
TRANSACTIONS ON CLOUD COMPUTING 1

Pricing Model for Dynamic Resource
Overbooking in Edge Computing

Zhiqing Tang, Fuming Zhang, Xiaojie Zhou, Weijia Jia, Fellow, IEEE and Wei Zhao, Fellow, IEEE

Abstract—Edge Computing (EC) with cloud-like Quality of Service (QoS) can find its wide applications in various resource-constrained
smart cities where the resource requirements can be different during peak and off-peak periods. During off-peak periods, there are
often many resources that have been requested but not used, which can be reused to obtain higher profit. However, to the best of our
knowledge, there is no effective pricing model or overbooking mechanism in EC. To fill in this gap, a novel pricing model for dynamic
resource overbooking is proposed in this paper, specifically: 1) To meet the needs of different users in EC, methods of on-demand,
daily, auction, and the new spot billing are designed, in which resources can be overbooked. 2) An auction approach with pricing rule
and winner determination rule is designed for auction billing, which is proved to guarantee individual rationality, computational
efficiency, and truthfulness. 3) To make more use of the auction approach to utilize idle resources, a dynamic resource overbooking
mechanism is introduced, including a cancellation policy and a resource prediction method. The mechanism is validated with real-world
data-trace. Experimental results show that the dynamic resource overbooking mechanism maximizes the profit of edge nodes with a
high QoS Satisfaction ratio of on-demand and daily billing.

Index Terms—Edge computing, pricing model, resource overbooking, auction.

✦

1 INTRODUCTION

In recent years, due to the rapidly increasing number of
mobile devices, cloud computing, which is relatively far
from these devices, cannot meet applications that have strict
requirements for delay or mobility, such as vehicle networks
and wireless access networks [1], [2]. To compensate for
these weaknesses in cloud computing, the Edge Computing
(EC) [3] paradigm can play an important role. In EC, the
computation resources of cloud data centers are partially
offloaded to the decentralized edge nodes by deploying
the edge nodes at the edge of the network [2]. Compared
with cloud computing, decentralized edge nodes can not
only support the mobility of tasks [4], but also significantly
reduce delay and transmission cost while meeting the re-
source requirements of mobile tasks [5]. Besides, fulfilling
delay requirements, EC can effectively support domain-
specific large-scale distributed decision-making systems [6],
such as the intelligent transportation system in cities [7], etc.

However, the delay requirements of resource-consuming
applications may vary significantly in EC. Take the intelli-
gent transportation system as an example: real-time traffic
information processing, which has a distinct peak period,

• Corresponding author: Weijia Jia.
• Zhiqing Tang is with Institute of Artificial Intelligence and Future

Networks, Beijing Normal University, Zhuhai 519087, China. E-mail:
domain@sjtu.edu.cn

• Fuming Zhang and Xiaojie Zhou are with Department of Computer Sci-
ence and Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China. E-mail: {zhangfuming-alex, szxjzhou}@sjtu.edu.cn

• Weijia Jia is with Institute of Artificial Intelligence and Future Net-
works, Beijing Normal University, Zhuhai 519087, China and also with
Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-
HKBU United International College, Zhuhai 519087, China. E-mail:
jiawj@bnu.edu.cn

• Wei Zhao is with CAS Shenzhen Institute of Advanced Technology,
Shenzhen 518055, China. E-mail: zhao8686@gmail.com

requires a strict guarantee of low delay. On the other hand,
the emergency only takes a short time to be processed
with the exact delay requirement. Both of the above delay-
sensitive tasks are ideal scenarios for applying EC [7]. There-
fore, how to efficiently allocate limited resources among
multiple types of tasks is a critical issue in EC [8]. The
dynamic overbooking mechanism and pricing model are
proposed in this paper to solve the above problem. The
practice of renting idle resources again is called overbooking
[9], [10], which aims to minimize resource waste during off-
peak periods. Moreover, the pricing model provides proper
billing methods for regular rental and overbooking.

Existing research on the pricing model in EC mainly
focuses on homogeneous tasks and single billing model.
Bittencourt et al. [11] describe the pricing model in EC and
propose a general architecture. They discuss its components,
interfaces, and interactions but do not give a practical algo-
rithm. Zhang et al. [12] propose a hierarchical Stackelberg
game based pricing strategy to achieve high utility with a
3-layer model in EC. However, the task request submitted
by each user is the same. To fill in these gaps, a pricing
model including on-demand, daily, auction, and spot billing
methods is proposed. The first two billing methods are
designed for regular rental, while the latter two are designed
for overbooking. Compared with our previous work [13], a
new spot billing method is proposed. Unlike the auction
billing method, it has no maximum runtime limit. As long
as the bid is higher than the current server’s adjusted fee,
users’ tasks will be executed continuously, complementing
the auction billing method.

Among these four billing methods, the auction theory
has been extensively studied [14]. Jin et al. [15], [16] design
two auction approaches in EC. However, both of them are
based on homogeneous tasks. Wang et al. [17] consider het-
erogeneous tasks, but they aim to minimize the expenditure

TRANSACTIONS ON CLOUD COMPUTING 2

of users without considering the profit. Compared with the
current work, the proposed auction approach mainly has
the following improvements: 1) The heterogeneity of tasks
(buyers) and servers (sellers) is considered. 2) The servers
of one edge node are grouped to receive the bids from
tasks, and each server can accept multiple winning tasks.
3) Multiple resource requirements of tasks are taken into
consideration.

For overbooking, unlike in cloud computing, which has
been widely used to improve resource utilization [9], [10],
in EC, due to the heterogeneity of edge nodes and task
types, an overbooking mechanism that can meet multiple
needs is still in its infancy. Barbarossa et al. [18] propose a
strategy to overbook the computation and communication
resource based on the statistics of blocking events in mmW-
mobile edge computing. Slim et al. [19] propose a costless
service offloading strategy for distributed edge cloud con-
sidering resource overbooking. To efficiently overbook idle
resources while ensuring high Quality of Service (QoS) for
normal rental resource, the available resource needs to be
dynamically determined as accurately as possible. Moreno
et al. [9] and Imam et al. [20] predict the resource utilization
through a neural network and overbook the resource based
on predicted results. However, they do not regard Service
Level Agreement Violations (SLAV). To solve this problem,
Long Short-Term Memory (LSTM) [21] and residual net-
work [22] based predictors are used to predict resource
utilization supplemented by dynamic resource adjustment
mechanisms similar to TCP congestion control [23]. To fur-
ther improve the QoS satisfaction ratio, adaptive padding is
added to the resource predictors, and a cancellation policy is
introduced. Our experimental results show that the average
QoS satisfaction ratio with the enhanced method can reach
over 99.95%, and the total profit is increased by 7.82%.

Notably, this paper is an extended version of [13]. The
following changes have been made in this extended version:
1) A new billing method, spot billing method, has been
designed. The pricing model is further improved, and the
system can provide users with more flexible services, as
introduced in Subsection 2.2. 2) Algorithm 1 Pricing Rule
has been revised. Besides, Algorithm 1 is divided into two
parts as shown in Subsection 3.1, in which the candidate
assignment determination is divided into Algorithm 2. 3)
A new resource utilization predictor based on the residual
network has been adopted, which can solve the degradation
problem, making it easier for deep networks to train higher
accuracy. 4) An adaptive padding mechanism has been
added, further improving the prediction accuracy as shown
in Subsection 4.1. 5) A new algorithm, Algorithm 4 Cancella-
tion Policy, has been added as described in Subsection 4.2 to
restore the QoS satisfaction ratio from the next moment by
canceling some auction tasks, releasing and recycling the re-
source they occupy. 6) A larger-scale simulation experiment
has been conducted to help us better select hyperparameters
while verifying the algorithm’s effectiveness and redrew all
the experimental results. 7) More detailed data processing
and experimental settings have been added. And the main
notations have been listed in TABLE 1 for better readability.

To summarize, an efficient pricing model for dynamic
resource overbooking is proposed. The contributions are as
follows:

Different
User

Requests
(§2)

Request

Utilization

Prediction
(§4)

Resource Capacity of the Edge Node

Available
Resource

Overbooked
Resource
(§4)

Auction and
Spot Tasks
(§3)

On-Demand and
Daily Tasks

Fig. 1. Overview of the Pricing Model

1) A pricing model including on-demand, daily, auc-
tion, and spot billing methods is proposed, in which
the resource can be overbooked according to differ-
ent QoS requirements. A novel auction approach is
designed for auction billing by applying pricing and
winner determination rules and proving that the
approach guarantees individual rationality, compu-
tational efficiency, and truthfulness.

2) Novel resource prediction methods based on LSTM
and residual network are adopted, where an adap-
tive padding method and a threshold are used to
improve the prediction accuracy. Furthermore, the
dynamic resource overbooking mechanism, includ-
ing a cancellation policy and QoS satisfaction ratio
feedback based on the resource prediction, is intro-
duced.

3) The algorithms are validated with real-world data-
trace, and the experiment is scaled five times com-
pared with [13]. The experimental results show that
the auction approach can achieve desirable prop-
erties. In the meantime, the dynamic overbooking
mechanism improves the profit by 51.58% under the
premise of high QoS satisfaction ratio.

The remainder of this paper is organized as shown in Fig.
1. First, in Section 2, the system model is introduced, which
primarily includes edge nodes and user tasks. Different user
tasks are categorized into four billing methods, i.e., the on-
demand, daily, auction, and spot billing methods. Second,
for the auction billing in the pricing model, an online
auction approach is proposed and analyzed in Section 3,
which includes a pricing rule and a winner determination
rule. Third, based on the four billing methods, the dynamic
resource overbooking mechanism is illustrated in Section
4 to overbook resources as much as possible, where the
resource utilization prediction method and the cancellation
policy are used to improve prediction accuracy. Finally, the
experimental settings and results are described in Section 5
and the paper is concluded in Section 6.

2 MODELING AND PROBLEM FORMULATION

In this section, the system model for EC is illustrated in
2.1, which includes mobile tasks and edge nodes. Then,

TRANSACTIONS ON CLOUD COMPUTING 3

the pricing model consisting of on-demand, daily, auction,
and spot billing methods is introduced in 2.2. Finally, the
problem is formulated in 2.3.

2.1 System Model
A three-layer Mobile-Edge-Cloud architecture is considered
[2], [24]. Edge service providers gain revenue by leveraging
the computation resources of edge nodes to tasks from mo-
bile users [25]. Agencies with various requirements of delay
and computation resources can rent these resources. Take
the edge-assisted intelligent transportation system as an ex-
ample [26], re-planning of traffic routes is a delay-sensitive
task that requires long-term computation resources. Unex-
pected traffic accident information processing is also delay-
sensitive but requires short-term computation resources.
Moreover, road surveillance video processing is not delay-
sensitive but needs more computation resources. The main
notations have been listed in TABLE 1 for better readability
compared with our previous work [13].

It is assumed that there is a set of heterogeneous and
distributed edge nodes N. For each edge node n ∈ N,
it consists of a set of physical servers Sn, and S =
{S1,S2, ...,S|N|} is used to denote all servers. The num-
ber of servers per edge node and the resource capacity
of each server can be different. The resource capacity of
server sn,j ∈ Sn is denoted as scxn,j = {sccn,j , s

cm
n,j}, where

x ∈ {c,m} refers to the capacity of a certain resource.
When x = c, it indicates the CPU resource. Otherwise when
x = m, it indicates the memory resource.

In EC, mobile users generate tasks and offload them
to the edge nodes. The set of tasks generated at time t
is denoted as B(t). These tasks are divided into delay-
sensitive and computation-oriented tasks. The former needs
to be processed in time, while the latter requires a lot of
computation resources. Specifically, the i-th task is denoted
as bi(t) = {tsi (t), tei (t), ri(t), vi(t), ei(t)}, where tsi (t) is the
estimated start time, tei (t) is the estimated end time, ri(t) is
the resource request, vi(t) is the valuation, and ei(t) is the
expected billing method. For each ri(t) = {ri(t).c, ri(t).m},
ri(t).c and ri(t).m are the requests of CPU and memory
resource, respectively. vi(t) = {vci,n(t), vmi,n(t)|n ∈ N} con-
tains the valuation of CPU and memory resource for each
edge node. The valuation of each task is different due to
the heterogeneity of the edge nodes [27]. Besides, the task
will choose not to bid on too distant edge nodes by setting
the valuation of the corresponding edge nodes to -1. The
details of the expected billing method ei(t) are explained in
the next subsection.

2.2 Pricing Model
As mentioned in the previous subsection, the edge nodes
could profit by renting out computation resources. Gen-
erally, the edge nodes can rent out as many resources as
the servers own. However, as shown in Fig. 2 from the
data set [28], [29], the actual resource utilization is lower
than the resource allocated and far lower than the resource
capacity. To make more use of the resource, the allocated
but unused resource is submitted for a second sale, called
resource overbooking [9]. As the intelligent transportation
system in cities mentioned above, most of the resources

TABLE 1
Notations

n Edge node (n ∈ N)
sn,j jth server of edge node n
scxn,j Resource capacity of sn,j

t Time slot
B(t) Mobile task set at time t
bi(t) ith task at time t (bi ∈ B(t))
tsi (t), t

e
i (t) Estimated start and end time of bi(t)

ri(t) Resource request of bi(t)
vci,n(t), v

m
i,n(t) CPU and memory valuation for node n of bi(t)

ei(t) Expected billing method of bi(t)
Ln,j(t) QoS satisfaction level of sn,j

sbn,j(t), s
s
n,j(t) Resource overbooked by auction and spot billing

son,j(t), s
d
n,j(t) Resource rented by on-demand and daily billing

σi(t) Task assignment of bi(t)
Tb Time limit for tasks using auction billing
san,j(t),A(t) (Adjusted) Asking price of sn,j

wn,j
total(t) Total revenue of sn,j

dn,j
L (t) Discount rate of sn,j

Cn,j(t) Cost of sn,j

sun,j(t),U(t) Unused resource of sn,j

spn,j(t) Predicted resource usage (on-demand, daily)
R Total profit of the system
Cb(t),Cs(t) Candidate task set and server set at time t
σc(t) Candidate assignment at time t
Pb

c(t),P
s
c(t) Payment of candidate task set and server set

Wb(t),Ws(t) Winning task set and server set at time t
σw(t) Winning assignment at time t
Pb

w(t),Ps
w(t) Payment of winning task set and server set

thex Extra threshold of available resource
Ba(t) Assigned auction tasks with end time after t+ 1

sfn,j(t) Resource will be freed before t+ 1 of sn,j

srn,j(t) Resource need to be recycled before t+ 1 of sn,j

Bc(t) Auction tasks to be cancelled at time t

su
′

n,j(t) Adjusted unused resource of sn,j at time t

thup, thlo Upper and lower thresholds of available resource
sa0
n,j Base asking price of sn,j

R
es

o
u

rc
e

Sampling Moments

0

2000

4000

6000

8000

10000

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7
9

4
4
2

5
0

5

5
6

8

6
3

1

6
9

4

7
5

7

8
2

0

8
8

3

9
4

6

Capacity Request Utilization

(a) CPU

R
es

o
u

rc
e

Sampling Moments

0

2000

4000

6000

8000

10000

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7
9

4
4
2

5
0

5

5
6

8

6
3

1

6
9

4

7
5

7

8
2

0

8
8

3

9
4

6

Capacity Request Utilization

(b) Memory

Fig. 2. Data Set Overview

allocated to traffic information processing tasks are unused
during off-peak periods, which can be used for a second sale
through the auction. Many cloud service providers currently
provide different billing methods, including Amazon AWS
[30], Microsoft Azure [31], etc., but flexible billing methods
are only adopted in cloud computing. In EC, most ser-
vice providers currently provide billing by the number of
requests. Therefore, applying the pricing model proposed
in this paper to EC can effectively solve the problem of
resource utilization of edge nodes and improve revenue.

The pricing model is designed for users to offload tasks
to the edge nodes, which includes four billing methods,
defined as ei(t) ∈ {on-demand, daily, auction, spot}. The
details are described as follows.

• On-Demand(OD): This billing method is primarily

TRANSACTIONS ON CLOUD COMPUTING 4

for those delay-sensitive tasks with uncertain start
time or processing time, e.g., the unexpected traffic
accident information processing in EC. It charges a
considerable fee while providing a fairly high QoS
satisfaction ratio.

• Daily: This billing is designed for tasks that are
delay-sensitive but with determined and relatively
long processing time, e.g., the re-planning of traffic
routes in EC. In such a billing method, computation
resources are reserved, and bills are paid daily. Like
the above billing method, it provides a high QoS
satisfaction ratio for high fees.

• Auction: This billing serves to delay insensitive tasks
which require many computation resources, e.g.,
road surveillance video processing in EC. The ad-
vantage is that it can provide the tasks’ resources at
a lower price. However, tasks billed in this way have
runtime limits and will be evicted when the resource
is depleted.

• Spot: It has some similarities with the auction billing
method. The main difference is that tasks can be
executed as long as the price does not surpass its
bid. Under the dynamic price adjustment based on
QoS satisfaction ratio feedback, this is a proper com-
plement to the auction billing.

Compared with our previous work [13], the new billing
method, spot billing, has been designed to further improve
the pricing model and the system can provide users with
more flexible services. Users can flexibly choose the billing
methods according to different preferences of tasks’ require-
ments. As mentioned in the above billing methods, a high
QoS satisfaction ratio is provided for tasks which adopt on-
demand or daily billing method. Since tasks in EC have an
expected computation time or are expected to be completed
as soon as possible, the QoS of tasks is closely related
to the computation time. Besides, the computation time is
proportional to SLAV [4], [32]. Then, the QoS satisfaction
ratio L(t) = {Ln,j(t)|sn,j ∈ N} of each server can be
defined as [4], [32], [33]:

Ln,j(t) = min

{
scxn,j − sobx

n,j (t)

snrxn,j (t)
, 1|x ∈ {c,m}

}
, (1)

where scxn,j is the resource capacity, sobx
n,j (t) is the total over-

booked resource and snrxn,j (t) is the normally rented resource,
i.e., sobx

n,j (t) = sbxn,j(t)+ssxn,j(t) and snrxn,j (t) = soxn,j(t)+sdx
n,j(t),

where sbxn,j(t) and ssxn,j(t) denote the resource overbooked
by auction and spot billing of sn,j , respectively. soxn,j(t) and
sdx
n,j(t) are the resources rented by on-demand and daily

billing with QoS satisfaction of sn,j , respectively. sbxn,j(t) is
obtained as:

sbxn,j(t) =
∑

t′∈{t′|(bi(t′)|tsi (t′)≤t≤tei (t
′),σi(t′)={n,j})}

rxi (t
′),

where σi(t) denote the assignment of the task bi(t) at time
t, e.g., σi(t) = {n, j} means task bi(t) is assigned to sn,j .
Therefore, the above formula indicates that at time t, the
resource of server sn,j overbooked by auction is obtained
by summing the resource requests of those tasks assigned
to the server sn,j and whose start time is less than or equal

to t and end time is greater than or equal to t. As mentioned
in the auction billing method, if ei(t) is auction, the task can
last at most Tb time slots, which is defined as:

tei (t) =

{
tsi + Tb, tei (t)− tsi (t) > Tb

tei (t), tei (t)− tsi (t) ≤ Tb
.

2.3 Problem Formulation

Our goal is to maximize the profit of the edge nodes through
overbooking with a high QoS satisfaction ratio for those
on-demand and daily tasks in EC. Moreover, the profit is
defined as the revenue minus the cost intuitively.

The revenue of edge nodes is the sum of the payments
of all tasks. For task bi(t), if the conventional billing method
ei(t) is on-demand billing, its payment depends on its CPU
and memory demands, which is defined as:

wo
i (t) =

 ∑
x∈{c,m}

rxi (t)× wo
x

× |tei (t)− tsi (t)|,

where wo
x, x ∈ {c,m} is the on-demand price of correspond-

ing resource. tsi (t) and tei (t) are the start time and the end
time of bi(t), respectively.

In addition, if bi(t) is a daily task, the payment is defined
as:

wd
i (t) =

 ∑
x∈{c,m}

rxi (t)× wd
x

× td,

where wd
x, x ∈ {c,m} is the price of daily billing of the

corresponding resource, and td is the amount of days.
Generally, the prices of on-demand and daily tasks are fixed
as constants [30].

Furthermore, if bi(t) is an auction task, the payment is
defined as:

wa
i (t) =

∫ tei (t)

tsi (t)

 ∑
x∈{c,m}

rxi (t)× pxi (t)

 dt,

where pxi (t), x ∈ {c,m} is the price of corresponding re-
source which is determined through the auction approach
described in Section 3.

Otherwise, if bi(t) is a spot task, the payment is defined
as:

ws
i (t) =

∫ tei (t)

tsi (t)

 ∑
x∈{c,m}

rxi (t)× ws
x ×1[ws

x > sax
n,j(t)]

)
dt,

(2)
where ws

x, x ∈ {c,m} is the price of corresponding resource
in the spot billing method. The ratio of user’s bid to the
asking price of the server is fixed. Besides, 1[·] is Iverson
bracket, whose value is equal to 1 when the condition in the
bracket is satisfied. Otherwise it is 0. sax

n,j(t) is the asking
price of corresponding resource. A(t) = {san,j(t)|sn,j ∈ S}
is used to represent the set of asking price for all servers,
where san,j(t) = {sax

n,j(t)|x ∈ {c,m}} is the asking price of
sn,j at t. Eq. (2) states that the user will be billed only if the
user’s bid is higher than the asking price of the server.

TRANSACTIONS ON CLOUD COMPUTING 5

Therefore, the total revenue of sn,j is defined as:

wn,j
total(t) = dn,jL (t)×

 ∑
t∈{t|ei(t)=OD}

wo
i (t)

+
∑

t∈{t|ei(t)=daily}

wd
i (t)

+
∑

t∈{t|ei(t)=auction}

wa
i (t)

+
∑

t∈{t|ei(t)=spot}

ws
i (t), σi(t) = {n, j}

(3)
where dn,jL is a discount rate. While aiming to maximize
the profit with overbooking, the edge nodes may violate
the QoS of on-demand and daily tasks. To ensure the high
QoS satisfaction ratio of on-demand and daily billing, the
revenue has to be reduced to punish such violation with a
discount, which is defined as the SLA [34]:

dn,jL (t) =


1, Ln,j(t) ≥ 99.95%

0.9, 99% ≤ Ln,j(t) < 99.95%

0.75, 95% ≤ Ln,j(t) < 99%

0, Ln,j(t) < 95%

.

Besides, the cost of the servers mainly consists of the
energy consumption of CPU and memory utilization [35],
which is defined as:

Cn,j(t) = pe ×

 ∑
x∈{c,m}

(scxn,j − sux
n,j(t))× hx

 ,

where pe is the unit price of electricity, hx, x ∈ {c,m} is the
amount of power consumed per unit. Unused resources are
denoted by sux

n,j(t), and U(t) = {sun,j(t)|sn,j ∈ S} is used to
represent the set of unused resources for all servers, where
sun,j(t) = {sux

n,j(t)|x ∈ {c,m}} is the unused resource for the
server sn,j at t, which is obtained as:

sux
n,j(t) =scxn,j − spx

n,j(t)− (sbxn,j(t)− ssxn,j(t)), (4)

where spx

n,j(t) is the predicted resource utilization of the
tasks billed in on-demand and daily methods. The details
of the resource utilization prediction methods are explained
in Subsection 4.1.

To summarize, the problem is formulated as:

Problem 1.

maxR =
∑

sn,j∈S

T∑
t=0

(
wn,j

total(t)− Cn,j(t)
)
, (5)

s.t. soxn,j(t) ≤ sux
n,j(t) ∀sn,j ∈ S,∀x ∈ {c,m}.

In Problem 1, the prices of on-demand and daily billing
are fixed. The bid price of spot billing is related to the
asking price of the server. However, the price of an auc-
tion is dynamically adjusted, and the overbooking ratio
is also determined online. To solve Problem 1, an online
auction approach and a dynamic overbooking mechanism
are needed to overbook the resource as much as possible
with a high QoS satisfaction ratio of on-demand and daily
billing. Details of the online auction approach and dynamic
overbooking mechanism are described in Section 3 and 4,
respectively.

Algorithm 1
Pricing Rule

Algorithm 2
Candidate Assignment

Determination

Algorithm 3
Winner Determination

Rule

Candidate
Set and PriceAuction

Tasks

Winner Set,
Assignment, and Price

Candidate SetCall

Fig. 3. Overview of the Auction

3 ONLINE AUCTION APPROACH

In this section, the online auction approach is introduced in
3.1, which includes the pricing rule and the winner deter-
mination rule. Then, the approach is theoretically analyzed
in 3.2. The overview of the auction is shown in Fig. 3.
When the auction tasks arrive, the auctioneer first collects
the tasks and servers’ bids and then calls Algorithm 1 to
get the pricing and candidate sets. Algorithm 1 first obtains
the candidate sets of the tasks and the servers by calling
Algorithm 2 according to the task bids and the remaining
resources of servers. Then, Algorithm 1 further determines
the auction price. After that, Algorithm 3 obtains the final
winner sets of tasks and servers according to the candidate
sets and pricing.

Compared with our previous work [13], Algorithm 1
Pricing Rule has been revised. After determining the can-
didate assignments among the servers and the tasks with
the corresponding prices, the resource occupied by the pre-
allocated auction tasks should be restored, which is not well
considered in the previous version. Besides, Algorithm 1 is
divided into two parts, in which the candidate assignment
determination is divided into Algorithm 2.

3.1 Pricing Rule and Winner Determination Rule

A trusted third party, referred to as the auctioneer, must
administer the auction between mobile tasks and servers in
EC. The auctioneer first collects bids and the asking prices
from the tasks and servers, respectively. Then it uses the
pricing rule to determine the candidate assignments among
the servers and the tasks with the corresponding prices.
After that, the winner determination rule determines the
winning bids for each server from the candidate assign-
ments with the corresponding prices.

The auction approach should satisfy the following three
properties [15], [17]:

• Individual rationality: No winning buyer is charged
more than its bid, and no winning seller is rewarded
less than its asking price.

• Computational efficiency: The auction outcome is
tractable within polynomial time complexity.

• Truthfulness: The bid submitted by each mobile
device should be truthful, i.e., no buyer can improve
its utility by submitting a bid different from its true
valuation.

To satisfy these properties, the online auction ap-
proach is designed based on McAfee’s mechanism [36],
which achieves individual rationality and truthfulness. In
McAfee’s mechanism, one seller can only accept one buyer,

TRANSACTIONS ON CLOUD COMPUTING 6

Algorithm 1 Pricing Rule
Input: A(t),B(t),U(t)
Output: Cb(t),Cs(t),P

b
c(t),P

s
c(t)

1: Set Cb(t),Cs(t), σc(t),P
b
c(t),P

s
c(t),C

p
b(t) = ∅

2: for n ∈ N do
3: Set Vn = {bi(t)|vxi,n(t) ̸= −1},Wn = {sn,j},
4: for x ∈ {c,m} do
5: Call Algorithm 2 to get candidate assignment
6: if |Cbx

n (t)| < |Vi| and |Csx
n (t)| < |Wi| then

7: Calculate P x(t) by Eq. (7)
8: end if
9: if Sax

n,|Csx
n (t)|(t) < P x(t) < vx

|Cbx
n (t)|,n

then

10: P bx
n (t) = P sx

n (t) = P x(t)
11: else
12: for bi(t) ∈ Cbx

n (t) do
13: if σi

c(t) = {n, |Csx
n (t)|} then

14: Cbx
n (t) = Cbx

n (t)/{bi(t)} and Cpx

b (t) =
Cpx

b (t)
⋃
{bi(t)}

15: end if
16: end for
17: Csx

n (t) = Csx
n (t)/{sn,|Csx

n (t)|}
18: P bx

n (t) = max{vxi,n(t)|bi(t) ∈ Cpx

b (t)} and
P sx
n (t) = P bx

n (t)
19: end if
20: end for
21: Cb

n(t) = Cbc
n (t)

⋂
Cbm

n (t) and Cs
n(t) =

Csc
n (t)

⋂
Csm

n (t)
22: for sn,j ∈ Sn do
23: Reset suc

n,j(t) and sum
n,j(t)

24: end for
25: end for
26: Cb(t) = Cb

1(t)
⋃
Cb

2(t)...
⋃
Cb

|N|(t) and Cs(t) =
Cs

1(t)
⋃
Cs

2(t)...
⋃
Cs

|N|(t)

27: Pb
c(t) = {Pb

n(t)|n ∈ N} and Ps
c(t) = {Ps

n(t)|n ∈ N}
28: end

which is not suitable in the EC scenario, while our auc-
tion approach, consisting of a pricing rule and a winner
determination rule, can support one seller trading with
multiple buyers. Similar to McAfee’s mechanism, our auc-
tion approach is individually rational and truthful, and the
theoretical analysis is shown in Subsection 3.2. In addition,
the pseudocode of the pricing rule and winner determina-
tion rule can be found in Algorithm 1 and Algorithm 3,
respectively.

In Algorithm 1, the auctioneer first sorts the bids and
the asking prices. Then the auctioneer determines the can-
didate assignments according to the sorted results and the
remaining capacity of each server. After that, the price of
each task and server is determined. Some notations used in
Algorithm 1 are introduced as follows. U(t) is the unused
resource, and A(t) is the set of asking prices for all servers.
Cb(t) and Cs(t) are the sets of candidate tasks and servers,
respectively. σc(t) is the candidate assignment. Pb

c(t) is the
set of payments of the buyer, and Ps

c(t) is the set of income
of the seller. Cp

b(t) is the set of prices for candidate tasks.
As shown in Algorithm 1, servers of each edge node

are grouped to receive bids. Vn and Wn are the sets of
received bids and servers for edge node n, respectively.

Algorithm 2 Candidate Assignment Determination

Input: Vn,Wn,C
b
n(t),C

s
n(t), σc(t)

Output: Cb
n(t),C

s
n(t), σc(t)

1: Sort Vn to Vn in descending order of vxi,n(t), and sort
Wn to Wn in ascending order of sax

n,j(t)
2: for sn,j ∈ Wn do
3: for bi(t) ∈ Vn do
4: Calculate b

{n,j}
i (t) by Eq. (6)

5: if b{n,j}i (t) = 1 then
6: Cbx

n (t) = Cbx
n (t)

⋃
{bi(t)} and Csx

n (t) =
Csx

n (t)
⋃
{sn,j}

7: σi
c(t) = {n, j}

8: Vn = Vn/{bi(t)}
9: sux

n,j(t) = sux
n,j(t)− rxi (t)

10: else
11: break
12: end if
13: end for
14: end for
15: end

As shown in line 5, Algorithm 2 is called to determine
candidate assignments. In Algorithm 2, firstly, the received
bids and asking prices of each resource type are sorted in
descending and ascending orders with results Vn and Wn,
respectively. For each task bi(t), the b

{n,j}
i (t) is defined as:

b
{n,j}
i (t) =

∏
x∈{c,m}

1[vxi,n(t) ≥ sax
n,j(t)]× 1[rxk(t) ≤ sux

n,j(t)].

(6)
As shown in lines 5 - 9, if b{n,j}i (t) = 1, it means that the
bid of task bi(t) is larger than the asking price of server
sn,j , and the remaining capacity of sn,j is also larger than
the request resource of bi(t) for both CPU and memory
resource, then bi(t) can be assigned to sn,j . The task bi(t)
and server sn,j are added to the candidate assignment sets
Cbx

n (t) and Csx
n (t) of n with resource type x, respectively.

Then the assignment σc(t) is updated, task bi(t) is removed
from the set of sorted tasks Vn, and the available resource
sun,j(t) is updated.

After this step, the price P(t) is determined in lines 7 -
20 in Algorithm 1. If there are unassigned bids and servers,
the pricing of each resource type P(t) = {P x(t)|x ∈ {c,m}}
is calculated based on McAfee’s mechanism as [36]:

P x(t) =
vx
|Cbx

n (t)|+1,n
(t) + sax

n,|Csx
n (t)|+1

(t)

2
. (7)

If P x(t) is between Sax

n,|Csx
n (t)|(t) and vx

|Cbx
n (t)|,n

, the price

charged for bid P bx
n (t) and the price rewarded to the server

P sx
n (t) are set to P x(t) [36]. Otherwise, all the assigned bids

of the |Ci
s(t)|-th server are cancelled, and the price is set as

the highest bid of the |Cn
s (t)|-th server. As shown in line

12, if task bi(t) is in the candidate assignment sets of n, it
means that bi(t) meets both the requirements of CPU and
memory resource, and then bi(t) is added to the assignment
set Cb

n(t). After restoring the resource occupied by the pre-
allocated auction tasks, the output is obtained as shown in
lines 27 - 28.

Based on the pricing rule, the candidate bids with the
corresponding prices P bx

n and P sx
n are determined. Then

TRANSACTIONS ON CLOUD COMPUTING 7

Algorithm 3 Winner Determination Rule

Input: A(t),B(t),U(t),Cb(t),Cs(t),P
b
c(t),P

s
c(t)

Output: Wb(t),Ws(t), σw(t),P
b
w(t),P

s
w(t)

1: Set Wb(t),Ws(t), σw(t),P
b
w(t),P

s
w(t) = ∅, and calcu-

late wn,j
p (t) by Eq. (8)

2: Sort Cs(t) to S in ascending order of wn,j
p

3: for sn,j ∈ S do
4: Calculate wi

p(t) by Eq. (9)
5: Sort Cb

n(t) to Cn
b in descending order of wi

p(t)
6: Set Cn

b = Cn
b −Wb(t)

7: for bi(t) ∈ Cn
b do

8: if suc
n,j(t) ≥ rc

i(t) and sum
n,j(t) ≥ rm

i (t) then
9: σi

w(t) = {n, j} and σw(t) = σw(t)
⋂
{σi

w(t)}
10: Wb(t) = Wb(t)

⋂
{bi(t)} and Ws(t) =

Ws(t)
⋂
{sn,j}

11: Pb
w(t) = Pb

w(t)
⋂
{Pb

i (t)|Pb
i (t) ∈ Pb

c(t)} and
Ps

w(t) = Ps
w(t)

⋂
{Ps

n(t)|Ps
n(t) ∈ Ps

c(t)}
12: suc

n,j(t) = suc
n,j(t)− rc

i and sum
n,j(t) = sum

n,j(t)− rm
i

13: end if
14: end for
15: end for
16: end

the winner determination is introduced in Algorithm 3. In
Algorithm 3, Wb(t), Ws(t) are the sets of winning tasks and
servers, respectively. σw(t) is the winning match between
tasks and servers. In the winner determination, as shown in
line 2 and line 5, the auctioneer first sorts servers and bids
by a weighted sum of prices as follows:

wn,j
p (t) = αp × sac

n,j(t) + βp × sam
n,j(t), (8)

wi
p(t) = αp × vkc

n (t) + βp × vkm
n (t), (9)

where αp and βp control the weights. Then, the winning
bid is determined from the candidate sets as shown in lines
7 - 14. If the server sn,j still has enough resource capacity,
then task bi(t) is assigned to it. Besides, when the winning
match σw(t) is updated, the sets of winning tasks Wb(t) and
servers Ws(t) are updated with the corresponding prices.
After that, as shown in line 12, the sun,j(t) is updated.

3.2 Theoretical Analysis

In this subsection, the auction approach is proved to hold
the properties of computational efficiency, individual ratio-
nality, and truthfulness.

Theorem 1. The proposed auction approach achieves the individ-
ual rationality for each bid.

Proof. In Algorithm 1, there are two cases for task bi(t) to be
assigned as a buyer candidate and for server sn,j to become
a seller candidate.

• Sax

n,|Csx
n (t)|(t) < P x(t) < vx

|Cbx
n (t)|,n

(t): In this case,
task bi(t) must have an actual bid price vi(t) that
vxi,n(t) ≥ vx

|Cbx
n (t)|,n

(t). due to the descending order
in the set of sorted tasks Vn. So that vxi,n(t) ≥
vx
|Cbx

n (t)|,n
(t) > P x(t). Moreover, the server must

have an asking price sax
n,j(t) ≤ sax

n,|Csx
n (t)|(t) due

to the ascending order in the set of sorted servers

Wi, so each asking price of servers satisfies that
sax
n,j(t) ≤ sax

n,|Csx
n (t)|(t) < P x(t).

• Otherwise, P x(t) /∈ [sax

i,|Csx
n (t)|(t), v

x
|Cbx

n (t)|,n
(t)]. In

this case, the price is set to max{vxi,n(t)|bi(t) ∈
Cp

b}. For each task bi(t), it can be easily ob-
tained that vxi,n(t) ≥ vx

|Cbx
n (t)|,n

(t) > P x(t).
And for each server sn,j , it can be obtained that
sax
n,j(t) ≤ sax

n,|Csx
n (t)|(t). In addition, it is obvious

that sax

n,|Csx
n (t)|(t) ≤ max{vxi,n(t)|bi(t) ∈ Cp

b}. So
sax
n,j(t) ≤ max{vxi,n(t)|bi(t) ∈ Cp

b}.

Therefore, each buyer assigned in Algorithm 1 is never
charged a price higher than its bid. In contrast, each seller
assigned is rewarded a payment no less than its asking price,
ensuring individual rationality for buyers and sellers.

Theorem 2. The proposed auction approach is computationally
efficient.

Proof. To analyze the time complexity, |S|, |B(t)|, and |N|
are used to denote the total number of servers, the number
of tasks, and the number of edge nodes, respectively. To
implement Algorithm 1, for each edge node and each re-
source type, firstly, the tasks and the servers are sorted with
a time complexity O(|B(t)| log |B(t)|) and O(|S| log |S|),
respectively. Then, the time complexity for Algorithm 2 is
O(|S||B(t)|). The time complexities of obtaining P.x and
pricing are O(1) and O(|B(t)|), respectively. In total, the
time complexity of Algorithm 1 is O(|N||B(t)| log |B(t)|) +
O(|N||S| log |S|) +O(|N||S||B(t)|).

In Algorithm 3, the servers are sorted with time com-
plexity O(|S| log |S|). Then, within the first for-loop, the
bids are sorted with time complexity O(|B(t)| log |B(t)|),
and the time complexity of winning assignment is
O(|N||B(t)|). In total, Algorithm 3 has a time complexity of
O(|S|(|S| log |S|+ |B(t)| log |B(t)|+ |N||B(t)|)). Therefore,
the overall time complexity is polynomial.

Theorem 3. The proposed auction approach is truthful.

We should prove that each mobile task will honestly
submit all of its actual costs to demonstrate the truthfulness.
The proposed mechanism is truthful if and only if the fol-
lowing two conditions are satisfied [17], [37]: 1) the winner
determination algorithm is monotonic, and 2) each winning
bid pays the critical value. The definitions of monotonicity
and critical value are described as follows:

Definition 1. Monotonicity: For each task bi1(t), if bi1(t)
wins, then bi2(t) also wins, where the corresponding bids of
bi1(t) and bi2(t) are vi1(t) and vi2(t) = vi1(t) + ϵ(ϵ > 0),
respectively.

Definition 2. Critical Value: For each task bi(t), there is a
critical value P b

i (t). If the bid of bi(t) declares a cost that is
not larger than P b

i (t), it must win. Otherwise, it will lose.

Lemma 1. The winner determination process in Algorithm 3 is
monotonic.

Proof. Assume that bik(t) is one of the winning tasks de-
termined in the k-th step of Algorithm 3, which means
k − 1 tasks have won in the previous k − 1 steps. Let
(bi1(t), bi2(t), ..., bik(t)) be the list of the winning tasks that

TRANSACTIONS ON CLOUD COMPUTING 8

have been determined in the first k steps. If bik(t) was re-
placed by another task, e.g., bij (t), where the corresponding
bids of bik(t) and bij (t) are vik(t) and vij (t) = vik(t)+σ(σ >
0), respectively. According to Algorithm 3, bij (t) must win
in the k-th step or even earlier step. As a result, the auction
approach is monotonic.

Lemma 2. The winning bid in Algorithm 3 pays the critical
value.

Proof. It is assumed that task bil(t) wins its bid for server
sn,j in the l-th step of Algorithm 3. In this case, the payment
of bil(t) is set to P b

n(t). For γ > 0, another bid with
submitted price vil(t) = P b

n(t) + γ would win, because its
cost per unit resource must be higher than the valuation of
bil(t). But the bid vil(t) = P b

n(t) − γ will not win, as its
valuation must be lower than the valuation of task bil(t).
Hence, the above lemma is proved.

According to the above analysis, the following theorem
can be easily obtained through Lemmas 1, and 2 [17], [37].
Hence, the theorem is proved.

The auction approach solves the pricing of the resource
of auction billing while guaranteeing the individual ratio-
nality, computational efficiency, and truthfulness. Further-
more, based on the pricing model consisting of the auction
and three other billing methods, the unused resource can be
overbooked to achieve more profit. The dynamic overbook-
ing mechanism is described in the next section.

4 DYNAMIC OVERBOOKING MECHANISM

In this section, the dynamic overbooking mechanism based
on resource utilization prediction and QoS satisfaction ratio
feedback is presented. The resource utilization prediction
with deep neural networks, cancellation policy, and the
dynamic overbooking mechanism is presented in 4.1, 4.2
and 4.3, respectively.

4.1 Resource Utilization Prediction
The neural network is used to make resource utilization
predictions, including the RNN and CNN. The motivation
behind the RNN is to make full use of the sequentiality
of the information, i.e., the time-sequential resource utiliza-
tion. An LSTM [21] based resource utilization predictor is
proposed whose architecture is shown in Figure 4(a). The
network is composed of two LSTM layers and one output
layer.

Furthermore, inspired by the residual network frame-
work [22], another predictor is implemented [22], contain-
ing 14 convolution layers, as shown in Figure 4(b). Each
convolution layer is followed by batch normalization and a
non-linear activation layer. There are three residual blocks
in this network architecture, marked in blue, green, and red
from top to bottom. A dropout layer follows each of these
three residual blocks. The network ends with a 2-way fully-
connected layer. As Figure 4(b) shows, shortcut connections
are inserted in the network. The identity shortcuts can be
directly used when the input and output are of the same
dimensions (solid line shortcuts in the figure). An additional
convolution is performed when the dimensions increase or
decrease (dotted line shortcuts in the figure), followed by

𝑥1

𝑥2

𝑥3

𝑥4

𝑥𝑡

𝑦𝑡

Input LSTM LSTM

Linear

Output

(a) LSTM based Predictor

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 8

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 8

fc, 2

input

(b) Residual Network based Predictor

Fig. 4. Architecture of Different Predictors

a batch normalization. Compared with the previous LSTM
based network [13], the shortcut connections introduced by
the residual network can solve the degradation problem,
making it easier for deep networks to train higher accuracy.

However, when calculating the number of unused re-
sources based on the predicted resource utilization and then
overbooking this part of the resource, some inaccurate pre-
diction result will cause overbooking of too much resource,
which will lead to the decline of the QoS satisfaction ratio for
those on-demand and daily tasks. To solve this problem, the
following two solutions are proposed. On the one hand, the
adaptive padding method is used to calculate the deviation
between the predicted value and the actual value in the
past few time slots [38]. We add these deviations together
and compensate for the current prediction result. Since the
goal is to avoid excessive overbooking as much as possible,
when accumulating deviations, only those cases where the
predicted value is less than the actual value are counted.
On the other hand, an extra hyper-parameter thex is set,
which is used to adequately reduce the predicted unused
resource for each server at each time slot. The new adaptive
padding mechanism can further improve the prediction
accuracy. Since the neural network predictor is pre-trained,
it cannot correct the wrong predictions. The introduction
of this mechanism can appropriately correct the prediction
error compared with our previous work [13].

With the adaptive padding method and the hyper-
parameter thex, we still cannot ensure there is no excessive
overbooking. To restore the declined QoS Satisfaction ratio
of on-demand and daily tasks caused by the inaccurate
prediction of resource utilization, the cancellation policy

TRANSACTIONS ON CLOUD COMPUTING 9

for auction tasks is designed in Algorithm 4 based on our
previous work [13]. The details are described in the next
section.

Algorithm 4 Cancellation Policy
Input: B(t)
Output: Bc(t)

1: Set Bc(t) = ∅
2: for sn,j ∈ N do
3: Calculate sfn,j(t) and srn,j(t) by Eq. (10) and Eq. (11),

respectively
4: Set Ba(t) = {bi(t′)|tei (t′) > t+ 1, σt′{i} = {n, j}}
5: Calculate wi

r(t) by Eq.(12), and sort Ba(t) to Ba in
ascending order of wi

r(t)
6: for bi(t′) ∈ Ba do
7: if src

n,j(t) < 0 and srm
n,j(t) < 0 then

8: src
n,j(t) = src

n,j(t) + rc
i(t

′) and srm
n,j(t) = srm

n,j(t) +
rc
i(t

′)
9: Ba = Ba/{bI(t′)} and Bc(t) = Bc(t)

⋃
{bi(t′)}

10: else
11: break
12: end if
13: end for
14: for x ∈ {c,m} do
15: Sort Ba(t) to Ba in ascending order of rxi (t)
16: for bi(t′) ∈ Ba do
17: if srxn,j(t) < 0 then
18: srxn,j(t) = srxn,j(t) + rxi (t

′)
19: Ba = Ba/{bi(t′)} and Bc(t) =

Bc(t)
⋃
{bi(t′)}

20: else
21: break
22: end if
23: end for
24: end for
25: end for
26: end

4.2 Cancellation Policy

In the preliminary version of this paper [13], without cancel-
lation policy, the decline in QoS satisfaction ratio due to the
excessive overbooking will not be restored in a short period
of time. Therefore, the cancellation policy is proposed to
restore the QoS satisfaction ratio from the next moment by
canceling some auction tasks, releasing and recycling the
resource they occupy. Some notations used in Algorithm
4 are introduced as follows. Ba(t) is the set of assigned
auction tasks of sn,j with end time after t + 1 and Bc(t)
is the set of auction tasks that will be canceled at the next
time slot. sfn,j(t) denotes the resource used by auction tasks
that will be released before the next time slot, while srn,j(t)
denotes the resource that needs to be recycled.

In Algorithm 4, as shown in lines 3 - 5, sfn,j(t), s
r
n,j(t),

Ba(t), and wi
r(t) are calculated according to Eqs. (10) - (12).

sfn,j(t) = {sfxn,j(t)|x ∈ {c,m}} is used to denote the resource
need to be released, which counts the resource occupied by

those auction tasks whose estimated end time is less than or
equal to the next time slot, and is defined as follows:

sfxn,j(t) =
∑

t′∈{t′|(bi(t′)|tei (t′)≤t+1,σt′{i}={n,j})}

rxi (t
′). (10)

srn,j(t) = {srxn,j(t)|x ∈ {c,m}} is used to indicate the
resource need to be recycled and it is defined as:

srxn,j(t) = scxn,j − soxn,j(t)− sdx
n,j(t)−

sbxn,j(t)− ssxn,j(t) + sfxn,j(t).
(11)

As shown in Eq. (11), if srn,j(t) is negative, it means
that the current resource usage does not exceed the server
capacity. Therefore, no auction tasks need to be canceled.

The weighted sum of auction tasks’ CPU and memory
usage is defined as:

wi
r(t) = αr × ri(t).c + βr × ri(t).m. (12)

wi
r(t) is taken as a sorting criterion to sort Ba in ascending

order. Here Ba denotes those auction tasks whose estimated
end time is larger than the next time slot. After that, from
lines 6 to 13, if both CPU and memory have resource need
to be recycled, then the resource of the current task will
be reclaimed, and this task is removed from the candidate
task set and added to Bc(t), which is the set of tasks to be
canceled. Finally, the operations performed within the loop
from lines 14 to 24 are similar to the above, except for a
specific type of resource.

4.3 Dynamic Overbooking Mechanism
To maximize the profit of the edge nodes through overbook-
ing with a high QoS satisfaction ratio for the on-demand
and daily tasks, the dynamic overbooking mechanism is
described as follows.

Algorithm 5 Dynamic Overbooking
Input: A(t),B(t),U(t),L(0) = {1}
Output: R

1: for t ∈ [1, T] do
2: for sn,j ∈ N do
3: Get spn,j(t) from neural network
4: Calculate sun,j(t) by Eq. (4)
5: if Ln,j(t− 1) < 1 then
6: su

′

n,j(t) = 0
7: else
8: Calculate su

′

n,j(t) by Eq. (13)
9: end if

10: Calculate san,j(t) by Eq. (14)
11: end for
12: Call Algorithm 1 Pricing Rule and Algorithm 3 Win-

ner Determination Rule
13: Calculate L(t) = {Ln,j(t)|sn,j ∈ N} by Eq. (1)
14: Call Algorithm 4 Cancellation Policy
15: end for
16: Calculate R by Eq. (5)
17: end

The procedure of the dynamic overbooking mechanism
is shown in Algorithm 5. For each time slot t, the servers
first get the predicted resource utilization from the neural

TRANSACTIONS ON CLOUD COMPUTING 10

network and calculate the available resource for overbook-
ing. Then, the servers adjust the available resource accord-
ing to the QoS satisfaction ratio feedback and update the
asking price. After that, the auctioneer collects the necessary
information and calls Algorithm 1 and 2. Finally, the QoS
satisfaction ratio is updated, Algorithm 4 is called, and the
profit is calculated.

As shown in Algorithm 5, the predicted resource uti-
lization of each server spx

n,j(t) is obtained from the neural
network in lines 3 - 4. Then, the available CPU and memory
resources are obtained according to Eq. (4).

Then, as shown in lines 5 - 10, the available resource for
overbooking is adjusted and the asking price is updated. To
improve the QoS satisfaction ratio, a TCP congestion control
like dynamic available resource adjustment is adopted [23].
When the QoS satisfaction ratio Ln,j(t−1) < 1, the available
resource for auction billing su

′

n,j(t) of server sn,j is set to 0.
Otherwise, su

′

n,j(t) = {su
′
x

n,j (t)|x ∈ {c,m}} is obtained as:

su
′
x

n,j (t) =



min{su
′
x

n,j (t− 1) + ϵ)× αu, s
ux
n,j(t)},

sux
n,j(t) > thup

min{su
′
x

n,j (t− 1) + βu, s
ux
n,j(t)},

thlo < sux
n,j(t) < thup

min{su
′
x

n,j (t− 1), sux
n,j(t)},
sux
n,j(t) < thlo,

(13)
where ϵ is a small positive constant that ensures su

′

n,j(t) ̸= 0,
αu and βu are the parameters controlling the increment
speed of available resource. Moreover, thup and thlo are
the over and under threshold of available resource, respec-
tively. When the QoS satisfaction ratio is less than 1, the
available resource for auction is set to 0. Then the available
resource is updated according to Eq. (13). After that, the
asking price san,j(t) is calculated by Eq. (14), which should
be larger than the base asking price sa0

n,j of each server.
san,j(t) = {sax

n,j(t)|x ∈ {c,m}} is obtained as:

sax
n,j(t) =


1

Ln,j(t−1) ×
1−sux

n,jt

1−thup.x
× sa0x

n,j , s
ux
n,jt > thx

up

1
Ln,j(t−1) ×

1−sux
n,jt

1−thlo.x
× sa0x

n,j , s
ux
n,jt < thx

lo
1

Ln,j(t−1) × sa0x
n,j , Otherwise.

(14)
After the update of the available resource and the asking

price, as shown in line 12, the auctioneer performs the
auction by calling Algorithm 1 and 2. Next, in line 13, the
QoS satisfaction ratio L(t) is updated and used for the next
time slot. Then the cancellation policy is called, and those
assigned auction tasks in Bc(t) will be canceled. Finally, the
total profit is calculated.

5 PERFORMANCE EVALUATION

In this section, the experimental data set and the data
preprocessing method are first described in 5.1. Then, the
parameter settings are introduced in 5.2. Finally, the per-
formance of the online auction approach and the dynamic
overbooking mechanism is illustrated in 5.3 and 5.4, respec-
tively.

A larger-scale simulation experiment has been con-
ducted to help us better select hyperparameters while ver-
ifying the effectiveness of the algorithm compared with

the previous work [13]. To select the appropriate hyper-
parameters, trade-offs from the two perspectives of QoS
satisfaction and profit are made. In the experiment, three
hyperparameters are adjusted, and a total of six figures are
added. The experimental results show that with the above
improvements, the QoS satisfaction ratio has been increased
to 99.95%, meeting the SLA requirements and increasing the
revenue by 7.82%. The details are as follows.

5.1 Data Preprocessing
Overview: The data set used in the experiment is the Google
cluster trace [28], [29]. With proper preprocessing, this data
trace can be used in the cloud, EC, etc. [4], [39], [40]. The
raw data contained cluster statistics of about 12.5k servers
for 29 days in May 2011, and the size is larger than 40GB. In
the Google cluster, work arrives in the form of jobs, and a
job is comprised of one or several tasks. In total, six kinds of
data tables are provided in this cluster trace, which are job
events, task events, machine events, machine attributes, task
constraints, and task usage 1. Since the CPU and memory-
related information of tasks are extracted in the cluster trace,
and the types of tasks in the cluster in recent years are ba-
sically two types of computation-intensive tasks and delay-
sensitive tasks. So the cluster trace is very representative.
Even data from 2011 is still widely used in recent years [41],
[42], [43].

Data for Different Billing Methods: The preprocessing
of task data mainly includes the normal rental tasks and
overbooking tasks. The former is used for daily and on-
demand billing and the latter for auction and spot billing.
For normal rental tasks, first, the data is loaded from the
files. Then traverse the data and check the consistency of
each data, including whether the start and end times of
the tasks are reasonable, whether there are contradictions
between the tasks, etc. After preprocessing, consecutive
cluster tasks with consistent time sequences are obtained.
In addition, for the data that does not meet the consistency
requirements, its duration, number, etc., are extracted as
auction and spot tasks. Since the data-trace is enormous, it
would be challenging to analyze the whole data set at once.
Thus, the entire data set is sampled, and the approximate
distribution of the data is observed. One thousand sampling
time slots are randomly generated from which the statistics
are collected.

Data for Resource Utilization Prediction: As introduced
in Subsection 4.1, LSTM and residual network-based neural
networks are used to predict resource utilization in the
dynamic overbooking mechanism. Extensive training data
with useful features need to be prepared to train these
neural networks. Firstly, the tables of task usage, task events,
machine events, and machine attributes are joined together
from the original data set. Then, the useless attributes (such
as user name) are removed, and the items containing null or
illegal values are deleted.

After these steps, a data set containing millions of data
with 15 features is obtained, which are machine type, ma-
chine platform, CPU capacity, memory capacity, task count,
CPU request, memory request, mean CPU usage, sampled

1. The word machine is the term in the data set. In this paper, the term
server is used.

TRANSACTIONS ON CLOUD COMPUTING 11

CPU usage, maximum CPU usage, canonical memory us-
age, assigned memory usage, maximum memory usage,
scheduling class, and priority. Finally, the records for five
consecutive periods are combined as the network’s input.
Besides, the mean CPU usage and canonical memory usage
in the next period are taken as training targets.

5.2 Parameter Settings
The parameter settings are introduced as follows.

Edge Nodes and Servers: It is assumed that 100 servers
are randomly assigned to 5 edge nodes. These servers can
be divided into six types according to their resource capac-
ity, and each type is configured according to the machine
attributes described in the data set. The number of servers
with the different resources is listed in TABLE 2. The exper-
iment duration is set to 100-time slots with a total of 500
minutes. The scale of the experiment is expanded by five
times compared with [13].

TABLE 2
Number of Servers with Different Resource

CPU Memory Number

0.5 0.2493 32
0.5 0.4995 50
0.5 0.1241 1
0.5 0.749 9
0.25 0.2498 1

1 1 7

Price: In the experiment, the resource usage from the
data set is distinguished according to the priority of the task
and regarded as the resource usage of on-demand and daily
tasks, respectively. The prices of different billing methods
are set as follows:

1) On-Demand: The unit prices of on-demand billing
are set to $0.0182 and $0.0060 for CPU and memory,
respectively.

2) Daily: The unit price of daily billing is 80% of the
on-demand billing.

3) Spot: As for spot billing, up to 20% of the resource
capacity of the server is sold to them, and their bid
price ws

x is set as 120% of sa0x
n,j , where sa0x

n,j is the
base asking price of server Sj

i and is set to $0.0068
and $0.0023 for CPU and memory, respectively [30].
Furthermore, the power consumed per unit CPU
hc and memory hm are set as 0.008 and 0.00014,
respectively, and the unit power fare pe is $0.2 [35].

4) Auction: The price of auction billing is described
specifically as follows.

Auction: 1 × 106 tasks are chosen from the data set as
auction tasks. The time of each task that chooses to bid is
randomly generated. During each time slot of 5 minutes,
there are approximately 2000 tasks in each auction. For each
task bi, its start time tsi , end time tei , and resource request ri
are extracted from the data set. Considering the limitations
on the maximum duration of auction tasks, Tb is set to 20.
In other words, tei is at most tsi +20. The bid price vi of each
task is randomly generated as:

vxi =

(
max

(
1

6
× Sci +

3

22
× Pri, 1

)
+

1

2
× rand

)
× pxb ,

0

0.005

0.01

0.015

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bid Price Pricing Asking Price

P
ri

ce

The Selected Winning Bids

(a) CPU

P
ri

ce

The Selected Winning Bids

0

0.001

0.002

0.003

0.004

0.005

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bid Price Pricing Asking Price

(b) Memory

Fig. 5. Individual Rationality

C
o

m
p

u
ta

ti
o

n
 T

im
e

Number of Servers

0

0.05

0.1

0.15

0.2

0.25

20 30 40 50 60 70 80 90 100

(a) Different Number of Servers

C
o

m
p

u
ta

ti
o

n
 T

im
e

Number of Bids

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

400 600 800 1000 1200 1400 1600 1800 2000

(b) Different Number of Bids

Fig. 6. Computational Efficiency

U
ti

li
ty

Ratio of Submitted Bid to Truthful Valuation

0

0.0005

0.001

0.0015

0.002

0.0025

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

CPU Memory

Fig. 7. Truthfulness

where Sci ∈ {0, 1, 2, 3} and Pri ∈ {0, 1, ..., 11} are the
scheduling class and priority of task bi derived from the
data set, respectively. rand is a random number generated
from a uniform distribution over [0, 1). And pxb is the base
bid price, which is set to $0.0068 and $0.0023 for CPU and
memory, respectively [30]. Furthermore, the values of the
parameters αp and βp used to control the weights of wn,j

p (t)
and wi

p(t) in Algorithm 3 are set to 3 and 1, respectively.

Dynamic Overbooking: The values of αu, βu, and ϵ are
set to 2, 0.05 and 0.005, respectively. The values of the thresh-
olds which control the available resource in the experiment
are set as thlo = 0.25 and thup = 0.75, respectively. The
details of choosing the values of these three parameters are
discussed in Subsection 5.4.

Resource Utilization Prediction: The structures of the pre-
diction networks are described in Subsection 4.1. The data
set has an input format of n× 5× 15 and an output format
of n×2 (n denotes the number of samples). Besides, 2×106

pieces of data are extracted from 1 × 104 servers and used
as the training set. Moreover, 1×104 pieces of data are used
as the testing set.

Adaptive Padding & Cancellation policy: The default value
of the hyper-parameter thex is set to 0.8. In addition, the
values of the parameters αr and βr used to control the
weights of wi

r(t) in Algorithm 5 Cancellation Policy are both
set to 1.

TRANSACTIONS ON CLOUD COMPUTING 12

Q
o

S
 S

at
is

fa
ct

io
n

𝑡ℎ𝑙𝑜

0.999

0.9992

0.9994

0.9996

0.9998

1

0.05 0.1 0.15 0.2 0.25 0.3

CPU Memory Total

(a) QoS Satisfaction Ratio

A
v

er
ag

e
P

ro
fi

t

𝑡ℎ𝑙𝑜

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.1 0.15 0.2 0.25 0.3

Normal Overbook Total

(b) Average Profit

Fig. 8. Performance with Different thlo

𝑡ℎup

0.999

0.9992

0.9994

0.9996

0.9998

1

0.55 0.6 0.65 0.7 0.75 0.8

CPU Memory Total

Q
o

S
 S

at
is

fa
ct

io
n

(a) QoS Satisfaction Ratio

A
v

er
ag

e
P

ro
fi

t

𝑡ℎ𝑢𝑝

0

0.2

0.4

0.6

0.8

0.55 0.6 0.65 0.7 0.75 0.8

Normal Overbook Total

(b) Average Profit

Fig. 9. Performance with Different thup

𝑡ℎ𝑒𝑥

0.9975

0.998

0.9985

0.999

0.9995

1

0.7 0.75 0.8 0.85 0.9 0.95 1

CPU Memory Total

Q
o

S
 S

at
is

fa
ct

io
n

(a) QoS Satisfaction Ratio

A
v

er
ag

e
P

ro
fi

t

𝑡ℎ𝑒𝑥

0

0.2

0.4

0.6

0.8

0.7 0.75 0.8 0.85 0.9 0.95 1

Normal Overbook Total

(b) Average Profit

Fig. 10. Performance with Different thex

5.3 Auction

The proposed online auction approach is experimentally
verified in this subsection to satisfy the following three
properties: individual rationality, computational efficiency,
and truthfulness.

Individual Rationality: The bid price, asking price, and
the pricing of some winning tasks are shown in Fig. 5. In
Fig. 5, each winning task is charged a price no higher than
its bid price, while each winning server receives a payment
no less than its asking price. Therefore, the proposed online
auction approach achieves individual rationality.

Computational Efficiency: The algorithm is tested on a
Linux Server with 2.20 GHz Intel Xeon CPU E5-2630 v4 and
16 GB memory. The number of auction tasks and the number
of servers are fixed to 2000 and 100, respectively, while
adjusting the other one to verify the computation time of the
algorithm. The results are shown in Fig. 6(a) and Fig. 6(b),
respectively. From Fig. 6, it can be seen that the proposed
auction approach is subject to polynomial computation time
concerning the number of servers and bids.

Truthfulness: As for truthfulness, the verification results
are shown in Fig. 7. The value in the x-axis is defined as the
ratio of the submitted price v′i

x to the truthful valuation vxi .
When the ratio equals 1, the submitted price is the truth
valuation. The value in the y-axis is the utility, which is
defined as the truthful valuation vxi minus the pricing pxi .
From Fig. 7, it can be concluded that the maximum utility
is achieved when the task submits the truthful information.
As a result, the task cannot improve its utility through other
bids, guaranteeing its truthfulness.

C
P

U
 R

es
o

u
rc

e

Time Slot

12

17

22

27

5 13 21 29 37 45 53 61 69 77 85 93 101

Real DO DOA

(a) CPU Utilization Prediction

M
em

o
ry

 R
es

o
u

rc
e

Time Slot

20

21

22

23

24

5 13 21 29 37 45 53 61 69 77 85 93 101

Real DO DOA

(b) Memory Utilization Prediction

Fig. 11. Resource Utilization Prediction Comparison

5.4 Dynamic Overbooking

In this subsection, the performance of the dynamic over-
booking mechanism is demonstrated. Firstly, the selection
of the threshold parameters is discussed, then the prediction
accuracy of the neural network predictors is presented.
Finally, the QoS satisfaction and profit of the dynamic
overbooking mechanism and the comparison with baseline
mechanisms are introduced.

Parameter Selection: Figs. 8 - 10 show the results of the
parameter selection. Firstly, thup and thex are fixed and the
value of thlo is adjusted. From Fig. 8, it can be seen that
when the value of thlo equals 0.25, the QoS Satisfaction ratio
is the highest, reaching a maximum value of 0.99954. At the
same time, the average profit reaches a maximum of 0.66583.
As a result, the value of thlo is set to 0.25.

Next, thlo and thex are fixed and the value of thup is
adjusted. In Fig. 9, the QoS Satisfaction ratio increases with
the increase of thup and remains unchanged after 0.75. This
is because even if there is a certain error in the prediction
value, the predicted unused resource will not exceed the
threshold of 75% of the server’s resource capacity, and
increasing this threshold will not impact the experimental
results. Considering that when thup equals to 0.75, the
average profit of the edge nodes also achieves a larger value
of 0.66583, then the value of thup is set to 0.75.

Finally, Fig. 10 shows the results of adjusting the value of
thex. As thex increases, the QoS Satisfaction ratio gradually
decreases, while the average profit of edge nodes continues
to increase. The reason is that with excessive overbooking,
the profit of the normal rental mode gradually decreases
due to the SLA discount. However, the extra income from
overbooking offsets the loss of the previous part and leads
to an increase in total profit. So how to choose the value of
thex is a trade-off between QoS satisfaction and profit. To
ensure that the QoS Satisfaction ratio of the normal rental
mode reaches above 0.9995, the value of thex is set to 0.8.

From Figs. 8 - 10, it can be seen that the QoS satisfaction
ratio and the profit are very correlated. When the resource is
idle, the QoS satisfaction ratio is 1, and the profit is relatively
small. When the resource is overbooked, the degree of re-
source utilization increases. If the overbooking is controlled
within a reasonable range, then the QoS satisfaction ratio
is still 1, which is the most reasonable state and the goal
of this paper. When resources are overbooked too much,
although the profit may increase, the QoS satisfaction ratio
drops rapidly, and the computation time of daily and on-
demand tasks is prolonged, which is not the goal of this
paper.

Resource Utilization Prediction: To effectively demon-
strate the accuracy rate of predicted resource utilization

TRANSACTIONS ON CLOUD COMPUTING 13

TABLE 3
The Prediction Results

Prediction Method Accuracy Rate

Final State-based Method 0.674
Simple Moving Average Method (nw = 5) 0.753

Exponential Moving Average Method (αr = 0.9) 0.645
Exponential Moving Average Method (αr = 0.95) 0.657

Exponential Moving Average Method (αr = 1) 0.680
Proposed LSTM based Predictor 0.824

Proposed Residual Network based Predictor 0.841

of the network, the Final State-based (FS) method, Simple
Moving Average (SMA) method, and Exponential Moving
Average (EMA) method are used as the baselines [44]. In
the FS method, the information of tasks during the last time
slot is used to predict, while the information of tasks during
nw last time slot is used in the SMA method, where nw is
the size of the windows. In the EMA method, the prediction
is based on the weighted sum of the previous tasks, which
is obtained as:

Pre(t) = αr × J1 + (1− αr)× Pre(t− 1),

where J1 is the value of the tasks during the last time slot,
αr is the decay parameter to optimize the accuracy and
adjusted by experience. The results of the predicted resource
utilization of different methods are shown in TABLE 3. It can
be concluded that the accuracy rate of the proposed LSTM
and residual network-based network is much higher than
the baselines.

Besides, Fig. 11 compares the resource utilization predic-
tion with or without adaptive padding methods, which are
denoted as Dynamic Overbooking with Adaptive padding
(DOA) and Dynamic Overbooking (DO), respectively. From
Fig. 11, it can be easily obtained that the DOA mechanism
further narrows the gap between the predicted value and
the actual value, which is very helpful for us to maintain
high QoS during dynamic overbooking.

Edge Node Performance: The performance of a ran-
domly selected edge node is shown in Fig. 12. As shown
in Fig. 12(a), this edge node provides 100% QoS satisfaction
for most of the time, and the QoS Satisfaction ratio is
reduced due to excessive overbooking in a short period,
with a minimum value of 0.99290. The affected QoS was
quickly recovered with the adaptive padding, cancellation
policy, and appropriately selected threshold parameters.
The average price of the edge node is shown in Fig. 12(b),
where the price is dynamically adjusted according to the
QoS Satisfaction ratio. The CPU and memory utilization are
shown in Fig. 12(c) and Fig. 12(d), respectively. It is easy to
conclude that predicted utilization matches well with real
utilization, and overall utilization is significantly improved.

The average profit of the former edge node is shown
in Fig. 13. The normal CPU and memory profits represent
the income obtained by renting resources according to on-
demand and daily billing methods, and overbooking CPU
and memory profits consist of the income from auction
and spot billing. From Fig. 13, it can be concluded that
through overbooking, the total profit of the edge node can
be significantly improved. To sum up, the dynamic resource

overbooking mechanism effectively overbooks the resource
with a high QoS Satisfaction ratio.

Overall Performance: Fig. 14 presents the comparison
among the Dynamic Overbooking with Adaptive padding
and Cancellation policy (DOAC) proposed in this paper, the
Dynamic Overbooking (DO) mechanism proposed in our
previous paper [13], and the Normal mechanism without
overbooking. Fig. 14(a) shows the performance of the QoS
Satisfaction ratio of these three mechanisms. The Normal
mechanism without overbooking achieves 100% QoS sat-
isfaction. Compared with the DO mechanism, the DOAC
mechanism has dramatically improved the performance of
QoS satisfaction, and the average QoS Satisfaction ratio
can reach above 0.9995, which satisfies the SLA standard
[34]. As for the average profit, compared with the Normal
mechanism, the DOAC mechanism only reduces the profit
on the normal rental mode by 0.47%, while the total revenue
increase by 51.58% in Fig. 14(b). Besides, compared with
the DO mechanism, the profit of the DOAC mechanism has
increased by 5.25%, 13.10%, and 7.82% on the normal rental,
overbooking, and combined mode, respectively. In short, the
DOAC mechanism can significantly increase revenue while
achieving a high QoS satisfaction ratio.

6 CONCLUSION

This paper proposes a pricing model for the dynamic re-
source overbooking mechanism in EC. Firstly, the system
model, pricing model, and problem formulation of the over-
booking problem are described. Secondly, an online auction
approach is proposed with individual rationality, compu-
tational efficiency, and truthfulness properties. Thirdly, the
dynamic overbooking mechanism is described based on
resource utilization prediction and QoS satisfaction ratio
feedback. The experiments are conducted with real-world
data-trace, and the experimental results show that the auc-
tion approach and dynamic overbooking mechanism are ef-
ficient. Under the premise of 99.95% QoS satisfaction, it can
increase the profit by 51.58% compared with the mechanism
without overbooking. Future work will consider resource
overbooking across edge nodes and cloud data centers.

ACKNOWLEDGMENT

This work is supported by Guangdong Key Lab of AI and
Multi-modal Data Processing, United International College
(UIC), Zhuhai, Project No. 2020KSYS007, Chinese National
Research Fund (NSFC) Project No. 61872239; The Engi-
neering & Tech Center of Artificial Intelligence and Future
Educations of Beijing Normal University, Zhuhai, Guang-
dong, China; Science and Technology Development Fund of
Macau SAR under Grant 0060/2019/A1.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. ACM, 2012, pp.
13–16.

[2] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

TRANSACTIONS ON CLOUD COMPUTING 14

Q
o

S
 S

at
is

fa
ct

io
n

Time

0.988
0.99

0.992
0.994
0.996
0.998

1
1.002

5

1
3

2
1

2
9

3
7

4
5

5
3

6
1

6
9

7
7

8
5

9
3

1
0

1

CPU Memory Total

(a) QoS Satisfaction Ratio

P
ri
ce

Time

0

0.05

0.1

0.15

0.2

5

1
3

2
1

2
9

3
7

4
5

5
3

6
1

6
9

7
7

8
5

9
3

1
0
1

CPU Memory

(b) Price

C
P

U
 R

es
o

u
rc

e

Time

0

5

10

15

5 13 21 29 37 45 53 61 69 77 85 93 101

Capacity Normal Rent Predicted

Overbook Total Rent

(c) CPU Utilization

M
em

o
ry

 R
es

o
u

rc
e

Time

0

5

10

15

5 13 21 29 37 45 53 61 69 77 85 93 101

Capacity Normal Rent Predicted

Overbook Total Rent

(d) Memory Utilization

Fig. 12. Performance of the Overbooking Mechanism of the Edge Node

P
ro

fi
t

Time

0

2

4

6

8

10

12

14

16

5 9
1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

Normal CPU Normal Memory Normal Total

Overbook CPU Overbook Memory Overbook Total

Total

Fig. 13. Average Profit of the Edge Node

Q
o

S
 S

at
is

fa
ct

io
n

Mechanism

0.98

0.985

0.99

0.995

1

1.005

Normal DO DOAC

CPU Memory Total

(a) QoS Satisfaction Ratio

A
v

er
ag

e
P

ro
fi

t

Mechanism

0

0.2

0.4

0.6

0.8

Normal DO DOAC

Normal Overbook Total

(b) Average Profit

Fig. 14. Performance with Different Mechanisms

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[4] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,”
IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–725,
2018.

[5] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained mobile
computing,” Transactions on Mobile Computing, vol. 16, no. 11, pp.
3056–3069, 2017.

[6] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal work-
load allocation in fog-cloud computing toward balanced delay and
power consumption,” IEEE Internet of Things Journal, vol. 3, no. 6,
pp. 1171–1181, 2016.

[7] O. C. A. W. Group et al., “Openfog reference architecture for fog
computing,” OPFRA001, vol. 20817, no. 1, pp. 1–162, 2017.

[8] M. Aazam and E.-N. Huh, “Fog computing micro datacenter
based dynamic resource estimation and pricing model for iot,”
in Advanced Information Networking and Applications (AINA), 2015
IEEE 29th International Conference on. IEEE, 2015, pp. 687–694.

[9] I. S. Moreno and J. Xu, “Neural network-based overallocation for
improved energy-efficiency in real-time cloud environments,” in
IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2012, pp. 119–126.

[10] ——, “Customer-aware resource overallocation to improve energy
efficiency in realtime cloud computing data centers,” in IEEE Inter-
national Conference on Service-Oriented Computing and Applications
(SOCA), 2011, pp. 1–8.

[11] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards
virtual machine migration in fog computing,” in IEEE International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), 2015, pp. 1–8.

[12] H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, and Z. Han, “Fog

computing in multi-tier data center networks: A hierarchical game
approach,” in IEEE International Conference on Communications
(ICC), 2016, pp. 1–6.

[13] F. Zhang, Z. Tang, M. Chen, X. Zhou, and W. Jia, “A dynamic
resource overbooking mechanism in fog computing,” in 15th
IEEE International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), 2018, pp. 89–97.

[14] V. Krishna, Auction theory. Academic press, 2009, vol. 1.
[15] A.-L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju, “Auction mech-

anisms toward efficient resource sharing for cloudlets in mobile
cloud computing,” Transactions on Services Computing, vol. 9, no. 6,
pp. 895–909, 2016.

[16] A.-L. Jin, W. Song, and W. Zhuang, “Auction-based resource
allocation for sharing cloudlets in mobile cloud computing,” IEEE
Transactions on Emerging Topics in Computing, vol. 6, no. 1, pp. 45–
57, 2018.

[17] X. Wang, X. Chen, and W. Wu, “Towards truthful auction mech-
anisms for task assignment in mobile device clouds,” in IEEE
International Conference on Computer Communications (INFOCOM),
2017, pp. 1–9.

[18] S. Barbarossa, E. Ceci, and M. Merluzzi, “Overbooking radio
and computation resources in mmw-mobile edge computing to
reduce vulnerability to channel intermittency,” in Networks and
Communications (EuCNC), 2017 European Conference on. IEEE, 2017,
pp. 1–5.

[19] F. Slim, F. Guillemin, and Y. Hadjadj-Aoul, “Close: A costless ser-
vice offloading strategy for distributed edge cloud,” in Consumer
Communications & Networking Conference (CCNC). IEEE, 2018, pp.
1–6.

[20] M. T. Imam, S. F. Miskhat, R. M. Rahman, and M. A. Amin, “Neu-
ral network and regression based processor load prediction for
efficient scaling of grid and cloud resources,” in IEEE International
Conference on Computer and Information Technology (CIT), 2011, pp.
333–338.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[23] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
RFC 5681, September 2009.

[24] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications. IEEE,
2016, pp. 1–9.

[25] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[26] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, C. Chen et al.,
“Data-driven intelligent transportation systems: A survey,” IEEE
Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp.
1624–1639, 2011.

[27] N. Raveendran, H. Zhang, Z. Zheng, L. Song, and Z. Han, “Large-
scale fog computing optimization using equilibrium problem with
equilibrium constraints,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference. IEEE, 2017, pp. 1–6.

[28] J. Wilkes, “More Google cluster data,”
Google research blog, Nov. 2011, posted at
http://googleresearch.blogspot.com/2011/11/more-google-
cluster-data.html.

[29] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format + schema,” Google Inc., Mountain View, CA, USA,
Technical Report, Nov. 2011, revised 2014-11-17 for version 2.1.
Posted at https://github.com/google/cluster-data.

TRANSACTIONS ON CLOUD COMPUTING 15

[30] A. W. Services. (2022) Aws cloud pricing principles. [Online].
Available: https://aws.amazon.com/pricing/

[31] Microsoft. (2022) Azure pricing. [Online]. Available:
https://azure.microsoft.com/en-us/pricing/

[32] X. Zhou, K. Wang, W. Jia, and M. Guo, “Reinforcement learning-
based adaptive resource management of differentiated services in
geo-distributed data centers,” in 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS). IEEE, 2017, pp. 1–6.

[33] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement
learning,” in 2014 22nd Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing. IEEE, 2014, pp.
500–507.

[34] M. Azure. (2017) Sla for virtual machines. [Online]. Available:
https://azure.microsoft.com/en-us/support/legal/sla

[35] J. Li, Y. Zhu, J. Yu, C. Long, G. Xue, and S. Qian, “Online auction
for iaas clouds: Towards elastic user demands and weighted
heterogeneous vms,” in IEEE International Conference on Computer
Communications (INFOCOM), 2017, pp. 1–9.

[36] R. P. McAfee, “Mechanism design by competing sellers,” Econo-
metrica: Journal of the econometric society, vol. 1, no. 1, pp. 1281–1312,
1993.

[37] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorith-
mic game theory. Cambridge University Press Cambridge, 2007,
vol. 1.

[38] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic
resource scaling for multi-tenant cloud systems,” in Proceedings
of the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 5.

[39] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, and X. Liu, “Real-time
tasks oriented energy-aware scheduling in virtualized clouds,”
IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 168–180,
2014.

[40] Z. Tang, J. Lou, F. Zhang, and W. Jia, “Dependent task offloading
for multiple jobs in edge computing,” in 2020 29th International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2020, pp. 1–9.

[41] L. Versluis, R. Mathá, S. Talluri, T. Hegeman, R. Prodan, E. Deel-
man, and A. Iosup, “The workflow trace archive: Open-access
data from public and private computing infrastructures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 9, pp.
2170–2184, 2020.

[42] D. Fernández-Cerero, Á. J. Varela-Vaca, A. Fernández-Montes,
M. T. Gómez-López, and J. A. Alvárez-Bermejo, “Measuring data-
centre workflows complexity through process mining: The google
cluster case,” The Journal of Supercomputing, vol. 76, no. 4, pp. 2449–
2478, 2020.

[43] J. Gao, H. Wang, and H. Shen, “Machine learning based workload
prediction in cloud computing,” in 2020 29th international confer-
ence on computer communications and networks (ICCCN). IEEE, 2020,
pp. 1–9.

[44] S. Zhao, H. Chen, R. Zhao, Y. Zhao, and G. Chen, “A big data
processing-oriented prediction method of cloud computing ser-
vice request,” Journal of Applied Science and Engineering, vol. 19,
no. 4, pp. 497–504, 2016.

Zhiqing Tang received the BS degree from the
School of Communication and Information En-
gineering, University of Electronic Science and
Technology of China, China, in 2015 and is cur-
rently a Ph.D. candidate in the Department of
Computer Science and Engineering, Shanghai
Jiao Tong University, China. His current research
interests include edge computing, resource allo-
cation, and reinforcement learning.

Fuming Zhang received the BS degree from
the School of Electronic Information and Electri-
cal Engineering, Shanghai Jiao Tong University,
China, in 2018, where he is currently pursuing
the MS degree. His current research interests
include edge computing, resource scheduling,
and machine learning.

Xiaojie Zhou received the BS degree from the
School of Data and Computer Science, Sun Yat-
sen University, China, in 2016 and is currently a
master student in the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, China. His current research interests
include edge computing, resource scheduling,
and reinforcement learning.

Weijia Jia is currently a Chair Professor, Direc-
tor of BNU-UIC Institute of Artificial Intelligence
and Future Networks, Beijing Normal University
(Zhuhai) and VP for Research of BNU-HKBU
United International College (UIC) and has been
the Zhiyuan Chair Professor of Shanghai Jiao
Tong University, China. He was the Chair Profes-
sor and the Deputy Director of State Kay Labo-
ratory of Internet of Things for Smart City at the
University of Macau. He received BSc/MSc from
Center South University, China, in 82/84 and

Master of Applied Sci./PhD from Polytechnic Faculty of Mons, Belgium
in 92/93, respectively, all in computer science. From 93-95, he joined
German National Research Center for Information Science (GMD) in
Bonn (St. Augustine) as a research fellow. From 95-13, he worked at
City University of Hong Kong as a professor. His contributions have
been recognized as optimal network routing and deployment, anycast
and QoS routing, sensors networking, AI (knowledge relation extrac-
tions; NLP, etc.), and edge computing. He has over 600 publications
in the prestige international journals/conferences and research books,
and book chapters. He has received the best product awards from the
International Science & Tech. Expo (Shenzhen) in 2011/2012 and the
1st Prize of Scientific Research Awards from the Ministry of Education
of China in 2017 (list 2). He has served as area editor for various
prestige international journals, chair and PC member/skeynote speaker
for many top international conferences. He is the Fellow of IEEE and the
Distinguished Member of CCF.

TRANSACTIONS ON CLOUD COMPUTING 16

Wei Zhao completed his undergraduate studies
in physics at Shaanxi Normal University, China,
in 1977, and received his MSc and PhD de-
grees in Computer and Information Sciences
at the University of Massachusetts at Amherst
in 1983 and 1986, respectively. Professor Zhao
has served important leadership roles in aca-
demic including the Chief Research Officer at
the American University of Sharjah, the Chair of
Academic Council at CAS Shenzhen Institute of
Advanced Technology, the eighth Rector of the

University of Macau, the Dean of Science at Rensselaer Polytechnic
Institute, the Director for the Division of Computer and Network Systems
in the U.S. National Science Foundation, and the Senior Associate
Vice President for Research at Texas A&M University. Professor Zhao
has made significant contributions to cyber-physical systems, distributed
computing, real-time systems, and computer networks. He led the effort
to define the research agenda of and to create the very first funding pro-
gram for cyber-physical systems in 2006. His research results have been
adopted in the standard of Survivable Adaptable Fiber Optic Embedded
Network. Professor Zhao was awarded the Lifelong Achievement Award
by the Chinese Association of Science and Technology in 2005.

