Computer Networks 211 (2022) 109010

Contents lists available at ScienceDirect

ter
rks

Computer Networks —
p o5

journal homepage: www.elsevier.com/locate/comnet

Check for

Efficient instance reuse approach for service function chain placement in e
mobile edge computing
Songli Zhang &, Weijia Jia »%**, Zhiqing Tang ™2, Jiong Lou ®, Wei Zhao 4

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China

b BNU-UIC Institute of Artificial Intelligence and Future Networks Beijing Normal University (BNU Zhuhai), Guangdong, 519087, PR China
¢Key Lab of Al and Multi-Modal Data Processing, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, PR China

d Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518000, PR China

ARTICLE INFO ABSTRACT

Keywords:

Mobile edge computing
Service function chain
Instance reuse

The combination of mobile edge computing and network function virtualization has led to the emergence
of Virtualized Network Function (VNF) in a broader range of application scenarios. These latency-sensitive
and highly dynamic services can be provided by combining multiple VNFs into Service Function Chains
(SFCs). However, existing work has conspicuously neglected that online placing SFC with instance reuse can
significantly improve resource utilization and save initialization time, which requires considering both the
dynamic distribution of required VNFs over time and resource constraints on the edge network. In this paper,
we initiate the study of Online SFC placement combined with Instance Reuse. An OSIR algorithm is proposed
to gain a tradeoff between service costs and users’ quality of experience. The OSIR is designed based on
deep reinforcement learning, which improves the system performance by maximizing the long-term cumulative
reward. In OSIR, an SFC queue network is designed to extract the dynamic distribution of required VNFs over
time, composed of memory space and the long short-term memory learning approach. The experimental results
with real-world data traces show that OSIR can efficiently and effectively improve system performance and
outperform the best result of all existing algorithms ranging from 17% to 26%.

1. Introduction However, facing the limited resources in edge nodes and the urgent
demand to gain a tradeoff between service costs and users’ Quality of
Experience (QoE), SPs eagerly call for an intelligent SFC placement
approach for these dynamic services to obtain better network per-
formance and resource utilization [10,11]. Traditional SFC placement
approaches usually adopt heuristic solutions, assuming that they can
obtain abundant prior knowledge or predict the network environment
accurately [12]. Multiple time slots are divided and scheduling post-
poned in the general scheduling research to avoid this shortage [13,14].
However, these assumptions and approaches sacrifice the flexibility

In recent years, Mobile Edge Computing (MEC) [1] is introduced
to meet the growing demand of computation-intensive and latency-
sensitive services from mobile users [2]. Compared with cloud com-
puting, MEC can significantly reduce the end-to-end latency for mo-
bile users by deploying edge nodes close to mobile users at the net-
work edge [3]. However, the heavy reliance on customized hardware
severely hinders the development of MEC [4,5]. In order to provide
flexible services in MEC, Network Function Virtualization (NFV) has
been widely advocated by Service Providers (SPs) [6]. NFV transforms

heavy hardware middleboxes (e.g., firewall, encryption, and load bal-
ancer) into a set of light software-based Virtual Network Functions
(VNFs). And VNF instances can be hosted in virtual environment,
e.g., container [7]. SPs can provide and update their service flexibly by
deploying VNF instances in edge networks while decreasing OPerating
EXpenditures (OPEX) and CAPital EXpenditures (CAPEX) [8]. Multiple
VNFs can be composed as Service Function Chains (SFCs) to provide
complex services [9].

* Corresponding author.

of NFV. Moreover, most of the existing studies on SFC placement
ignore that VNF instance can be reused. Some recent frameworks in the
industry make it possible to share the initialized VNF instances among
different services [15,16], which can effectively save the initialization
time and improve the resource utilization of edge nodes. Existing pre-
liminary instance reuse algorithms ignore that the instance distribution
significantly affects the routing path of future SFC placement [17,18].

** Corresponding author at: Key Lab of Al and Multi-Modal Data Processing, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, PR China.
E-mail addresses: zhang sl@sjtu.edu.cn (S. Zhang), jlawj@uic.edu.cn (W. Jia), domain@sjtu.edu.cn (Z. Tang), 1j1994@sjtu.edu.cn (J. Lou), wzhao@aus.edu

(W. Zhao).

https://doi.org/10.1016/j.comnet.2022.109010

Received 10 June 2021; Received in revised form 13 January 2022; Accepted 24 April 2022

Available online 6 May 2022
1389-1286/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:zhang_sl@sjtu.edu.cn
mailto:jiawj@uic.edu.cn
mailto:domain@sjtu.edu.cn
mailto:lj1994@sjtu.edu.cn
mailto:wzhao@aus.edu
https://doi.org/10.1016/j.comnet.2022.109010
https://doi.org/10.1016/j.comnet.2022.109010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109010&domain=pdf

S. Zhang et al.

To the best of our knowledge, our work is the first attempt to
solve the problem of online SFC placement with instance reuse. There
are three major challenges lying in this problem. The first is how
to place the entire SFC successfully in the resource-constrained edge
network [19]. Resource capacities of both node and link need to
be considered simultaneously in SFC placement. Moreover, the SFC
request is usually an ordered list of multiple VNFs. The SFC request
fails to be executed if one or more required VNFs are not allocated
due to insufficient computation resources or communication resources.
Thus, VNF instance reuse is raised to improve resource utilization effec-
tively [16]. However, instance reuse brings more complex constraints,
which making the SFC placement more complex.

The second challenge is how to reuse the initialized instance among
SFC requests intelligently. VNF instance reuse may prevent SFC re-
quests from being deployed on the shortest path, incurring high for-
warding costs and low users’ QoE. Besides, the long routing path
can consume more link resources, making the edge network unable
to accept more requests. Therefore, in order to reuse VNF instances
among SFC requests efficiently, the instance deployment may not be
optimal for the current SFC request. Proper reusing needs to consider
two problems: (1) Whether to reuse the initialized instance; (2) Which
initialized instance to be chosen to reuse. Moreover, the dynamic
network environment and user requests make these problems more
challenging.

Last but not least, the third challenge lies in how to make the online
decision of SFC placement based on the dynamic network environment
and user requests. In the problem of online SFC placement with instance
reuse, every online decision changes the distribution of VNF instances,
which can affect the routing path of future SFC requests and further
result in different placement costs. It is difficult to predict the future
required VNFs directly to place the instance on the node to make more
SFC requests reusing efficiently, which sets up obstacles for obtaining
the long-term cumulative reward.

In this paper, by jointly considering the above three challenges,
the OSIR algorithm is proposed to solve the problem of Online SFC
placement with Instance Reuse, aiming to (1) minimize the resource
consumption of nodes and links for SPs and (2) maximize the QoE of
mobile users. QoE is described by the throughput of accepted requests
and the transmission delay of users. Moreover, the problem is refor-
mulated as a Markov Decision Process (MDP). The state includes not
only the edge network information and the request characters at the
current time, but also the distribution of required VNFs of multiple
past SFC requests. Then, the SFC Queue Network (SQN) composed of
an SQN memory and the Long Short-Term Memory (LSTM) is designed
to extract the distribution of required VNFs over time. A customized
reward function is designed to teach the agent to place the full SFC
through immediate rewards, which is calculated based on the partial
throughput and the current cost after placing each VNF successfully. If
some VNFs of the SFC are not placed, a large negative reward is given,
and a retrace mechanism is designed to backtrack the environment. Fi-
nally, OSIR is designed based on Asynchronous Advantage Actor—Critic
(A3C) to obtain the long-term cumulative reward.

We summarize our key contributions as follows:

« This work is the first to model and solve the problem of online SFC
placement with instance reuse, aiming to minimize the resource
consumption and maximize the QoE. The problem is modeled by
a set of constraints and is further formulated as an MDP.

To solve this problem, an A3C-based algorithm named OSIR is
proposed, where an SQN is devised to extract the distribution of
required VNFs over time. The reward function of OSIR is designed
by immediate rewards based on the model and our optimization
objective. A retrace mechanism is applied to deal with the failed
placement.

Computer Networks 211 (2022) 109010

) Y > 2

Remaining SFC1 SFC2

Occupied

node resource processing resource consumed consumed

| 1
ot | O T T Bl O
1 F)

SFC2 i—é:n__i[il—’-_--n-_il_a—"_-____--_--___>__i

Fig. 1. A case of VNF instance reuse.

» The experimental results with real-world data traces show that
OSIR can efficiently and effectively obtain a solution by schedul-
ing SFC requests and reusing VNF instances intelligently. Specif-
ically, OSIR outperforms the best result of existing algorithms
ranging from 17% to 26%.

The remainder of this paper is organized as follows. In Section 2,
we give a brief background introduction of related work. Section 3
describes the system model and our problem formulation. Section 4
presents our algorithms and solutions to this type of problem. Numeri-
cal results and evaluation are presented in Section 5. Finally, Section 6
presents our discussions and Section 7 concludes the paper.

2. Background and related work

In this section, a case of VNF instance reuse is first illustrated. Then,
existing research about the SFC placement problem is summarized.
Finally, the application of deep reinforcement learning (DRL) in MEC
is introduced.

2.1. Instance reuse

In practice, since SFC is composed of multiple VNFs, the same
VNFs may exist in multiple SFC requests. These same VNFs usually
perform the same or similar processing steps on the same packet [16].
When a VNF instance still has remaining processing capacity, it can be
shared by several SFC requests to avoid initializing a new VNF instance
and save the node resource. Reusing these instances between different
SFCs efficiently can significantly improve system performance, which
is regarded as a typical way of computation acceleration [18].

Fig. 1 shows a case of VNF instance reuse. When two SFC requests
(SFC1 and SFC2) come in order, SFC1 is placed in the edge network
along with Pathl = D - G — C. SFC1 consumes the memory and com-
puting resources of nodes to initialize three instances (VNF instances
1, 2, and 3) and the outbound bandwidth of the nodes D and G. The
delay of SFC1 can be calculated along Pathl. For SFC2, although there
is a direct Path2 = F — B from source F to destination B, there are

S. Zhang et al. Computer Networks 211 (2022) 109010
Table 1
Notations.
Symbol Meaning
G, = (N..L,) Edge network
U Set of SFC requests
F Set of VNF
N, Ordered list of VNFs in SFC request u
0, = {o}|f €F} Required processing resource for each type VNF instance of SFC u
cfrem Memory capacity of node n,
cfom Computing capacity of node n;
cw Outbound bandwidth capacity of node n;
¢ Processing capacity of type-f VNF instance
m;’!"”‘ Memory cost of type-f VNF instance
mcf‘"" Computing cost of type-f VNF instance
d; Transmission delay of link /,
,f Number of type-/ instances placed on n,
Yu Traffic of SFC request u
b, Source of SFC request u
v, Destination of SFC request u
A, Time to live of SFC request u
Kt 1 if SFC request u running at time 7, 0 otherwise
b, 1if f}' placed on the node n;, 0 otherwise
x4 1 if initializing a new type-/ VNF instance
when placing the SFC request u, 0 otherwise
M, Throughput of SFC request u
Wrp Total throughput
Wpe Total delay cost
Wie Total resources cost
crem Remaining memory resources of n;
cfW Remaining computing resources of »;
v Remaining outbound bandwidth of n,
c,/ Remaining processing resource of type-f VNF instance on node
Epios Emems Ecom Weights of bandwidth, memory and computing resource
S.. A, R State, action, reward in DRL

no already initialized VNF instances 1 and 2 on Path2. If SPs choose
this shortest path, they need to initialize new VNF instances 1 and 2
on Path2.

In fact, there is still remaining processing capacity in VNF instances
1 and 2 on nodes D and G, respectively. If SFC2 is placed along
Path3 (Path3 = F - D — G — B) and reuses the instances initialized
by SFC1, the node resource consumption caused by initializing new
instances can be avoided. However, Path3 passes through more nodes
than Path2, which generally results in higher transmission delay and
more consumption of outbound bandwidth. When the SFC requests are
placed online, the impact between the SFC request placement is more
complex. How to deploy VNF instances on critical nodes or paths to
make more SFC request reusing efficiently is challenging and a critical
problem need to be solved.

2.2. SFC placement

In NFV, effectively allocating network resources to improve Quality
of Service (QoS) is a significant problem, which has been proved
NP-hard [20] and can be classified into four typical categories: (1)
the SFC placement problem; (2) the traffic routing problem in NFV;
(3) joint the SFC placement and the traffic routing problem; (4) the
VNF redeployment and consolidation problem [21]. In this paper, our
research is based on the SFC placement problem.

In the literature, some studies construct the special model for their
problem and then propose corresponding heuristic algorithms to solve
the SFC placement problem according to different QoS parameters
(e.g., service cost, delay, stability) [22-25]. These problems and al-
gorithms suppose SPs to have a good prior knowledge of the global
environment. Chen et al. [26] and Zhang et al. [27] model the SFC
request according to M/M/1 queue and design heuristic algorithms to
solve the latency-aware SFC placement problem. However, since SFC
requests usually contain different VNFs, the model based on queuing
theory is difficult to describe the fine-grained differences in SFC re-
quests. More importantly, instance reuse is an effective method to save

initialization time and improve node resource utilization, which has
been proved and achieved in the industry [16,28].

Although Guo et al. [18] reduce service costs by sharing the same
VNF, they neglect the high delay and QoE decline caused by path
extension. Reuse is proposed to improve the resource utilization of edge
servers and physical links [17], and a heuristic algorithm is designed to
solve this problem while providing latency guarantees. Although they
model the SFC request with queuing theory, the difference of different
SFC requests is not only reflected in time. The characters of past SFC
requests (e.g., the type of SFC, the type of VNF required, and the traffic)
have a serious impact on deployment policy. More importantly, Jin
et al. [17] search all the possible paths in their first step. For dense
graphs, this dramatically increases the execution time and is difficult
to adapt to the actual large-scale network. More importantly, they all
focus on instance reuse when placing a single SFC each, ignoring that
multiple SFC requests make the problem more complex.

2.3. Reinforcement learning in MEC

DRL [29] is regarded as a novel method to solve various online
problems and challenges, which has been applied in the Internet of
Things, video caching, and Unmanned Aerial Vehicle, etc. [30,31]. By
training an agent to interact with the environment, the DRL agent
learns a strategy to maximize the long-term cumulative reward. In
related research about resource scheduling, DRL has proved its strong
ability to make continuous online decision [32-34].

Moreover, recent SFC placement solutions have been combined
with reinforcement learning. Gu et al. [35] propose a model-assisted
approach based on DRL to place SFC requests to the edge network. Sun
et al. [36] learn the current state of the network through Q-learning and
propose a dynamic SFC placement algorithm. Their state setting in DRL
focuses on modeling the edge network while ignoring the improvement
brought by adequate SFC requests modeling. Zheng et al. [37] design
a heuristic algorithm and a DRL algorithm to solve the SFC placement
problem offline and online, respectively. However, the distribution of

S. Zhang et al.

SFC requests over time is ignored. Solozabal et al. [11] propose an
encoder—decoder architecture with a Bahdanau attentional mechanism
to capture the distribution of SFC requests over time, but they make
strong assumptions about the network topology, which cannot adapt
to a wide range of edge systems. In addition, all of them neglect the
potential of instance reuse in SFC placement.

3. System model

In this section, the NFV system and SFC request are first described.
Then, the problem is formulated with a set of linear constraints and op-
timization objectives. To focus on the problem itself, the term instance
is used to refer to any virtual environment where VNF can be hosted.
The important notations are summarized in Table 1.

3.1. System overview

In this paper, an online service scenario is considered, where the
mobile users’ SFC requests are handled by VNF instances deployed in an
edge network. Further, we focus on solving instance reuse in a typical
SFC placement problem without considering traffic routing [21], which
is both NP-hard and needs an online decision solution.

The edge network consists of a set of edge nodes. There exists
an undirected link between each node pair. U is the set of all users’
requests, and u € U is a SFC request. Each SFC contains multiple VNFs
and is an ordered list. For each u, SPs need to decide how to place it in
the current edge network.

3.1.1. VNF

F is the set of different types of VNFs. | - | is used to represent the
number of elements in the set, e.g., |F| is the number of VNF type.
Each f € F is a type of VNF, and there are memory and computing
resource cost for each type-f VNF instance, denoted by m?e’" and mjf""
respectively.

Initializing a new type-f VNF instance will cause a start-up delay
d;. Then, a type-f VNF instance can provide a fixed processing capacity
¢y, which is determined by factors such as the actual deployment
method and the VNF type. An instance can be reused only when it has
the remaining processing capacity. Maintaining an empty instance can
only waste the resources of edge nodes and lead to low resource utiliza-
tion. Thus, the service providers always choose to withdraw an instance
after all requests in it are completed. Since instances are deployed in
the edge node by virtual environments such as VMs or containers,
withdrawing an instance only needs to terminate the corresponding
software process. Thus, when there is no VNF running in the instance,
the instance can be released immediately, which is almost at no cost.

3.1.2. Edge network

The edge network is modeled as an undirected graph G, = (N, L),
where N, is the set of nodes and L, is the set of links that connect
every two nodes. Each n; € N, represents the edge node and /;; € L,
represents the link from node n; to node ny. In the edge network,
each node n; has a memory capacity ¢/"”, a computing capacity c{*"
and a outbound bandwidth cf"”. p{ represents the number of type-f
instances that is placed on node n;. Finally, from node »; to node n;,
the transmission delay is defined as d, ;.

3.1.3. SFC request

In general, various requests are generated from different users over
time. For each request u, its features can be denoted as a tuple (N,
bu> Vo Y A)- Ny = [f1 13- f“ le] represents the ordered llst
of VNFs in SFC request u, where f u js the jth VNF in SFC request u and
fj" € F. Thus, the chain length of u is [N,|. Besides, O, = {o |f €
F} is introduced to represent the required processing resources of

Computer Networks 211 (2022) 109010
U U
fiooo iy T

27N
-

]

Source Destination

Nu

Fig. 2. Adding virtual nodes.

various type VNFs of SFC request u, where o‘} is the required processing
resource of VNF f and:

>0, feN,
o . (€D)]
Tl =0, fe&N,

Besides, ¢, € N,, v, € N, and y, in the tuple are source, destination
and traffic of request u, respectively. Considering the geographical
distribution of mobile users and edge nodes, and the limited coverage
of edge nodes, each user request can only be accessed from a specific
source node and exited from a specific destination node [38,39]. In this
way, the model of the geographical distribution of mobile users and
nodes can be simplified [40,41]. The time to live (TTL) of u is denoted
by 4,, which is calculated based on start time and end time.

Finally, a variable b,"“. € {0,1}is introduced.. When the function fj'.‘
is placed on the node r; in the edge network, b, = 1, 0 otherwise. kY
is introduced to check whether request u exists at the time point 7. If
the SFC request is running, k{ = 1, O otherwise.

To simplify the model, two virtual nodes are added to the head and
tail of the SFC request u. As shown in Fig. 2, fJ and le 41 are assumed
to be placed on nodes ¢, and y,,, respectively:

i 1’ i = Pu
b, 0= { " ¢ 5 2
u,| 0, n, 7&¢u

) 1, n;, =y,
b, INgl+1 = ' " 3
e 0, n; #

The virtual nodes occupy no resources.
3.2. Problem formulation

The problem of online SFC placement with instance reuse is de-
scribed by a set of linear constraints.

Firstly, in order to place an entire SFC request, each VNF in the SFC
needs to be placed. z, is used to check whether the SFC request u is
accepted:

=1 @

(Zfl‘.‘eNu TieNe b, ;)

where 1;,, is the indicator function such that 1;;, = 1 if 2 > 0 and 0
otherwise. If SFC request u is accepted, z, = 1, 0 otherwise. When a
VNF in the SFC is not placed on the edge network, other VNFs should
be rejected. To satisfy this requirement, the first constraint is:

INJxz,= X Y b,vuel. (5)

fEN n;ENg

When the SFC request u is accepted, each VNF in u should only be
served on one edge node, denoted by:

Z bf«j =

n;€Ng

l(zn,ewebf,,,-) , Vue U, Vfi eN,. (6)

Then, it need to be ensured that the memory and computing re-
source at edge node n; cannot be overbooked. Thus, the memory and
computing resource constraints can be described as:

Z pif X m?e”’ <™, Vn; €N, 7
feF

S. Zhang et al.

Z p’.f XmP™" <™, Vn; € N,. ®
JEF

Similarly, for each node », in the edge network, the total traffic of all
SFCs passing through it must not exceed the outbound bandwidth ca-
pacity. The bandwidth is consumed only when the next following VNF
is placed on the different edge node. Thus, the bandwidth constraint
can be described as:

[Nyl
z Zbfw.x(bflyj—bijH)quxkfx,zusc}"", ©
ueU j=0

Vn; € Ne.

Finally, all initialized instances can be shared by different SFC
requests to make full use of their remaining processing capacities. The
total processing capacity of VNF f on node n; is determined by the
number of type-/ VNF instances placed on it. Therefore, to guarantee
the service demand of each type VNF, processing capacity constraints
can be expressed as:

Zo’}xk‘t‘xzuSc/Xp{, vn; €N, Vf €F. (10)
uelU

Our goal is to efficiently utilize the edge network’s resources and
improve QoE by intelligently placing SFC requests over time. Generally,
efficiently utilizing edge resources is transformed to minimize resource
cost [17]. The QoE is determined by the throughput and total trans-
mission delay of accepted requests. The throughput value of the SFC
request u is calculated based on the traffic, SFC chain length and TTL,
denoted by:

MM=§UquX|Nu|XAu+U]b, (11)

where &, is the constant weight and v, is the lower bound of through-
put value. Also, the total throughput W;.p can be calculated as:

Wrp =D X2z, 12)
uelU
Besides, if a new type-f instance is initialized when placing the SFC
request u, x‘j‘, = 1, otherwise x*. = 0. To effectively utilize both the
node and link resources of the edge network, the total edge network
resources cost Wy is defined as:

[Nyl
Wre =épw 2, Z > b X B =B)X X2,
u€U j=0 n;EN, (13)
+ émem z Z X‘} X m?em + 550"' z Z X’} x m;om,
ueU feF ueU feF

where &, &,., and &, are the weights of bandwidth, memory and
computing resource, respectively.

Finally, the delay cost W of all requests u flowing through the
edge network can be calculated as:

Nyl

Woc=2 % 2

u€U j=0 n;EN, ny €N,

b, ><b§""J.+l Xd; g Xz, + Z z X4 xdy. (14)
uel feF

Summing up all the issues, online SFC placement with instance reuse
can be formulated as follows:

Problem 1.

max &rp X Wrp —&re X Wre —$pc X Wpes 15)
st (1) - (14)

where &rp, Epe and & are the weights of the throughput, resource
and delay, respectively.

Analysis: Problem 1 is classified into a typical constrained offload-
ing decision problem. Because several non-linear constraints exist in
Problem 1, it is difficult to directly solve Problem 1 even for each
single SFC. Traditional optimization algorithms constantly adjust the

Computer Networks 211 (2022) 109010

offloading strategies by repeatedly iterating, trying to find the optimal
solution. However, due to the increase of the node number in edge
network, these optimization algorithms based on iteration consume
lengthy execution time. At the same time, due to the system dynamics
and the difficulty of predicting the future environment accurately, the
traditional heuristic algorithm cannot maximize the long-term reward.

In our problem, the arrival of requests and the update of the edge
network have no memory and satisfy the first-order Markov prop-
erty [30]. Therefore, it can be modeled as an MDP. In order to solve
the MDP, in the process of designing the state space, a group of LSTM
is added to extract the timing sequence relationship of requests. At the
same time, an online offloading algorithm is proposed based on DRL,
in which the state space combines the current network and request
state with the LSTM time sequence extraction result. With DRL, all
linear and non-linear constraints are reflected in the reward setting
with almost no distinction [35,42]. And Problem 1 can be handled with
interactions among states, actions, and rewards. Furthermore, the DRL
agent aims to maximize the long-term cumulative rewards, which is
also the optimization objective.

4. Algorithm

In this section, an efficient online learning approach named OSIR
is proposed to solve Problem 1. OSIR utilizes the LSTM-based A3C
model to schedule SFC requests and reuse VNF instances intelligently.
The algorithm settings are first described. Then, the SQN is introduced
to extract the distribution of the required VNF over time. Finally, the
training process of the OSIR agent is summarized.

4.1. Algorithm settings

The agent and the environment are two primary components in
DRL. In each step, the agent observes the environment state .S, and
gives an action A, according to a policy. Then the environment returns
a reward R.(S;,A;) and updates to the next state S,,;. Finally, the
agent updates the policy to obtain a higher long-term cumulative
reward by ceaselessly interacting with the environment.

The state, action, reward, and policy of reinforcement learning are
defined as follows.

State: The state includes all remaining resources in the edge
network and the current SFC request «. The remaining memory resource

¢/"", computing resource c;*" and outbound bandwidth c:’“’ of each
node »; are obtained as follows:

e = " — Z pif X m'gem, (16)
fEF
cicom - cicom _ 2 Pif x m?om’ an
fEeF
_ N
chw = chw — Z Bl X (Bl = B) Xy, XKL (18)
ueU j=0

__ Similarly, for each edge node n;, its remaining processing capacity
cif of type-f VNF instance is denoted by:
cijr:cpr{—Zo;Xk;‘qu. 19)
ueU

The SFC request u has an ordered list of VNFs, i.e., N, = [f LSS
f;‘, . fﬁv I], and each f j" € N, is placed in order. In each step, the
ordered VNF list N, required processing resources O,, TTL 4,, traffic
y,» last placed node bf, Jy destination y, and throughput y, are all in

the state. f? = [0,1]'¥! is defined as the one-hot vector of /4. Thus,

S. Zhang et al.

when deploying VNF [} €Ny, state S, can be represented by:

S, = [. e,
com com com
€6 ""’CINEI’
bw bw bw
ey ""’CINI’
f1 f1 f1
€12 Ny
o e
clz,czz,...,clNl,
e
(20)
Cfm cfm f|1\
1 oG s |N I’
U U U
0105, -+ 0[p
1 2 [Nl
bu] l’buj 17 bu/ 1’
INel
bu,lN“\+1’bu,\Nu|+l"' bu|N |+1°

As Vs s 7]

Action: For each state S,, the agent needs to schedule the VNF
f% € N, to an edge node. So the action space A, is defined as the
set of all edge nodes:

A EN,. 2D

Reward: When executing an action A, = n;, if the node n; can
provide enough resources, the VNF fi € Nyis placed successfully.
Then, the agent gets an immediate reward R,. A reward memory RM
is designed to store each immediate reward of the current SFC request
u. The successful placement needs to follow these constraints below.

When executing action A, = n;, the remaining processing resource
of type-f* instance on node n; needs to meet the processing resource
demand of SFC request u, denoted by:

u

cif’ > o",. (22)

Otherwise, the agent needs to initialize a new type- f} instance on node
n; to apply for more processing resources. Only when the node n; has
sufficient memory resources and computing resources, a new type- f/’.‘
VNF instance can be initialized on node n;, denoted by:

¢ 2 m”s 23)
J
€ 2 s (24)

When Eq. (23) or (24) is not satisfied, it indicates that a new type-f’]”
instance cannot be initialized on the selected node. Then, it is regarded
as a placement failure.

In addition to checking whether the action A, follows processing
capacity constraints, the bandwidth from the last placed node A,_, or
source ¢, to A_ needs to be checked. If A, = n; and b’ = 0, the
VNF [} and f;‘_ are placed on different nodes. Then the outbound
bandwidth resource of the last placed node is consumed, requiring to
satisfy the bandwidth constraint:

”“’ >b x®

1 = b,) X Yu» Vn; € N, (25)

uj—1

Otherwise, the placement is also regarded a placement failure.

When j = N,, all included VNF in SFC request u are placed, and
the outbound bandwidth from A, to y, needs to meet the following
requirement:

P (b, =B) X Y Yy = A, (26)

u j+1

If the VNF f I s placed successfully, the immediate reward R, is
designed based on the optimization objective in Problem 1, which
contains all three components in Problem 1:

R, =&rp X RTP — £po x RRC — £, x RPC, 27)

Computer Networks 211 (2022) 109010

where the throughput RT? is calculated as:
RTP =y, /INy|. (28)

Then, the resource cost RRC and the delay cost RPC are calculated as:

o
C =G x D b XML =B)Xy, (29)
n;ENg
+ Epom X X" s ><m’}'”"+§com><xfu xm™,
RPC= Y b . | X Bl xd,/+x xdy, (30

n; €N,

where ny = A,.

When the action A, = n; is selected by the agent and the node
n; cannot satisfy the constraints of processing capacity or outbound
bandwidth, the action A, is regarded as the terrible action. Then, a
large negative value is given as the reward R,, which is calculated
based on the previous multiple immediate rewards. By this punishment,
the agent can be aware that placing an incomplete chain is useless. The
reward R, for the terrible A, is calculated as follows:

Y R, (31

R;eRM

RT = _‘fTP X Uy —

In OSIR, all the linear and non-linear constraints in Problem 1 are
reflected in the reward function. Furthermore, OSIR uses punishment
to avoid choosing the action which violates constraints. For example,
in the reward function, the constraints on node resources in Eq. (7) and
(8) are transformed into Eq. (23) and (24), respectively.

Algorithm 1 Reward Calculation
Input: S, A,
Output: R,
1: /* SFC request u */
: if j =1 then
RM =g
: end if
: if (Eq. (22) or (Eq. (23) and Eq. (24))) and (Eq. (25)) and (j # |N,|
or Eq. (26)) then

[NS IN]

6: Calculate R, based on Eq. (27)-(30)
7: M _ R‘l:/[U{R

8: if j = |N,| then

9: j=j+1

10: Recalculate Rfc' and Rfc' based on Eq. (29)—(30)
11: R, =R, +RR +RPC

12: end if

13: else

14: Calculate R, based on Eq. (31)

15: end if

16: end

Alg. 1 shows the process of reward calculation. At first, in line 3,
a reward memory RM is initialized as an empty set. In line 5, when
the action A, selected by the agent satisfies the resource constraints,
VNF f7 is placed successfully. Then, the reward R, is calculated and
added into RM. In lines 8-12, after all f/ € N, placed in the edge
network, the last VNF f“ Nl needs to be connected to the virtual
node le |41 00 the destlnatlon v,, and the corresponding delay and
resource cost are calculated. In line 14, when placement fails due to
insufficient processing capacity or outbound bandwidth, the reward R,
is recalculated.

Policy: The policy is the probability distribution of taking action
A, in the current state S, denoted by 7,(S,, A,)

me(S,, A) € (0, 1], (32)

Z 7p(Sp, ALY = 1, (33)

ALEIN|

S. Zhang et al.

Input: S, Output: hyp

0, . " . hap \
Ou—l '\‘_\,‘ . a8 . hrp_;
0, , . . :\’_ :‘ 5 LSTM > hyp_1

Oyu-rp+1 3 O > hy
J

Fig. 3. The structure of SQN.

where all A/ are possible actions for the current .S,. DRL agent up-
dates the policy with all the historical information for maximizing the
long-term cumulative reward.

The goal of OSIR is to maximize the cumulative discount reward,
ie, E, [X:2,7 R, (S. A,)], where y is the discount factor for future
reward. Thus, Problem 1 can be transformed into:

T, = a_rgrriltngﬂs |:Z 'R, (ST,AT):| . (34)
=0

4.2. SFC queue network

To extract the distribution of required VNF over time, the SQN is
designed based on LSTM and added into OSIR. LSTM is widely used in
time series prediction problems because it can consider the relationship
between the relative position relation between layers of input [43,44].

Fig. 3 shows the structure of SQN in detail, which mainly contains
two components: SQN memory and the LSTM. The SQN memory is
a layered queue to store the past required VNF, and the length is
defined as Time Depth (TD). Each layer in SQN memory is the required
processing resources of the SFC request, e.g., O, in Fig. 3. The LSTM
contains two layers of the LSTM neural network. The input of SQN is
the state S,.

As shown in Alg. 2, the working process of SQN includes update
checking and relationship extraction. In lines 1-6, when the agent
receives a state .S;, SQN checks whether the environment gets a new
SFC request u. If not, SQN memory remains unchanged. Otherwise, the
SON captures O, from S,. Then, the SQN discards the last layer of the
SQN memory (i.e., O,_tp), and O, is added to SQN memory.

When the agent needs to make a decision for .S;, SQN learns
the distribution of past required VNF from the current SQN memory
through the LSTM neural network. As shown in lines 7-9 of Alg. 2,
required processing resources of several past requests compose a queue,
i.e, [Ou_tp+1> Outp42s -+ » Ou_1> Oy, Which is the input of the LSTM
and fed into the neural network in order. In this way, Oy_yp,; to O,
constitute the time series of required processing resources of multiple
consecutive SFC requests, and the output 4, of the last layer contains
the distribution of required VNF, which helps the agent learn the trend
of required VNF at the moment.

Computer Networks 211 (2022) 109010

Algorithm 2 SQN
Input: S,
Output: hyp
1: /* Update Checking */
2: if j =1 then
3: Delete O,_tp from SQN Memory
4: Capture O, from S,
5. Push O, into SQN Memory
6
7
8
9

: end if
: /* Relationship Extraction */
: LSTM Input = [Oy_1p;1: Oy_1ps2s > Ou1> Oyl
: Get LSTM Output = hzp
10: end

4.3. OSIR training

The OSIR is designed based on A3C [45]. In addition to the actor
and critic neural network, OSIR contains an SQN, which is designed to
extract the distribution of required VNF over time. After placing VNF
I the agent sets the required processing resource of type-f 7 instance
to 0, i.e., ol}%' = 0. Then, the agent tries to place f j'_‘+ . until all VNFs in
SFC requestju are placed. Moreover, at any time, Y, rer 1{on) Tepresents
the number of VNFs in SFC request u that have not placed, which is
obtained as:

2 Loy =Ny =G = D). (35)
feF

Alg. 3 summarizes the workflow of OSIR. OSIR gives action to each
VNF f j“ € N, in order from j = 1 to j = |N,|, and gets an immediate
reward. When failing to placement, a retrace mechanism is used to
release the resources occupied by the SFC request u to refresh the
network state.

Algorithm 3 OSIR Workflow

Input: SFC request u
Output: (S;,A,, R,), ...
1: Receive SFC request u
2: Generate S, and cache S, locally
3: for j =1to [N,| do
4: The agent observes the state .S,
if j =1 then
Update SQN according to Alg. 2
end if
The agent selects A, according to the policy
The environment returns the reward R, (S,, A,) according to Alg.
1
10: if (Eq. (22) or (Eq. (23) and Eq. (24))) and (Eq. (25)) and
(j # INy| or Eq. (26)) then

© ®NT

11: o‘};, =0

12: else

13: /* Placement Failure */

14: Reset the state with the cached S, in line 2
15: Break

16: end if

17: Observe S,

18: end for

19: Waiting for the SFC request u + 1

20: end

In line 2, when receiving a new SFC request u, the environment
combines SFC request u with the information of edge network to form
state S,, and caches S, locally. As shown in lines 3 - 20, OSIR places
each f/ € N, into the edge network one by one. (8,4, R..S;))

S. Zhang et al.

raa o M2 M TNl ~ e

Memory cm @ @ @ - @ \

Computing ¢{™

Bandwidth ¢ @ @ @ []

n @ ¢

Instance f
ProcessingResource | . @ @ @ - @ P

Computer Networks 211 (2022) 109010

0y
St > nH(St' AT)
’ Ou-rp+1
-] L A‘l’

Ou-1p+1

| lg @ 1.0,

0, | hypp o/ %

Critic \.lﬂ.

Ry (5:. A7)

Environment ‘

Fig. 4. OSIR framework.

SFCu
\
b
1e4 Training
64
54
44
b=
5
2 3
&
2
14
04
0.0 0.5 1.0 1.5 2.0 2.5
Episode le4

Fig. 5. Training process on [N,| = 10.

is obtained through the interaction between the environment and the
agent. In lines 5-7, when the SQN in the agent obtains a new SFC
u, it extracts O, from S, and updates the SQN. In line 8 and 9, the
agent selects an action A, according to the policy output by the actor-
network. Meanwhile, the environment returns R,(S,, A,) to the agent
by Alg. 1.

In line 11, while placing fj’.‘ successfully, the environment sets
o;u = 0. Then, the agent needs to place the SFC N, = [f j’.‘+1, o f I'{Vul]’
and observes the new state. The agent continues to interact with the
environment and get new states, actions and rewards until j = N, or
placement failure.

In lines 12-15, when placement fails due to insufficient processing
resources or communication resources, the environment rejects this
request u and resets the current state with the previously cached ;.
The edge network backtracks to the time before placing request u.

After placing SFC request u, in line 19, the environment waits a new
SFC u + 1 placement, and all above steps are repeated.

The OSIR framework is shown in Fig. 4. At each time step 7, the
agent observes the current state .S, from the environment. Then the
agent checks whether the current request u is a new request. If so,
SON captures O, from S, and adds it to SQN memory. After that,
the actor-network and the critic-network get the output hrp and hl.
from the SQN network, respectively. The input of the actor and critic
neural network contain the state S, and the output of SQN. z, and V¢

are calculated through the neural network. According to 7,, the agent
chooses the best action A,, and the environment returns R.(S,,A4,)
based on Alg. 1. The output V? of the critic-network assists in training
the actor-network.

5. Performance evaluation

The OSIR performance is evaluated through extensive numerical
experiments. In this section, experiment settings are first introduced.
Then the experimental results are presented and analyzed.

5.1. Experiment settings

5.1.1. Parameter settings

Edge Network: The edge network is set as a fully connected network
with identical communication links. The number of nodes is from 10 to
100, each with [1, 1000] units of memory and [1, 32] units of computing
resource. The outbound bandwidth of each node ranges from 1200
Mbps to 1800 Mbps. Transmission delay includes intra-pod delay in one
node and inter-pod delay between different nodes [46]. The intra-pod
delay is set ranging from 20 to 40 p s and the inter-pod delay ranging
from 80 to 150 p s.

SFC Request: The data comes from real-world traces [47], which is a
time-stamped cluster task data set. After preprocessing (e.g., filtering
out some requests with low TTL 4,), 3997 SFC requests are extracted
from 18 h. Each SFC request’s start time and end time are set the same
as the real-world traces. The first and last requests of the preprocessed
data are the earliest start and the latest start, respectively. 20 different
commonly-deployed VNFs are simulated for composing SFCs [20], and
each request requires an SFC consisted of 1 to 7 VNFs. The source and
destination of each SFC are randomly generated. There are 30 kinds of
SFC. Each type of VNF instance takes up [50, 200] units of memory and
[1,4] units of computing resources, which can provide [5, 10] units of
processing capacity. The required processing resource for each VNF is
setto 1, i.e., o’}“ = 1,Vu € U. The traffic for each SFC ranges from 30

Mbps to 60 Mb]jas. The start-up delay d, of type-f instance is set from
100 ms to 400 ms [48]. Finally, the training and test sets are generated
in a 1:1 ratio according to the above rules.

Others: In all experiments, the setting of throughput, resource cost, and
delay cost data from [35] is used. Moreover, when calculating the total
reward, factors &pp, pc, and &g are 0.5, 0.4, and 0.1, respectively.
For resource cost, the weights of memory, computing and bandwidth
resource are set as &, = 0.6, &,., = 0.2, &,, = 0.2, respectively.
The learning rate and gamma of reinforcement learning are 0.0001 and
0.