Action, “Digital mobile radio towards future generation
systems,” European Communities, Tech. Rep. EUR 18957,1999.

[25] V. Abhayawardhana, I. Wassell, D. Crosby, M. Sellars, and
M. Brown, “Comparison of empirical propagation path loss mod-
els for fixed wireless access systems,” in Proc. IEEE Veh. Technol.
Conf., 2005, pp. 73–77.

[26] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Proc. IFIP
Int. Conf. Netw., 2015, pp. 1–9.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep rein-
forcement learning,” in NIPS Deep Learn. Workshop, 2013.

[28] M. Tokic and G. Palm, “Value-difference based exploration: Adap-
tive control between epsilon-greedy and softmax,” in Proc. 34th
Annu. German Conf. Adv. Artificial Intelligence, 2011, pp. 335–346.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al., “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[30] H. V. Hasselt, “Double q-learning,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2010, pp. 2613–2621.

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized expe-
rience replay,” Int. Conf. Learning Representations, Puerto Rico,
2016.

[32] T. Jaakkola, M. I. Jordan, and S. P. Singh, “Convergence of stochas-
tic iterative dynamic programming algorithms,”Advances in Neural
Info. Process. Syst., pp. 703–710, 1994.

[33] TimeComplexity, Time complexity - python wiki, 2017. [Online].
Available: https://wiki.python.org/moin/TimeComplexity

[34] CRIU, Criu, 2017. [Online]. Available: https://criu.org/Docker
[35] CRIU, Memory dumping and restoring, 2017. [Online]. Available:

https://criu.org/Memory_dumping_and_restoring
[36] LZ4, Lz4 - extremely fast compression, 2018. [Online]. Available:

http://lz4.github.io/lz4/
[37] Z. jazyk, Web bench 1.5, 2004. [Online]. Available: http://home.

tiscali.cz/ cz210552/webbench.html
[38] M. A. Brown, Traffic control howto, 2006. [Online]. Available:

http://www.tldp.org/HOWTO/Traffic-Control-HOWTO
[39] S. Godard, Sysstat, 2018. [Online]. Available: http://sebastien.

godard.pagesperso-orange.fr
[40] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser,

“CRAWDAD dataset epfl/mobility (v. 2009-02-24),” Feb. 2009.
[Online]. Available: http://crawdad.org/epfl/mobility/20090224

[41] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, “A
hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning,” in Proc. IEEE
37th Int Conf. Distrib. Comput. Syst., 2017, pp. 372–382.

[42] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011,
pp. 315–323.

724 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

https://wiki.python.org/moin/TimeComplexity
https://criu.org/Docker
https://criu.org/Memory_dumping_and_restoring
http://lz4.github.io/lz4/
http://home.tiscali.cz/ cz210552/webbench.html
http://home.tiscali.cz/ cz210552/webbench.html
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO
http://sebastien.godard.pagesperso-orange.fr
http://sebastien.godard.pagesperso-orange.fr
http://crawdad.org/epfl/mobility/20090224

[43] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Comput. Practice Exp., vol. 24, no. 13,
pp. 1397–1420, 2012.

[44] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMMComput. Commun. Rev., vol. 44, no. 5, pp. 27–32, 2014.

[45] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenw€alder, and
B. Koldehofe, “Mobile fog: A programming model for large-scale
applications on the internet of things,” in Proc. 2nd ACM SIG-
COMMWorkshop Mobile Cloud Comput., 2013, pp. 15–20.

[46] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud comput-
ing: A survey,” Future Gener. Comput. Syst., vol. 29, no. 1, pp. 84–
106, 2013.

[47] P. Garcia Lopez , A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 5, pp. 37–42, 2015.

[48] W. Li, Y. Zhao, S. Lu, and D. Chen, “Mechanisms and challenges on
mobility-augmented service provisioning for mobile cloud
computing,” IEEECommun.Mag., vol. 53, no. 3, pp. 89–97,Mar. 2015.

[49] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[50] S. Soo, “Towards proactive mobility-aware fog computing,” M.S.
thesis, Institute of Computer Science, University of Tartu, Tartu,
Estonia, 2017.

[51] T. Taleb and A. Ksentini, “An analytical model for follow me
cloud,” in Proc. Global Commun. Conf., 2013, pp. 1291–1296.

[52] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-
based service migration procedure for follow me cloud,” in Proc.
IEEE Int. Conf. Commun., 2014, pp. 1350–1354.

[53] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to
dance: Agile vm handoff for edge computing,” in Proc. 2nd ACM/
IEEE Symp. Edge Comput., 2017, Art. no. 12.

[54] M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, and
M. Steinder, “Docker containers across multiple clouds and data
centers,” in Proc. IEEE/ACM 8th Int Conf Utility Cloud Comput.,
2015, pp. 368–371.

[55] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis,
“Migrating running applications across mobile edge clouds: post-
er,” in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw., 2016,
pp. 435–436.

[56] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge serv-
ers via docker container migration,” in Proc. 2nd ACM/IEEE Symp.
Edge Comput., 2017, Art. no. 11.

[57] H. A. Al-Rawi, K.-L. A. Yau, H. Mohamad, N. Ramli, and
W. Hashim, “A reinforcement learning-based routing scheme for
cognitive radio ad hoc networks,” in Proc. IFIP Wireless Mobile
Netw. Conf., 2014, pp. 1–8.

[58] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACMWorkshop Hot Top. Netw., 2016, pp. 50–56.

[59] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software
defined networking-based vehicular adhoc network with fog
computing,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage.,
2015, pp. 1202–1207.

Zhiqing Tang received the BS degree from the
School of Communication and Information Engi-
neering, University of Electronic Science and
Technology of China, China, in 2015. He is cur-
rently working towards the PhD degree in the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, China. His
current research interests include fog computing,
resource allocation, and reinforcement learning.

Xiaojie Zhou received the BS degree from the
School of Data and Computer Science, Sun Yat-
sen University, China, in 2016. He is currently
working toward the master’s degree in the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, China. His
current research interests include fog computing,
resource scheduling, and reinforcement learning.

Fuming Zhang is currently working toward the
bachelor’s degree in the School of Electronic
Information and Electrical Engineering, Shanghai
Jiao Tong University. He is currently a member
of CyberSpace Intelligence Computing Lab. He
was a software development engineer intern
with Microsoft Asia-Pacific Technology Co., Ltd,
Shanghai, China. His research interests include
fog computing, resource scheduling, distributed
computing, and machine learning.

Weijia Jia (SM’08) received the BSc and MSc
degrees from Center South University, China, in
1982 and 1984, respectively, and the PhD degree
from Polytechnic Faculty of Mons, Belgium, in
1993. He is currently a full-time Zhiyuan chair
professor with Shanghai Jiaotong University. He
is leading currently several large projects on
next-generation Internet of Things, environmental
sensing, smart cities and cyberspace sensing
and associations etc. He worked with German
National Research Center for Information Sci-

ence (GMD) from 1993 to 1995 as a research fellow. From 1995 to
2013, he has worked with City University of Hong Kong as a full profes-
sor. He has published more than 400 papers in various IEEE Transac-
tions and prestige international conference proceedings. He is a senior
member of the IEEE.

Wei Zhao (F’01) is currently the rector of the Uni-
versity of Macau, China. Before joining the Uni-
versity of Macau, he served as the dean of the
School of Science, Rensselaer Polytechnic Insti-
tute. Between 2005 and 2007, he served as the
director of the Division of Computer and Network
Systems in the US National Science Foundation
when he was on leave from Texas A and M Uni-
versity, where he served as senior associate vice
president for research and professor of computer
science. He has made significant contributions in

distributed computing, real-time systems, computer networks, cyber
security, and cyber-physical systems. He is a fellow of the IEEE.

TANG ET AL.: MIGRATION MODELING AND LEARNING ALGORITHMS FOR CONTAINERS IN FOG COMPUTING 725

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 20,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

