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A B S T R A C T

The combination of mobile edge computing and network function virtualization has led to the emergence
of Virtualized Network Function (VNF) in a broader range of application scenarios. These latency-sensitive
and highly dynamic services can be provided by combining multiple VNFs into Service Function Chains
(SFCs). However, existing work has conspicuously neglected that online placing SFC with instance reuse can
significantly improve resource utilization and save initialization time, which requires considering both the
dynamic distribution of required VNFs over time and resource constraints on the edge network. In this paper,
we initiate the study of Online SFC placement combined with Instance Reuse. An OSIR algorithm is proposed
to gain a tradeoff between service costs and users’ quality of experience. The OSIR is designed based on
deep reinforcement learning, which improves the system performance by maximizing the long-term cumulative
reward. In OSIR, an SFC queue network is designed to extract the dynamic distribution of required VNFs over
time, composed of memory space and the long short-term memory learning approach. The experimental results
with real-world data traces show that OSIR can efficiently and effectively improve system performance and
outperform the best result of all existing algorithms ranging from 17% to 26%.
1. Introduction

In recent years, Mobile Edge Computing (MEC) [1] is introduced
to meet the growing demand of computation-intensive and latency-
sensitive services from mobile users [2]. Compared with cloud com-
puting, MEC can significantly reduce the end-to-end latency for mo-
bile users by deploying edge nodes close to mobile users at the net-
work edge [3]. However, the heavy reliance on customized hardware
severely hinders the development of MEC [4,5]. In order to provide
flexible services in MEC, Network Function Virtualization (NFV) has
been widely advocated by Service Providers (SPs) [6]. NFV transforms
heavy hardware middleboxes (e.g., firewall, encryption, and load bal-
ancer) into a set of light software-based Virtual Network Functions
(VNFs). And VNF instances can be hosted in virtual environment,
e.g., container [7]. SPs can provide and update their service flexibly by
deploying VNF instances in edge networks while decreasing OPerating
EXpenditures (OPEX) and CAPital EXpenditures (CAPEX) [8]. Multiple
VNFs can be composed as Service Function Chains (SFCs) to provide
complex services [9].
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However, facing the limited resources in edge nodes and the urgent
demand to gain a tradeoff between service costs and users’ Quality of
Experience (QoE), SPs eagerly call for an intelligent SFC placement
approach for these dynamic services to obtain better network per-
formance and resource utilization [10,11]. Traditional SFC placement
approaches usually adopt heuristic solutions, assuming that they can
obtain abundant prior knowledge or predict the network environment
accurately [12]. Multiple time slots are divided and scheduling post-
poned in the general scheduling research to avoid this shortage [13,14].
However, these assumptions and approaches sacrifice the flexibility
of NFV. Moreover, most of the existing studies on SFC placement
ignore that VNF instance can be reused. Some recent frameworks in the
industry make it possible to share the initialized VNF instances among
different services [15,16], which can effectively save the initialization
time and improve the resource utilization of edge nodes. Existing pre-
liminary instance reuse algorithms ignore that the instance distribution
significantly affects the routing path of future SFC placement [17,18].
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To the best of our knowledge, our work is the first attempt to
solve the problem of online SFC placement with instance reuse. There
are three major challenges lying in this problem. The first is how
to place the entire SFC successfully in the resource-constrained edge
network [19]. Resource capacities of both node and link need to
be considered simultaneously in SFC placement. Moreover, the SFC
request is usually an ordered list of multiple VNFs. The SFC request
fails to be executed if one or more required VNFs are not allocated
due to insufficient computation resources or communication resources.
Thus, VNF instance reuse is raised to improve resource utilization effec-
tively [16]. However, instance reuse brings more complex constraints,
which making the SFC placement more complex.

The second challenge is how to reuse the initialized instance among
SFC requests intelligently. VNF instance reuse may prevent SFC re-
quests from being deployed on the shortest path, incurring high for-
warding costs and low users’ QoE. Besides, the long routing path
can consume more link resources, making the edge network unable
to accept more requests. Therefore, in order to reuse VNF instances
among SFC requests efficiently, the instance deployment may not be
optimal for the current SFC request. Proper reusing needs to consider
two problems: (1) Whether to reuse the initialized instance; (2) Which
initialized instance to be chosen to reuse. Moreover, the dynamic
network environment and user requests make these problems more
challenging.

Last but not least, the third challenge lies in how to make the online
decision of SFC placement based on the dynamic network environment
and user requests. In the problem of online SFC placement with instance
reuse, every online decision changes the distribution of VNF instances,
which can affect the routing path of future SFC requests and further
result in different placement costs. It is difficult to predict the future
required VNFs directly to place the instance on the node to make more
SFC requests reusing efficiently, which sets up obstacles for obtaining
the long-term cumulative reward.

In this paper, by jointly considering the above three challenges,
the OSIR algorithm is proposed to solve the problem of Online SFC
placement with Instance Reuse, aiming to (1) minimize the resource
consumption of nodes and links for SPs and (2) maximize the QoE of
mobile users. QoE is described by the throughput of accepted requests
and the transmission delay of users. Moreover, the problem is refor-
mulated as a Markov Decision Process (MDP). The state includes not
only the edge network information and the request characters at the
current time, but also the distribution of required VNFs of multiple
past SFC requests. Then, the SFC Queue Network (SQN) composed of
an SQN memory and the Long Short-Term Memory (LSTM) is designed
to extract the distribution of required VNFs over time. A customized
reward function is designed to teach the agent to place the full SFC
through immediate rewards, which is calculated based on the partial
throughput and the current cost after placing each VNF successfully. If
some VNFs of the SFC are not placed, a large negative reward is given,
and a retrace mechanism is designed to backtrack the environment. Fi-
nally, OSIR is designed based on Asynchronous Advantage Actor–Critic
(A3C) to obtain the long-term cumulative reward.

We summarize our key contributions as follows:

• This work is the first to model and solve the problem of online SFC
placement with instance reuse, aiming to minimize the resource
consumption and maximize the QoE. The problem is modeled by
a set of constraints and is further formulated as an MDP.

• To solve this problem, an A3C-based algorithm named OSIR is
proposed, where an SQN is devised to extract the distribution of
required VNFs over time. The reward function of OSIR is designed
by immediate rewards based on the model and our optimization
objective. A retrace mechanism is applied to deal with the failed
placement.
2

Fig. 1. A case of VNF instance reuse.

• The experimental results with real-world data traces show that
OSIR can efficiently and effectively obtain a solution by schedul-
ing SFC requests and reusing VNF instances intelligently. Specif-
ically, OSIR outperforms the best result of existing algorithms
ranging from 17% to 26%.

The remainder of this paper is organized as follows. In Section 2,
we give a brief background introduction of related work. Section 3
describes the system model and our problem formulation. Section 4
presents our algorithms and solutions to this type of problem. Numeri-
cal results and evaluation are presented in Section 5. Finally, Section 6
presents our discussions and Section 7 concludes the paper.

2. Background and related work

In this section, a case of VNF instance reuse is first illustrated. Then,
existing research about the SFC placement problem is summarized.
Finally, the application of deep reinforcement learning (DRL) in MEC
is introduced.

2.1. Instance reuse

In practice, since SFC is composed of multiple VNFs, the same
VNFs may exist in multiple SFC requests. These same VNFs usually
perform the same or similar processing steps on the same packet [16].
When a VNF instance still has remaining processing capacity, it can be
shared by several SFC requests to avoid initializing a new VNF instance
and save the node resource. Reusing these instances between different
SFCs efficiently can significantly improve system performance, which
is regarded as a typical way of computation acceleration [18].

Fig. 1 shows a case of VNF instance reuse. When two SFC requests
(SFC1 and SFC2) come in order, SFC1 is placed in the edge network
along with Path1 = D → G → C. SFC1 consumes the memory and com-
puting resources of nodes to initialize three instances (VNF instances
1, 2, and 3) and the outbound bandwidth of the nodes D and G. The
delay of SFC1 can be calculated along Path1. For SFC2, although there
is a direct Path2 = F → B from source F to destination B, there are
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Table 1
Notations.
Symbol Meaning

𝐆𝐞 = (𝐍𝐞 ,𝐋𝐞) Edge network
𝐔 Set of SFC requests
𝐅 Set of VNF
𝐍𝐮 Ordered list of VNFs in SFC request 𝑢
𝐎𝐮 = {𝑜𝑢𝑓 |𝑓 ∈ 𝐅} Required processing resource for each type VNF instance of SFC 𝑢
𝑐𝑚𝑒𝑚𝑖 Memory capacity of node 𝑛𝑖
𝑐𝑐𝑜𝑚𝑖 Computing capacity of node 𝑛𝑖
𝑐𝑏𝑤𝑖 Outbound bandwidth capacity of node 𝑛𝑖
𝑐𝑓 Processing capacity of type-𝑓 VNF instance
𝑚𝑚𝑒𝑚𝑓 Memory cost of type-𝑓 VNF instance
𝑚𝑐𝑜𝑚𝑓 Computing cost of type-𝑓 VNF instance
𝑑𝑖,𝑖′ Transmission delay of link 𝑙𝑖,𝑖′
𝑝𝑓𝑖 Number of type-𝑓 instances placed on 𝑛𝑖
𝑦𝑢 Traffic of SFC request 𝑢
𝜙𝑢 Source of SFC request 𝑢
𝜓𝑢 Destination of SFC request 𝑢
𝛥𝑢 Time to live of SFC request 𝑢
𝑘𝑢𝑡 1 if SFC request 𝑢 running at time 𝑡, 0 otherwise
𝑏𝑖𝑢,𝑗 1 if 𝑓 𝑢𝑗 placed on the node 𝑛𝑖, 0 otherwise
𝑥𝑢𝑓 1 if initializing a new type-𝑓 VNF instance

when placing the SFC request 𝑢, 0 otherwise
𝜇𝑢 Throughput of SFC request 𝑢
𝑊𝑇𝑃 Total throughput
𝑊𝐷𝐶 Total delay cost
𝑊𝑅𝐶 Total resources cost
𝑐𝑚𝑒𝑚𝑖 Remaining memory resources of 𝑛𝑖
𝑐𝑐𝑜𝑚𝑖 Remaining computing resources of 𝑛𝑖
𝑐𝑏𝑤𝑖 Remaining outbound bandwidth of 𝑛𝑖
𝑐𝑓𝑖 Remaining processing resource of type-𝑓 VNF instance on node 𝑛𝑖
𝜉𝑏𝑤 , 𝜉𝑚𝑒𝑚 , 𝜉𝑐𝑜𝑚 Weights of bandwidth, memory and computing resource
𝑆𝜏 , 𝐴𝜏 , 𝑅𝜏 State, action, reward in DRL
no already initialized VNF instances 1 and 2 on Path2. If SPs choose
this shortest path, they need to initialize new VNF instances 1 and 2
on Path2.

In fact, there is still remaining processing capacity in VNF instances
1 and 2 on nodes D and G, respectively. If SFC2 is placed along
Path3 (Path3 = F → D → G → B) and reuses the instances initialized
by SFC1, the node resource consumption caused by initializing new
instances can be avoided. However, Path3 passes through more nodes
than Path2, which generally results in higher transmission delay and
more consumption of outbound bandwidth. When the SFC requests are
placed online, the impact between the SFC request placement is more
complex. How to deploy VNF instances on critical nodes or paths to
make more SFC request reusing efficiently is challenging and a critical
problem need to be solved.

2.2. SFC placement

In NFV, effectively allocating network resources to improve Quality
of Service (QoS) is a significant problem, which has been proved
NP-hard [20] and can be classified into four typical categories: (1)
the SFC placement problem; (2) the traffic routing problem in NFV;
(3) joint the SFC placement and the traffic routing problem; (4) the
VNF redeployment and consolidation problem [21]. In this paper, our
research is based on the SFC placement problem.

In the literature, some studies construct the special model for their
problem and then propose corresponding heuristic algorithms to solve
the SFC placement problem according to different QoS parameters
(e.g., service cost, delay, stability) [22–25]. These problems and al-
gorithms suppose SPs to have a good prior knowledge of the global
environment. Chen et al. [26] and Zhang et al. [27] model the SFC
request according to M/M/1 queue and design heuristic algorithms to
solve the latency-aware SFC placement problem. However, since SFC
requests usually contain different VNFs, the model based on queuing
theory is difficult to describe the fine-grained differences in SFC re-
3

quests. More importantly, instance reuse is an effective method to save
initialization time and improve node resource utilization, which has
been proved and achieved in the industry [16,28].

Although Guo et al. [18] reduce service costs by sharing the same
VNF, they neglect the high delay and QoE decline caused by path
extension. Reuse is proposed to improve the resource utilization of edge
servers and physical links [17], and a heuristic algorithm is designed to
solve this problem while providing latency guarantees. Although they
model the SFC request with queuing theory, the difference of different
SFC requests is not only reflected in time. The characters of past SFC
requests (e.g., the type of SFC, the type of VNF required, and the traffic)
have a serious impact on deployment policy. More importantly, Jin
et al. [17] search all the possible paths in their first step. For dense
graphs, this dramatically increases the execution time and is difficult
to adapt to the actual large-scale network. More importantly, they all
focus on instance reuse when placing a single SFC each, ignoring that
multiple SFC requests make the problem more complex.

2.3. Reinforcement learning in MEC

DRL [29] is regarded as a novel method to solve various online
problems and challenges, which has been applied in the Internet of
Things, video caching, and Unmanned Aerial Vehicle, etc. [30,31]. By
training an agent to interact with the environment, the DRL agent
learns a strategy to maximize the long-term cumulative reward. In
related research about resource scheduling, DRL has proved its strong
ability to make continuous online decision [32–34].

Moreover, recent SFC placement solutions have been combined
with reinforcement learning. Gu et al. [35] propose a model-assisted
approach based on DRL to place SFC requests to the edge network. Sun
et al. [36] learn the current state of the network through Q-learning and
propose a dynamic SFC placement algorithm. Their state setting in DRL
focuses on modeling the edge network while ignoring the improvement
brought by adequate SFC requests modeling. Zheng et al. [37] design
a heuristic algorithm and a DRL algorithm to solve the SFC placement

problem offline and online, respectively. However, the distribution of
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SFC requests over time is ignored. Solozabal et al. [11] propose an
encoder–decoder architecture with a Bahdanau attentional mechanism
to capture the distribution of SFC requests over time, but they make
strong assumptions about the network topology, which cannot adapt
to a wide range of edge systems. In addition, all of them neglect the
potential of instance reuse in SFC placement.

3. System model

In this section, the NFV system and SFC request are first described.
Then, the problem is formulated with a set of linear constraints and op-
timization objectives. To focus on the problem itself, the term instance
is used to refer to any virtual environment where VNF can be hosted.
The important notations are summarized in Table 1.

3.1. System overview

In this paper, an online service scenario is considered, where the
mobile users’ SFC requests are handled by VNF instances deployed in an
edge network. Further, we focus on solving instance reuse in a typical
SFC placement problem without considering traffic routing [21], which
is both NP-hard and needs an online decision solution.

The edge network consists of a set of edge nodes. There exists
an undirected link between each node pair. 𝐔 is the set of all users’
requests, and 𝑢 ∈ 𝐔 is a SFC request. Each SFC contains multiple VNFs
and is an ordered list. For each 𝑢, SPs need to decide how to place it in
the current edge network.

3.1.1. VNF
𝐅 is the set of different types of VNFs. | ⋅ | is used to represent the

number of elements in the set, e.g., |𝐅| is the number of VNF type.
Each 𝑓 ∈ 𝐅 is a type of VNF, and there are memory and computing
resource cost for each type-𝑓 VNF instance, denoted by 𝑚𝑚𝑒𝑚𝑓 and 𝑚𝑐𝑜𝑚𝑓 ,
respectively.

Initializing a new type-𝑓 VNF instance will cause a start-up delay
𝑑𝑓 . Then, a type-𝑓 VNF instance can provide a fixed processing capacity
𝑐𝑓 , which is determined by factors such as the actual deployment
method and the VNF type. An instance can be reused only when it has
the remaining processing capacity. Maintaining an empty instance can
only waste the resources of edge nodes and lead to low resource utiliza-
tion. Thus, the service providers always choose to withdraw an instance
after all requests in it are completed. Since instances are deployed in
the edge node by virtual environments such as VMs or containers,
withdrawing an instance only needs to terminate the corresponding
software process. Thus, when there is no VNF running in the instance,
the instance can be released immediately, which is almost at no cost.

3.1.2. Edge network
The edge network is modeled as an undirected graph 𝐆𝐞 = (𝐍𝐞,𝐋𝐞),

where 𝐍𝐞 is the set of nodes and 𝐋𝐞 is the set of links that connect
every two nodes. Each 𝑛𝑖 ∈ 𝐍𝐞 represents the edge node and 𝑙𝑖,𝑖′ ∈ 𝐋𝐞
represents the link from node 𝑛𝑖 to node 𝑛𝑖′ . In the edge network,
each node 𝑛𝑖 has a memory capacity 𝑐𝑚𝑒𝑚𝑖 , a computing capacity 𝑐𝑐𝑜𝑚𝑖
and a outbound bandwidth 𝑐𝑏𝑤𝑖 . 𝑝𝑓𝑖 represents the number of type-𝑓
instances that is placed on node 𝑛𝑖. Finally, from node 𝑛𝑖 to node 𝑛𝑖′ ,
the transmission delay is defined as 𝑑𝑖,𝑖′ .

3.1.3. SFC request
In general, various requests are generated from different users over

time. For each request 𝑢, its features can be denoted as a tuple (𝐍𝐮, 𝐎𝐮,
𝜙𝑢, 𝜓𝑢, 𝑦𝑢, 𝛥𝑢). 𝐍𝐮 = [𝑓 𝑢1 , 𝑓

𝑢
2 ,… , 𝑓 𝑢𝑗 ,… , 𝑓 𝑢

|𝐍𝐮|
] represents the ordered list

of VNFs in SFC request 𝑢, where 𝑓 𝑢𝑗 is the 𝑗th VNF in SFC request 𝑢 and
𝑓 𝑢𝑗 ∈ 𝐅. Thus, the chain length of 𝑢 is |𝐍𝐮|. Besides, 𝐎𝐮 = {𝑜𝑢𝑓 |𝑓 ∈
𝐅} is introduced to represent the required processing resources of
4

Fig. 2. Adding virtual nodes.

various type VNFs of SFC request 𝑢, where 𝑜𝑢𝑓 is the required processing
resource of VNF 𝑓 and:

𝑜𝑢𝑓

{

> 0, 𝑓 ∈ 𝐍𝐮

= 0, 𝑓 ∉ 𝐍𝐮
. (1)

Besides, 𝜙𝑢 ∈ 𝐍𝐞, 𝜓𝑢 ∈ 𝐍𝐞 and 𝑦𝑢 in the tuple are source, destination
and traffic of request 𝑢, respectively. Considering the geographical
distribution of mobile users and edge nodes, and the limited coverage
of edge nodes, each user request can only be accessed from a specific
source node and exited from a specific destination node [38,39]. In this
way, the model of the geographical distribution of mobile users and
nodes can be simplified [40,41]. The time to live (TTL) of 𝑢 is denoted
by 𝛥𝑢, which is calculated based on start time and end time.

Finally, a variable 𝑏𝑖𝑢,𝑗 ∈ {0, 1} is introduced. When the function 𝑓 𝑢𝑗
is placed on the node 𝑛𝑖 in the edge network, 𝑏𝑖𝑢,𝑗 = 1, 0 otherwise. 𝑘𝑢𝑡
is introduced to check whether request 𝑢 exists at the time point 𝑡. If
the SFC request 𝑢 is running, 𝑘𝑢𝑡 = 1, 0 otherwise.

To simplify the model, two virtual nodes are added to the head and
tail of the SFC request 𝑢. As shown in Fig. 2, 𝑓 𝑢0 and 𝑓 𝑢

|𝐍𝐮|+1
are assumed

to be placed on nodes 𝜙𝑢 and 𝜓𝑢, respectively:

𝑏𝑖𝑢,0 =

{

1, 𝑛𝑖 = 𝜙𝑢
0, 𝑛𝑖 ≠ 𝜙𝑢

, (2)

𝑏𝑖𝑢,|𝐍𝐮|+1
=

{

1, 𝑛𝑖 = 𝜓𝑢
0, 𝑛𝑖 ≠ 𝜓𝑢

. (3)

The virtual nodes occupy no resources.

3.2. Problem formulation

The problem of online SFC placement with instance reuse is de-
scribed by a set of linear constraints.

Firstly, in order to place an entire SFC request, each VNF in the SFC
needs to be placed. 𝑧𝑢 is used to check whether the SFC request 𝑢 is
accepted:

𝑧𝑢 = 𝟏{∑𝑓𝑢𝑗 ∈𝐍𝐮
∑

𝑛𝑖∈𝐍𝐞 𝑏
𝑖
𝑢,𝑗}

, (4)

where 𝟏{𝜆} is the indicator function such that 𝟏{𝜆} = 1 if 𝜆 > 0 and 0
otherwise. If SFC request 𝑢 is accepted, 𝑧𝑢 = 1, 0 otherwise. When a
VNF in the SFC is not placed on the edge network, other VNFs should
be rejected. To satisfy this requirement, the first constraint is:

|𝐍𝐮| × 𝑧𝑢 =
∑

𝑓 𝑢𝑗 ∈𝐍𝐮

∑

𝑛𝑖∈𝐍𝐞

𝑏𝑖𝑢,𝑗 , ∀𝑢 ∈ 𝐔. (5)

When the SFC request 𝑢 is accepted, each VNF in 𝑢 should only be
served on one edge node, denoted by:
∑

𝑛𝑖∈𝐍𝐞

𝑏𝑖𝑢,𝑗 = 𝟏{∑𝑛𝑖∈𝐍𝐞 𝑏
𝑖
𝑢,𝑗}

, ∀𝑢 ∈ 𝐔, ∀𝑓 𝑢𝑗 ∈ 𝐍𝐮. (6)

Then, it need to be ensured that the memory and computing re-
source at edge node 𝑛𝑖 cannot be overbooked. Thus, the memory and
computing resource constraints can be described as:
∑

𝑝𝑓𝑖 × 𝑚𝑚𝑒𝑚𝑓 ≤ 𝑐𝑚𝑒𝑚𝑖 , ∀𝑛𝑖 ∈ 𝐍𝐞, (7)

𝑓∈𝐹
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∑

𝑓∈𝐹
𝑝𝑓𝑖 × 𝑚𝑐𝑜𝑚𝑓 ≤ 𝑐𝑐𝑜𝑚𝑖 , ∀𝑛𝑖 ∈ 𝐍𝐞. (8)

Similarly, for each node 𝑛𝑖 in the edge network, the total traffic of all
FCs passing through it must not exceed the outbound bandwidth ca-
acity. The bandwidth is consumed only when the next following VNF
s placed on the different edge node. Thus, the bandwidth constraint
an be described as:

∑

∈𝐔

|𝐍𝐮|
∑

𝑗=0
𝑏𝑖𝑢,𝑗 × (𝑏𝑖𝑢,𝑗 − 𝑏

𝑖
𝑢,𝑗+1) × 𝑦𝑢 × 𝑘

𝑢
𝑡 × 𝑧𝑢 ≤ 𝑐𝑏𝑤𝑖 ,

∀𝑛𝑖 ∈ 𝐍𝐞.

(9)

Finally, all initialized instances can be shared by different SFC
requests to make full use of their remaining processing capacities. The
total processing capacity of VNF 𝑓 on node 𝑛𝑖 is determined by the
umber of type-𝑓 VNF instances placed on it. Therefore, to guarantee
he service demand of each type VNF, processing capacity constraints
an be expressed as:
∑

𝑢∈𝐔
𝑜𝑢𝑓 × 𝑘𝑢𝑡 × 𝑧𝑢 ≤ 𝑐𝑓 × 𝑝𝑓𝑖 , ∀𝑛𝑖 ∈ 𝐍𝐞, ∀𝑓 ∈ 𝐅. (10)

Our goal is to efficiently utilize the edge network’s resources and
mprove QoE by intelligently placing SFC requests over time. Generally,
fficiently utilizing edge resources is transformed to minimize resource
ost [17]. The QoE is determined by the throughput and total trans-
ission delay of accepted requests. The throughput value of the SFC

equest 𝑢 is calculated based on the traffic, SFC chain length and TTL,
enoted by:

𝑢 = 𝜉𝑣 × 𝑦𝑢 × |𝐍𝐮| × 𝛥𝑢 + 𝑣𝑙𝑏, (11)

here 𝜉𝑣 is the constant weight and 𝑣𝑙𝑏 is the lower bound of through-
ut value. Also, the total throughput 𝑊𝑇𝑃 can be calculated as:

𝑇𝑃 =
∑

𝑢∈𝐔
𝜇𝑢 × 𝑧𝑢 (12)

Besides, if a new type-𝑓 instance is initialized when placing the SFC
equest 𝑢, 𝑥𝑢𝑓 = 1, otherwise 𝑥𝑢𝑓 = 0. To effectively utilize both the
ode and link resources of the edge network, the total edge network
esources cost 𝑊𝑅𝐶 is defined as:

𝑅𝐶 =𝜉𝑏𝑤
∑

𝑢∈𝐔

|𝐍𝐮|
∑

𝑗=0

∑

𝑛𝑖∈𝐍𝐞

𝑏𝑖𝑢,𝑗 × (𝑏𝑖𝑢,𝑗 − 𝑏
𝑖
𝑢,𝑗+1) × 𝑦𝑢 × 𝑧𝑢

+ 𝜉𝑚𝑒𝑚
∑

𝑢∈𝐔

∑

𝑓∈𝐹
𝑥𝑢𝑓 × 𝑚𝑚𝑒𝑚𝑓 + 𝜉𝑐𝑜𝑚

∑

𝑢∈𝐔

∑

𝑓∈𝐹
𝑥𝑢𝑓 × 𝑚𝑐𝑜𝑚𝑓 ,

(13)

here 𝜉𝑏𝑤, 𝜉𝑚𝑒𝑚 and 𝜉𝑐𝑜𝑚 are the weights of bandwidth, memory and
omputing resource, respectively.

Finally, the delay cost 𝑊𝐷𝐶 of all requests 𝑢 flowing through the
dge network can be calculated as:

𝐷𝐶 =
∑

𝑢∈𝐔

|𝐍𝐮|
∑

𝑗=0

∑

𝑛𝑖∈𝐍𝐞

∑

𝑛𝑖′∈𝐍𝐞

𝑏𝑖𝑢,𝑗 × 𝑏
𝑖′
𝑢,𝑗+1 × 𝑑𝑖,𝑖′ × 𝑧𝑢 +

∑

𝑢∈𝐔

∑

𝑓∈𝐹
𝑥𝑢𝑓 × 𝑑𝑓 . (14)

Summing up all the issues, online SFC placement with instance reuse
an be formulated as follows:

roblem 1.

ax 𝜉𝑇𝑃 ×𝑊𝑇𝑃 − 𝜉𝑅𝐶 ×𝑊𝑅𝐶 − 𝜉𝐷𝐶 ×𝑊𝐷𝐶 , (15)
𝑠.𝑡. (1) − (14) .

here 𝜉𝑇𝑃 , 𝜉𝑅𝐶 and 𝜉𝐷𝐶 are the weights of the throughput, resource
nd delay, respectively.

Analysis: Problem 1 is classified into a typical constrained offload-
ng decision problem. Because several non-linear constraints exist in
roblem 1, it is difficult to directly solve Problem 1 even for each
5

ingle SFC. Traditional optimization algorithms constantly adjust the
ffloading strategies by repeatedly iterating, trying to find the optimal
olution. However, due to the increase of the node number in edge
etwork, these optimization algorithms based on iteration consume
engthy execution time. At the same time, due to the system dynamics
nd the difficulty of predicting the future environment accurately, the
raditional heuristic algorithm cannot maximize the long-term reward.

In our problem, the arrival of requests and the update of the edge
etwork have no memory and satisfy the first-order Markov prop-
rty [30]. Therefore, it can be modeled as an MDP. In order to solve
he MDP, in the process of designing the state space, a group of LSTM
s added to extract the timing sequence relationship of requests. At the
ame time, an online offloading algorithm is proposed based on DRL,
n which the state space combines the current network and request
tate with the LSTM time sequence extraction result. With DRL, all
inear and non-linear constraints are reflected in the reward setting
ith almost no distinction [35,42]. And Problem 1 can be handled with

nteractions among states, actions, and rewards. Furthermore, the DRL
gent aims to maximize the long-term cumulative rewards, which is
lso the optimization objective.

. Algorithm

In this section, an efficient online learning approach named OSIR
s proposed to solve Problem 1. OSIR utilizes the LSTM-based A3C
odel to schedule SFC requests and reuse VNF instances intelligently.
he algorithm settings are first described. Then, the SQN is introduced
o extract the distribution of the required VNF over time. Finally, the
raining process of the OSIR agent is summarized.

.1. Algorithm settings

The agent and the environment are two primary components in
RL. In each step, the agent observes the environment state 𝑆𝜏 and
ives an action 𝐴𝜏 according to a policy. Then the environment returns
reward 𝑅𝜏 (𝑆𝜏 , 𝐴𝜏 ) and updates to the next state 𝑆𝜏+1. Finally, the

gent updates the policy to obtain a higher long-term cumulative
eward by ceaselessly interacting with the environment.

The state, action, reward, and policy of reinforcement learning are
efined as follows.
State: The state includes all remaining resources in the edge

etwork and the current SFC request 𝑢. The remaining memory resource
𝑐𝑚𝑒𝑚𝑖 , computing resource 𝑐𝑐𝑜𝑚𝑖 and outbound bandwidth 𝑐𝑏𝑤𝑖 of each
node 𝑛𝑖 are obtained as follows:

𝑐𝑚𝑒𝑚𝑖 = 𝑐𝑚𝑒𝑚𝑖 −
∑

𝑓∈𝐹
𝑝𝑓𝑖 × 𝑚𝑚𝑒𝑚𝑓 , (16)

𝑐𝑐𝑜𝑚𝑖 = 𝑐𝑐𝑜𝑚𝑖 −
∑

𝑓∈𝐹
𝑝𝑓𝑖 × 𝑚𝑐𝑜𝑚𝑓 , (17)

𝑐𝑏𝑤𝑖 = 𝑐𝑏𝑤𝑖 −
∑

𝑢∈𝐔

|𝐍𝐮|
∑

𝑗=0
𝑏𝑖𝑢,𝑗 × (𝑏𝑖𝑢,𝑗 − 𝑏

𝑖
𝑢,𝑗+1) × 𝑦𝑢 × 𝑘

𝑢
𝑡 . (18)

Similarly, for each edge node 𝑛𝑖, its remaining processing capacity
𝑐𝑓𝑖 of type-𝑓 VNF instance is denoted by:

𝑐𝑓𝑖 = 𝑐𝑓 × 𝑝𝑓𝑖 −
∑

𝑢∈𝐔
𝑜𝑢𝑓 × 𝑘𝑢𝑡 × 𝑧𝑢. (19)

The SFC request 𝑢 has an ordered list of VNFs, i.e., 𝐍𝐮 = [𝑓 𝑢1 , 𝑓
𝑢
2 ,… ,

𝑓 𝑢𝑗 ,… , 𝑓 𝑢
|𝐍𝐮|

], and each 𝑓 𝑢𝑗 ∈ 𝐍𝐮 is placed in order. In each step, the
ordered VNF list 𝐍𝐮, required processing resources 𝐎𝐮, TTL 𝛥𝑢, traffic
𝑦𝑢, last placed node 𝑏𝑖𝑢,𝑗−1, destination 𝜓𝑢 and throughput 𝜇𝑢 are all in

�̂� |𝐅| 𝑢
the state. 𝑓𝑗 = [0, 1] is defined as the one-hot vector of 𝑓𝑗 . Thus,
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when deploying VNF 𝑓 𝑢𝑗 ∈ 𝐍𝐮, state 𝑆𝜏 can be represented by:

𝑆𝜏 = [𝑐𝑚𝑒𝑚1 , 𝑐𝑚𝑒𝑚2 ,… , 𝑐𝑚𝑒𝑚
|𝑁𝑒|

,

𝑐𝑐𝑜𝑚1 , 𝑐𝑐𝑜𝑚2 ,… , 𝑐𝑐𝑜𝑚
|𝑁𝑒|

,

𝑐𝑏𝑤1 , 𝑐𝑏𝑤2 ,… , 𝑐𝑏𝑤
|𝑁𝑒|

,

𝑐𝑓11 , 𝑐
𝑓1
2 ,… , 𝑐𝑓1

|𝑁𝑒|
,

𝑐𝑓21 , 𝑐
𝑓2
2 ,… , 𝑐𝑓2

|𝑁𝑒|
,

...,

𝑐
𝑓
|𝐹 |

1 , 𝑐
𝑓
|𝐹 |

2 ,… , 𝑐
𝑓
|𝐹 |

|𝑁𝑒|
,

𝑜𝑢1, 𝑜
𝑢
2,… , 𝑜𝑢

|𝐹 |

𝑏1𝑢,𝑗−1, 𝑏
2
𝑢,𝑗−1,… , 𝑏|𝑁𝑒|𝑢,𝑗−1,

𝑏1𝑢,|𝐍𝐮|+1
, 𝑏2𝑢,|𝐍𝐮|+1

,… , 𝑏|𝑁𝑒|𝑢,|𝐍𝐮|+1
,

𝛥𝑢, 𝑦𝑢, 𝜇𝑢, 𝑓 𝑢𝑗 ]

(20)

Action: For each state 𝑆𝜏 , the agent needs to schedule the VNF
𝑓 𝑢𝑗 ∈ 𝐍𝐮 to an edge node. So the action space 𝐴𝜏 is defined as the
set of all edge nodes:

𝐴𝜏 ∈ 𝑁𝑒. (21)

Reward: When executing an action 𝐴𝜏 = 𝑛𝑖, if the node 𝑛𝑖 can
provide enough resources, the VNF 𝑓 𝑢𝑗 ∈ 𝐍𝐮 is placed successfully.
Then, the agent gets an immediate reward 𝑅𝜏 . A reward memory 𝐑𝐌

𝑢
is designed to store each immediate reward of the current SFC request
𝑢. The successful placement needs to follow these constraints below.

When executing action 𝐴𝜏 = 𝑛𝑖, the remaining processing resource
of type-𝑓 𝑢𝑗 instance on node 𝑛𝑖 needs to meet the processing resource
demand of SFC request 𝑢, denoted by:

𝑐
𝑓 𝑢𝑗
𝑖 ≥ 𝑜𝑢𝑓 𝑢𝑗

. (22)

Otherwise, the agent needs to initialize a new type-𝑓 𝑢𝑗 instance on node
𝑛𝑖 to apply for more processing resources. Only when the node 𝑛𝑖 has
sufficient memory resources and computing resources, a new type-𝑓 𝑢𝑗
VNF instance can be initialized on node 𝑛𝑖, denoted by:

𝑐𝑚𝑒𝑚𝑖 ≥ 𝑚𝑚𝑒𝑚𝑓 𝑢𝑗
, (23)

𝑐𝑐𝑜𝑚𝑖 ≥ 𝑚𝑐𝑜𝑚𝑓 𝑢𝑗
, (24)

When Eq. (23) or (24) is not satisfied, it indicates that a new type-𝑓 𝑢𝑗
instance cannot be initialized on the selected node. Then, it is regarded
as a placement failure.

In addition to checking whether the action 𝐴𝜏 follows processing
capacity constraints, the bandwidth from the last placed node 𝐴𝜏−1 or
source 𝜙𝑢 to 𝐴𝜏 needs to be checked. If 𝐴𝜏 = 𝑛𝑖 and 𝑏𝑖𝑢,𝑗−1 = 0, the

NF 𝑓 𝑢𝑗 and 𝑓 𝑢𝑗−1 are placed on different nodes. Then the outbound
bandwidth resource of the last placed node is consumed, requiring to
satisfy the bandwidth constraint:

𝑐𝑏𝑤𝑖 ≥ 𝑏𝑖𝑢,𝑗−1 × (𝑏𝑖𝑢,𝑗−1 − 𝑏
𝑖
𝑢,𝑗 ) × 𝑦𝑢, ∀𝑛𝑖 ∈ 𝐍𝐞. (25)

Otherwise, the placement is also regarded a placement failure.
When 𝑗 = 𝐍𝐮, all included VNF in SFC request 𝑢 are placed, and

the outbound bandwidth from 𝐴𝜏 to 𝜓𝑢 needs to meet the following
requirement:

𝑐𝑏𝑤𝑖 ≥ (𝑏𝑖𝑢,𝑗 − 𝑏
𝑖
𝑢,𝑗+1) × 𝑦𝑢, ∀𝑛𝑖 = 𝐴𝜏 . (26)

If the VNF 𝑓 𝑢𝑗 is placed successfully, the immediate reward 𝑅𝜏 is
designed based on the optimization objective in Problem 1, which
contains all three components in Problem 1:

𝑅 = 𝜉 × 𝑅𝑇𝑃 − 𝜉 × 𝑅𝑅𝐶 − 𝜉 × 𝑅𝐷𝐶 . (27)
6

𝜏 𝑇𝑃 𝜏 𝑅𝐶 𝜏 𝐷𝐶 𝜏 𝐴
where the throughput 𝑅𝑇𝑃𝜏 is calculated as:

𝑅𝑇𝑃𝜏 = 𝜇𝑢∕|𝐍𝐮|. (28)

Then, the resource cost 𝑅𝑅𝐶𝜏 and the delay cost 𝑅𝐷𝐶𝜏 are calculated as:

𝑅𝑅𝐶𝜏 = 𝜉𝑏𝑤 ×
∑

𝑛𝑖∈𝐍𝐞

𝑏𝑖𝑢,𝑗−1 × (𝑏𝑖𝑢,𝑗−1 − 𝑏
𝑖′
𝑢,𝑗 ) × 𝑦𝑢 (29)

+ 𝜉𝑚𝑒𝑚 × 𝑥𝑢𝑓 𝑢𝑗
× 𝑚𝑚𝑒𝑚𝑓 + 𝜉𝑐𝑜𝑚 × 𝑥𝑢𝑓 𝑢𝑗

× 𝑚𝑐𝑜𝑚𝑓 ,

𝐷𝐶
𝜏 =

∑

𝑛𝑖∈𝐍𝐞

𝑏𝑖𝑢,𝑗−1 × 𝑏
𝑖′
𝑢,𝑗 × 𝑑𝑖,𝑖′ + 𝑥

𝑢
𝑓 𝑢𝑗

× 𝑑𝑓 , (30)

here 𝑛𝑖′ = 𝐴𝜏 .
When the action 𝐴𝜏 = 𝑛𝑖 is selected by the agent and the node

𝑖 cannot satisfy the constraints of processing capacity or outbound
andwidth, the action 𝐴𝜏 is regarded as the terrible action. Then, a
arge negative value is given as the reward 𝑅𝜏 , which is calculated
ased on the previous multiple immediate rewards. By this punishment,
he agent can be aware that placing an incomplete chain is useless. The
eward 𝑅𝜏 for the terrible 𝐴𝜏 is calculated as follows:

𝜏 = −𝜉𝑇𝑃 × 𝜇𝑢 −
∑

𝑅𝑗∈𝐑𝐌
𝑢

𝑅𝑗 . (31)

In OSIR, all the linear and non-linear constraints in Problem 1 are
reflected in the reward function. Furthermore, OSIR uses punishment
to avoid choosing the action which violates constraints. For example,
in the reward function, the constraints on node resources in Eq. (7) and
(8) are transformed into Eq. (23) and (24), respectively.

Algorithm 1 Reward Calculation
Input: 𝑆𝜏 , 𝐴𝜏
Output: 𝑅𝜏
1: /* SFC request 𝑢 */
2: if 𝑗 = 1 then
3: 𝐑𝐌

𝐮 = ∅
4: end if
5: if (Eq. (22) or (Eq. (23) and Eq. (24))) and (Eq. (25)) and (𝑗 ≠ |𝐍𝐮|

or Eq. (26)) then
6: Calculate 𝑅𝜏 based on Eq. (27)–(30)
7: 𝐑𝐌

𝐮 = 𝐑𝐌
𝐮 ∪ {𝑅𝜏}

8: if 𝑗 = |𝐍𝐮| then
9: 𝑗 = 𝑗 + 1

10: Recalculate 𝑅𝑅𝐶′
𝜏 and 𝑅𝐷𝐶′

𝜏 based on Eq. (29)–(30)
11: 𝑅𝜏 = 𝑅𝜏 + 𝑅𝑅𝐶

′
𝜏 + 𝑅𝐷𝐶′

𝜏
12: end if
13: else
14: Calculate 𝑅𝜏 based on Eq. (31)
15: end if
16: end

Alg. 1 shows the process of reward calculation. At first, in line 3,
a reward memory 𝐑𝐌

𝑢 is initialized as an empty set. In line 5, when
the action 𝐴𝜏 selected by the agent satisfies the resource constraints,
VNF 𝑓 𝑢𝑗 is placed successfully. Then, the reward 𝑅𝜏 is calculated and
added into 𝐑𝐌

𝑢 . In lines 8–12, after all 𝑓 ∈ 𝐍𝐮 placed in the edge
network, the last VNF 𝑓 𝑢

|𝐍𝐮|
needs to be connected to the virtual

node 𝑓 𝑢
|𝐍𝐮|+1

on the destination 𝜓𝑢, and the corresponding delay and
resource cost are calculated. In line 14, when placement fails due to
insufficient processing capacity or outbound bandwidth, the reward 𝑅𝜏
s recalculated.
Policy: The policy is the probability distribution of taking action

𝜏 in the current state 𝑆𝜏 , denoted by 𝜋𝜃(𝑆𝜏 , 𝐴𝜏 ):

𝜃(𝑆𝜏 , 𝐴𝜏 ) ∈ (0, 1], (32)

∑

𝜋𝜃(𝑆𝜏 , 𝐴′
𝜏 ) = 1, (33)
′
𝜏∈|𝐍𝐞|
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Fig. 3. The structure of SQN.

where all 𝐴′
𝜏 are possible actions for the current 𝑆𝜏 . DRL agent up-

dates the policy with all the historical information for maximizing the
long-term cumulative reward.

The goal of OSIR is to maximize the cumulative discount reward,
i.e., E𝜋𝜃

[
∑∞
𝜏=0 𝛾

𝜏𝑅𝜏
(

𝑆𝜏 , 𝐴𝜏
)]

, where 𝛾 is the discount factor for future
reward. Thus, Problem 1 can be transformed into:

𝜋∗𝜃 = argmax
𝜋𝜃

E𝜋𝜃

[ ∞
∑

𝜏=0
𝛾𝜏𝑅𝜏

(

𝑆𝜏 , 𝐴𝜏
)

]

. (34)

4.2. SFC queue network

To extract the distribution of required VNF over time, the SQN is
designed based on LSTM and added into OSIR. LSTM is widely used in
time series prediction problems because it can consider the relationship
between the relative position relation between layers of input [43,44].

Fig. 3 shows the structure of SQN in detail, which mainly contains
two components: SQN memory and the LSTM. The SQN memory is
a layered queue to store the past required VNF, and the length is
defined as Time Depth (TD). Each layer in SQN memory is the required
processing resources of the SFC request, e.g., 𝐎𝐮 in Fig. 3. The LSTM
contains two layers of the LSTM neural network. The input of SQN is
the state 𝑆𝜏 .

As shown in Alg. 2, the working process of SQN includes update
checking and relationship extraction. In lines 1–6, when the agent
receives a state 𝑆𝜏 , SQN checks whether the environment gets a new
SFC request 𝑢. If not, SQN memory remains unchanged. Otherwise, the
SQN captures 𝐎𝐮 from 𝑆𝜏 . Then, the SQN discards the last layer of the
SQN memory (i.e., 𝐎𝐮−𝐓𝐃), and 𝐎𝐮 is added to SQN memory.

When the agent needs to make a decision for 𝑆𝜏 , SQN learns
the distribution of past required VNF from the current SQN memory
through the LSTM neural network. As shown in lines 7–9 of Alg. 2,
required processing resources of several past requests compose a queue,
i.e., [𝐎𝐮−𝐓𝐃+𝟏,𝐎𝐮−𝐓𝐃+𝟐,… ,𝐎𝐮−𝟏,𝐎𝐮], which is the input of the LSTM
and fed into the neural network in order. In this way, 𝐎𝐮−𝐓𝐃+𝟏 to 𝐎𝐮
constitute the time series of required processing resources of multiple
consecutive SFC requests, and the output ℎ𝑇𝐷 of the last layer contains
the distribution of required VNF, which helps the agent learn the trend
of required VNF at the moment.
7

Algorithm 2 SQN
Input: 𝑆𝜏
Output: ℎ𝑇𝐷
1: /* Update Checking */
2: if 𝑗 = 1 then
3: Delete 𝐎𝐮−𝐓𝐃 from SQN Memory
4: Capture 𝐎𝐮 from 𝑆𝜏
5: Push 𝐎𝐮 into SQN Memory
6: end if
7: /* Relationship Extraction */
8: LSTM Input = [𝐎𝐮−𝐓𝐃+𝟏,𝐎𝐮−𝐓𝐃+𝟐, ...,𝐎𝐮−𝟏,𝐎𝐮]
9: Get LSTM Output = ℎ𝑇𝐷

10: end

4.3. OSIR training

The OSIR is designed based on A3C [45]. In addition to the actor
and critic neural network, OSIR contains an SQN, which is designed to
extract the distribution of required VNF over time. After placing VNF
𝑓 𝑢𝑗 , the agent sets the required processing resource of type-𝑓 𝑢𝑗 instance
to 0, i.e., 𝑜𝑢𝑓 𝑢𝑗

= 0. Then, the agent tries to place 𝑓 𝑢𝑗+1 until all VNFs in
SFC request 𝑢 are placed. Moreover, at any time, ∑𝑓∈𝐅 𝟏{𝑜𝑢𝑓 } represents
the number of VNFs in SFC request 𝑢 that have not placed, which is
obtained as:
∑

𝑓∈𝐅
𝟏{𝑜𝑢𝑓 } = |𝐍𝐮| − (𝑗 − 1). (35)

Alg. 3 summarizes the workflow of OSIR. OSIR gives action to each
VNF 𝑓 𝑢𝑗 ∈ 𝐍𝐮 in order from 𝑗 = 1 to 𝑗 = |𝐍𝐮|, and gets an immediate
reward. When failing to placement, a retrace mechanism is used to
release the resources occupied by the SFC request 𝑢 to refresh the
network state.

Algorithm 3 OSIR Workflow
Input: SFC request 𝑢
Output: (𝑆𝜏 , 𝐴𝜏 , 𝑅𝜏 ), ...
1: Receive SFC request 𝑢
2: Generate 𝑆𝜏 and cache 𝑆𝜏 locally
3: for 𝑗 = 1 to |𝐍𝐮| do
4: The agent observes the state 𝑆𝜏
5: if 𝑗 = 1 then
6: Update SQN according to Alg. 2
7: end if
8: The agent selects 𝐴𝜏 according to the policy
9: The environment returns the reward 𝑅𝜏 (𝑆𝜏 , 𝐴𝜏 ) according to Alg.

1
10: if (Eq. (22) or (Eq. (23) and Eq. (24))) and (Eq. (25)) and

(𝑗 ≠ |𝐍𝐮| or Eq. (26)) then
11: 𝑜𝑢𝑓 𝑢𝑗

= 0

12: else
13: /* Placement Failure */
14: Reset the state with the cached 𝑆𝜏 in line 2
15: Break
16: end if
17: Observe 𝑆𝜏+1
18: end for
19: Waiting for the SFC request 𝑢 + 1
20: end

In line 2, when receiving a new SFC request 𝑢, the environment
combines SFC request 𝑢 with the information of edge network to form
state 𝑆𝜏 , and caches 𝑆𝜏 locally. As shown in lines 3 - 20, OSIR places
each 𝑓 𝑢 ∈ 𝐍 into the edge network one by one. (𝑆 ,𝐴 ,𝑅 , 𝑆 )
𝑗 𝐮 𝜏 𝜏 𝜏 𝜏+1
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Fig. 4. OSIR framework.
Fig. 5. Training process on |𝐍𝐞| = 10.

is obtained through the interaction between the environment and the
agent. In lines 5–7, when the SQN in the agent obtains a new SFC
𝑢, it extracts 𝐎𝐮 from 𝑆𝜏 and updates the SQN. In line 8 and 9, the
agent selects an action 𝐴𝜏 according to the policy output by the actor-
network. Meanwhile, the environment returns 𝑅𝜏 (𝑆𝜏 , 𝐴𝜏 ) to the agent
by Alg. 1.

In line 11, while placing 𝑓 𝑢𝑗 successfully, the environment sets
𝑜𝑢𝑓 𝑢𝑗

= 0. Then, the agent needs to place the SFC 𝐍𝐮′ = [𝑓 𝑢𝑗+1,… , 𝑓 𝑢
|𝐍𝐮|

],
and observes the new state. The agent continues to interact with the
environment and get new states, actions and rewards until 𝑗 = 𝐍𝐮 or
placement failure.

In lines 12–15, when placement fails due to insufficient processing
resources or communication resources, the environment rejects this
request 𝑢 and resets the current state with the previously cached 𝑆𝜏 .
The edge network backtracks to the time before placing request 𝑢.

After placing SFC request 𝑢, in line 19, the environment waits a new
SFC 𝑢 + 1 placement, and all above steps are repeated.

The OSIR framework is shown in Fig. 4. At each time step 𝜏, the
agent observes the current state 𝑆𝜏 from the environment. Then the
agent checks whether the current request 𝑢 is a new request. If so,
SQN captures 𝐎𝐮 from 𝑆𝜏 and adds it to SQN memory. After that,
the actor-network and the critic-network get the output ℎ𝑇𝐷 and ℎ′𝑇𝐷
from the SQN network, respectively. The input of the actor and critic
neural network contain the state 𝑆 and the output of SQN. 𝜋 and 𝑉 𝜃
8

𝜏 𝜃
are calculated through the neural network. According to 𝜋𝜃 , the agent
chooses the best action 𝐴𝜏 , and the environment returns 𝑅𝜏 (𝑆𝜏 , 𝐴𝜏 )
based on Alg. 1. The output 𝑉 𝜃 of the critic-network assists in training
the actor-network.

5. Performance evaluation

The OSIR performance is evaluated through extensive numerical
experiments. In this section, experiment settings are first introduced.
Then the experimental results are presented and analyzed.

5.1. Experiment settings

5.1.1. Parameter settings
Edge Network: The edge network is set as a fully connected network
with identical communication links. The number of nodes is from 10 to
100, each with [1, 1000] units of memory and [1, 32] units of computing
resource. The outbound bandwidth of each node ranges from 1200
Mbps to 1800 Mbps. Transmission delay includes intra-pod delay in one
node and inter-pod delay between different nodes [46]. The intra-pod
delay is set ranging from 20 to 40 μ s and the inter-pod delay ranging
from 80 to 150 μ s.
SFC Request: The data comes from real-world traces [47], which is a
time-stamped cluster task data set. After preprocessing (e.g., filtering
out some requests with low TTL 𝛥𝑢), 3997 SFC requests are extracted
from 18 h. Each SFC request’s start time and end time are set the same
as the real-world traces. The first and last requests of the preprocessed
data are the earliest start and the latest start, respectively. 20 different
commonly-deployed VNFs are simulated for composing SFCs [20], and
each request requires an SFC consisted of 1 to 7 VNFs. The source and
destination of each SFC are randomly generated. There are 30 kinds of
SFC. Each type of VNF instance takes up [50, 200] units of memory and
[1, 4] units of computing resources, which can provide [5, 10] units of
processing capacity. The required processing resource for each VNF is
set to 1, i.e., 𝑜𝑢𝑓 𝑢𝑗

= 1,∀𝑢 ∈ 𝐔. The traffic for each SFC ranges from 30
Mbps to 60 Mbps. The start-up delay 𝑑𝑓 of type-𝑓 instance is set from
100 ms to 400 ms [48]. Finally, the training and test sets are generated
in a 1:1 ratio according to the above rules.
Others: In all experiments, the setting of throughput, resource cost, and
delay cost data from [35] is used. Moreover, when calculating the total
reward, factors 𝜉𝑇𝑃 , 𝜉𝐷𝐶 , and 𝜉𝑅𝐶 are 0.5, 0.4, and 0.1, respectively.
For resource cost, the weights of memory, computing and bandwidth
resource are set as 𝜉𝑏𝑤 = 0.6, 𝜉𝑚𝑒𝑚 = 0.2, 𝜉𝑐𝑜𝑚 = 0.2, respectively.
The learning rate and gamma of reinforcement learning are 0.0001 and
0.99, respectively. All the experiments are conducted in Python 3.7 on
a desktop with a 3.7 GHz 8-Core Intel Core CPU I9-10900K processor.
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Fig. 6. Overall performance.
The neural networks in OSIR and baselines are implemented using the
Pytorch 1.8.1. Each simulation result has been repeated ten times to
avoid the randomness.

5.1.2. Algorithm benchmark
The experiment results of OSIR are measured after the training

of DRL converges. Fig. 5 shows the OSIR training process on |𝐍𝐞| =
10. The episode is the metric to measure the time series in the
reinforcement learning training process, which is one complete inter-
action between the agent and environment [49]. In our experiment, all
training data are scheduled one by one in each episode according to
their start time. The training time varies according to the number of
edge nodes, and it may take a few minutes in our experiment for each
episode. Since all training processes are offline, even the training time
is long on a large number of nodes, and it has little impact on online
decision-making. After 5,000 episodes of training, OSIR performs better
than all other baselines when |𝐍𝐞| = 10. After training, the performance
of OSIR gradually converges to stability. The OSIR is compared with
five existing baseline algorithms, the details are as follows.

• Reuse First (RF): it is a greedy algorithm, which tries to reuse
instances as much as possible to place SFC requests.

• Shortest Path + First Fit assignment (SPFF): it is a two-stage
heuristic algorithm [11,17]. In the first stage, SPFF finds the
shortest path (SP). In the second stage, it assigns the VNFs along
the shortest path by choosing the first fit node.

• Shortest Path + Reuse Max (SPRM): it is also a two-stage heuris-
tic algorithm [17]. In the first stage, SPRM finds the shortest
path. In the second stage, each VNF in the SFC is assigned along
the shortest path by reusing as many available VNF instances as
possible.

• Single-Step Optimal (SSO): A heuristic algorithm is proposed
to solve the problem of instance reuse by searching all feasible
paths and traversing the optimal solution [17]. However, there
are many feasible paths in the dense network, resulting in a
highly long execution time (related experiments are shown in
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Section 5.2.4). By modifying this algorithm to adapt our problem,
the SSO is designed to find each SFC request’s solutions one by
one. When receiving a new SFC, SSO finds the current optimal
placement strategy with the highest reward by directly solving
the linear equations of Problem 1, which is implemented through
Cplex1.

• Traditional DRL (TDRL) [51]: it is a traditional DRL without
considering instance reuse especially.

5.2. Experimental results and analysis

The OSIR is first evaluated by comparing with all baselines. Then,
the cumulative reward is analyzed over time, and the Cumulative
Distribution Function (CDF) of resource cost and delay cost is studied.
Finally, the execution time of different algorithms is compared.

5.2.1. Performance of OSIR
Firstly, a set of experiments is conducted to verify the performance

of OSIR with different scale of edge network in Fig. 6. In addition to
total reward, how OSIR improves the system performance is analyzed
by decomposing the reward, including: throughput, resource cost, and
delay cost.

In Fig. 6, OSIR improves the reward of serving SPs by better accept-
ing SFC comparing with the baseline algorithms. In Fig. 6(b), Figs. 6(c)
and 6(d), when the number of nodes is small, OSIR significantly reduces
resource cost and delay cost while maintaining throughput. It means
that OSIR can improve the reward mainly by optimizing placement
strategy, when facing computation-intensive or resource-limited. With
the increasing node number, although OSIR may reject some SFC
request and reduce the throughput, it significantly reduces resource
cost. Thus, when the edge network provides sufficient resources, OSIR

1 According to the guidelines [50], the Cplex-Optimizer implements an
algorithm that is based on the classical Branch & Bound paradigm and heuristic
algorithms.
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Fig. 7. Total cumulative reward.
can intelligently select requests by the DRL agent. By comparing the
reward in Fig. 6(a), the OSIR can be adapted at different scale of edge
network and exhibit superiority. It is better than the best baseline of
each experiment group by 17% to 26%.

The experimental results of the RF algorithm are the worst in
most cases. Since RF tries to reuse blindly to reduce node resource
consumption. However, it also results in excessive forwarding, which
causes a non-negligible increase in link resource consumption and leads
to higher delay cost and resource cost. Moreover, the throughput is
often inferior to other algorithms due to superfluous resource con-
sumption. For the SSO algorithm, although the optimal solution for
the current SFC request is selected at each step, its performance is
inferior to OSIR due to the inability to consider long-term cumulative
rewards. For the SPFF algorithm, it is worth noticing that its overall
performance is similar to SSO in small edge clusters. However, the node
resources are abundant with more edge nodes. SPFF tends to choose the
shortest path, which results in initializing a large number of redundant
instances. As shown in Fig. 6(c), when |𝐍𝐞| = 100, SPFF increases the
resource costs compared with other algorithms, so the final reward
performance is abysmal. The SPRM also chooses the shortest path for
each SFC request as much as possible. When the number of edge nodes
is small, its performance is similar to SPFF. However, with the increase
in the number of edge nodes, although SPRM tries to reuse instances
to avoid initializing redundant instances, its result is also far less than
the OSIR. For the TDRL, its performance is always inferior to the OSIR.
Because the SQN in OSIR helps learn the complex distribution of the
required VNF better.

5.2.2. Cumulative reward
Fig. 7 shows the total cumulative rewards of different algorithms.

Then, every 100 consecutive SFCs are grouped, and their cumulative
rewards are counted, as shown in Fig. 8. By grouping every 100 con-
secutive SFCs and calculating their cumulative rewards, the placement
of SFCs in different time slots can be evaluated.

Firstly, through the observation of results in Figs. 7 and 8, there
is little difference in cumulative rewards between all algorithms when
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the environment receives few SFC requests. In particular, the results of
SSO are almost the same with OSIR before placing 300 SFC requests in
Fig. 7. However, as more and more SFC requests arrive over time, all
edge nodes become crowded, and resources are consumed rapidly. In
Fig. 8, before placing 300 SFC requests, the result of OSIR is close to the
SSO. Then, in most of the time, OSIR has a higher cumulative reward
than others over 100 consecutive SFCs requests. It means that OSIR can
reuse instances more intelligently by observing the environment when
some VNF instances have been placed in the environment.

In Fig. 7, the cumulative reward of RF is always lower than SSO
and OSIR. Moreover, in Fig. 8, almost all the time, OSIR has a higher
cumulative reward than RF over 100 consecutive SFC requests. Thus,
with more SFC requests, the reward gap between RF and OSIR is getting
larger. The SPFF and SPRM algorithm both perform better than other
baselines when the number of edge nodes is small in Fig. 7. The reason
is that the first step of the SPFF and SPRM algorithm is to find the
shortest path from the source to the destination for each SFC request.
In Fig. 8, when the environment receives few SFC requests, the reward
of SPFF is always negative most of the time, which means that the
sum of resource consumption and delay cost is always higher than the
throughput. In Fig. 8(a) and Fig. 8(b), by avoiding deploying redundant
instances on more nodes, the small-scale edge network prevents the
resource cost from increasing. The performance of SPFF gradually
becomes similar to other algorithms. However, in Fig. 8(c), the node
resources are almost sufficient at all times. SPFF is forced to create
new instances repeatedly, leading to poor performance. The TDRL is
very mediocre in any situation.

5.2.3. Cost CDF
In this part, the resource cost and delay cost of different algorithms

are evaluated by CDFs, which are shown in Figs. 9 and 10, respectively.
Although SPRM and SPFF perform similarly with OSIR in Fig. 9(a),

their results decrease significantly with the increasing node number.
In Fig. 9(c), the results of SPFF are worse than all other algorithms.
By analyzing the CDF of the delay cost in Fig. 10, both SPFF and
SPRM show their advantages of significantly reducing delay costs when
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Fig. 8. Cumulative reward over 100 consecutive SFC requests.

Fig. 9. Cumulative distribution function of resource cost.
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Fig. 10. Cumulative distribution function of delay cost.
the number of edge nodes is small. However, although the first step
of SPFF and SPRM is to choose the shortest path, as the number of
edge nodes increases, their delay costs are even worse than all other
algorithms in Fig. 6(d). Combining the resource costs of SPFF and SPRM
in Fig. 6(c), the reason for the rapid increase in delay costs is that with
the increase in the number of nodes, there may be no reusable instances
in the shortest path. Furthermore, it leads to initializing redundant VNF
instances, which incurs high delay costs caused by start-up delay and
resource cost.

In Fig. 9, SSO performs almost as same as RF on resource costs,
which may be lacking the consideration of the future impact. Thus,
SSO cannot place the instances of widely used VNF type on critical
nodes, resulting in some requests consuming more resources. RF is not
outstanding at saving edge resources. Because reusing blindly results
in longer routing paths and more bandwidth resource consumption.
Further, although the results of SSO and RF are similar in terms of
resource cost in each experiment, RF always has a higher delay cost
due to the longer routing path.

As shown in Figs. 9 and 10, OSIR consumes less resource costs
and delay costs for most SFC requests under different experiments.
The OSIR algorithm uses LSTM to extract the distribution of required
VNF, which can learn the changing of users’ service demands at the
current time. Then, when placing SFC requests and VNF instances, OSIR
considers the future reward through DRL and place VNF instances on
nodes, which can reduce the resource cost and the delay cost of more
SFC requests. However, TDRL, which is also DRL-based without other
special designs, cannot significantly reduce resource and delay costs.
Only in Fig. 10(a), the OSIR generates more delay cost than SPFF and
SPRM since SPFF and SPRM always place SFC requests on the shortest
path. However, it clearly shows that SPFF and SPRM increase resource
cost in Fig. 9. Further, in Fig. 6, the performances of both SPFF and
SPRM in total reward are worse than OSIR in all experiments. By
analyzing the CDF of both resource cost and delay cost, the OSIR can
optimize total reward by effectively reducing resource cost and delay
cost.
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Table 2
Execution time.
|𝑁𝑒| 10 30 100

OSIR 23.59 s 24.89 s 26.32 s
SSO 627.02 s 10408.66 s 127194.40 s
RF 1.52 s 1.56 s 1.87 s
SPFF 4.47 s 79.98 s 2902.08 s
SPRM 131.51 s 356.34 s 3530.15 s
TDRL 2.22 s 2.71 s 3.01 s

5.2.4. Execution time
The execution time of different algorithms in each experiment is

shown in Table 2.
The execution time of OSIR is mainly caused by the forward prop-

agation in the neural network. When the node number is small (|𝐍𝐞| =
10), it takes about half a minute to find the placement approach of 3997
SFC requests one by one. However, with the increasing node number,
the execution time of OSIR does not increase significantly.

Since RF is a greedy algorithm, it can place SFC requests quickly
under different experiments. Although it is the fastest among all al-
gorithms, its performance is far worse than OSIR and SSO on both
throughput and total reward, as shown in Fig. 6. SSO can reduce the
execution time of the algorithm [17] by directly solving the linear
constraints. However, its execution time is still the largest due to a
large amount of data. Moreover, with the increasing node number,
its execution time even grows exponentially. Therefore, when faced
with large-scale edge networks or dense graphs, the execution time of
SSO cannot be tolerated. SPFF can also figure out solutions quickly
on a small-scale edge network. However, with the increasing node
number, the execution time also grows exponentially. When |𝐍𝐞| =
30, its execution time has far exceeded OSIR. The execution time of
the SPRM also increases significantly as the number of nodes grows.
Moreover, the execution time of SPRM is longer than SPFF since the
greedy strategy in SPRM is more complicated than SPFF. Due to the
simple structure without other special designs in the TDRL, TDRL has
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a short execution time during testing, but it performs very poorly in all
experimental results.

6. Discussion

From the experimental results, we can see the effectiveness of OSIR.
The following issues deserved further investigations.

Instance Reuse in the Joint SFC Placement and Traffic Routing Problems:
We have divided the resource allocation in NFV into four typical prob-
lems in Section 2.2. Our problem focuses on online instance reuse in
a typical SFC placement problem. Therefore, in order to avoid routing
problems, the edge network is set up as fully connected. However, when
the edge network is partially connected, solving the problem of instance
reuse in joint SFC placement and routing problems will become an
important research topic.

Instance Management Cost: The management of the instance in-
cludes the start-up, maintenance, and release. We have discussed the
costs of start-up and release of instances in Section 3.1.1. Further, the
maintenance of the instance also requires maintenance costs. Since
the instance is supposed to be released immediately when there is no
running SFC request in it, the time to live of instances is usually short,
and the maintaining cost is usually very low. However, if the instance
is not released immediately, the maintenance cost of the instance may
also be worth discussing.

Reducing Training Time: As shown in Fig. 5, on 10 edge nodes,
OSIR performs better than all baselines after training of 5000 episodes.
Although the model of OSIR is trained offline and used for online
decision-making, how to reduce training time is still a question worth
discussing. A model-assisted method to accelerate training in DRL
is proposed [35], but it is hard to apply in an asynchronous DRL
algorithm, which may lead to non-converge. Transfer learning or meta
reinforcement learning may be a possible approach to reduce our
training time, but applying them is very complicated.
7. Conclusion

In this paper, to serve computation-intensive and latency-sensitive
services in MEC, the problem of online SFC placement with instance
reuse is proposed, and an OSIR algorithm is proposed to solve it. OSIR
can gain a tradeoff between operating costs and users’ QoE, which is
designed based on A3C to find the solution for SFC placement to obtain
the long-term cumulative reward. Further, a special SQN is designed
to extract the distribution of required VNF over time. The setting of
rewards in OSIR is based on our problem’s model, aiming to optimize
throughput, resource cost, and delay cost. Extensive experiments on
different edge networks with real-world data traces prove that the
OSIR can efficiently and effectively improve the long-term cumula-
tive reward by scheduling SFC requests and reusing VNF instances
intelligently. Our future work will mainly focus on implementing and
evaluating our algorithms on practical NFV platforms, e.g., OPNFV
Brahmaputra.
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