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Abstract—Due to the features of lightweight and easy deployment, the use of containers has emerged as a promising approach for
Mobile Edge Computing (MEC). Before running the container, an image composed of several layers must exist locally. However, it has
been conspicuously neglected by existing work that task scheduling at the granularity of the layer instead of the image can significantly
reduce the task completion time to further meet the real-time requirement and resource efficiency in resource-limited MEC. To bridge
the gap, considering the complex dependency between layers and images, a novel layer dependency-aware container scheduling
algorithm is proposed to reduce the total task completion time. Specifically: 1) We model the online layer dependency-aware
scheduling problem for containers in a heterogeneous MEC, considering the layer download time and task computation time. 2) A
policy gradient algorithm is proposed to solve this problem, and the high-dimensional and low-dimensional relations for layer
dependencies are extracted with improved action selection. 3) Experiments based on the real-world data trace show that the proposed
algorithm outperforms the image-based and layer-based baseline algorithms by 54% and 19% on average, respectively.

Index Terms—Mobile edge computing, dependency-aware scheduling, container, reinforcement learning.

✦

1 INTRODUCTION

MOBILE Edge Computing (MEC) is becoming more and
more popular in recent years. Various heterogeneous

edge nodes are deployed at the edge of the core network
to provide or supplement computing capabilities [1]. By
deploying mobile applications at edge nodes, application
latency can be significantly reduced, such as AR and VR
applications [2], [3], etc. To effectively utilize resources and
deploy applications on edge nodes, the container is widely
used [4]–[7]. Before running a container, an image file must
exist locally, including the code, binaries, system tools, con-
figuration files, etc. [8]. Otherwise, it must be downloaded
from a registry [9].

However, the download time of multiple images will be
very long since the limited bandwidth resources in MEC,
which takes up a higher proportion of the total task com-
pletion time as most tasks are delay-sensitive and do not
last long [7], [10], [11]. Much of existing work to reduce the
download time is cloud-oriented, focusing on changes to
the registry [12], [13]. Slacker [14] reduces startup times by
fetching individual files from the registry on demand, which
would scale poorly when the latency is getting larger. Cntr
[15] and Pocket [16] move common parts of multiple con-
tainers to a common daemon process. All these approaches
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Fig. 1: An illustrative example of containers, images, and
layers in MEC.

require substantial changes to the application and mitigate
the advantage of container isolation.

It has been conspicuously neglected by existing work
that each image is stored in the unit of the layer [17]. The
layers can be shared by multiple images. For example, as
shown in Fig. 1(a), the image m1 is comprised of three
layers l1, l2, and l3. While the layer l1 is shared by images
m1 and m2. Existing container cluster management tools
such as Kubernetes [18], KubeEdge [19], K3s [20], Akraino
[21], etc., make the scheduling decisions at the granularity
of the image. They consider the image to exist if and only
if all layers required by the image exist locally. Thus, the
scheduler cannot fully use the local layer information, and
the selected node may download many duplicate layers [11],
[22]. For example, it is assumed that an image m1 consists of
three layers. As shown in Fig. 1(b), one of the layers exists
on one node, and two exist on the other node. From the
image-based scheduling perspective, the two nodes are the
same, which is coarse-grained.
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It is very promising to make the scheduling decisions
at the granularity of the layer instead of the image to
reduce the download time and then further reduce the
task completion time in MEC. Nevertheless, the following
challenges need to be solved. First, how to fully extract and
utilize the complex layer dependencies. Existing researchers
have proposed a layer-match algorithm based on local
layer size for non-heterogeneous MEC [7]. However, images
have different download times on different nodes due to
the heterogeneity of edge nodes in a real MEC scenario.
Besides, there exist hidden dependencies between different
tasks since the layer sharing among multiple images. These
layer dependency features are numerous and sparse, and
there are correlations and hidden relationships between
the features. Common machine learning methods such as
Convolutional Neural Network (CNN) or Recurrent Neural
Network (RNN) cannot perform feature extraction well.
To fully extract the layer dependencies, in this paper, a
Factorization Machines (FM) based layer interaction feature
extraction method is proposed [23]. Different dimensions of
layer dependency are extracted with weight-sharing embed-
ding layers and FM layers [24], which are further combined
to assist in scheduling tasks.

The second challenge is making online scheduling de-
cisions based on the extracted layer dependency to gain
long-term benefits in less task completion time, i.e., the sum
of download time and computation time. Compared with
heuristic algorithms, the Reinforcement Learning (RL) algo-
rithm can fully consider the impact of continuous decisions
[25]. Moreover, the long-term benefits and the impact of
layer dependency can be fully considered with a reward
function. Thus, RL-based algorithms are suitable for online
decision-making, and a policy gradient-based RL algorithm
is further proposed to reduce the task completion time [26].

In this paper, we are the first team to model the task
scheduling problem at the granularity of the layer in het-
erogeneous MEC, aiming at the minimization of the total
task completion time. A Layer Dependency-aware Learning
Scheduling (LDLS) algorithm is proposed based on the
policy gradient RL algorithm. The resources of heteroge-
neous edge nodes, the features of tasks, and the layer
dependencies are fully considered the input state. The FM-
based method is used to extract the layer dependency
features. Moreover, constraints are added on the action
selection to avoid terrible actions, e.g., scheduling tasks
to heavily loaded nodes or nodes with insufficient storage
space, which has always been a complicated problem [27].
The RL agent’s policy network and value function are
also carefully designed to make the feature embeddings
and combinations. Finally, experiments are conducted based
on real-world data trace to verify the performance of the
algorithm. The data is crawled from Docker Hub [28]. The
proposed algorithm is compared with the default schedul-
ing algorithm of Kubernetes and the state-of-the-art layer-
based heuristic algorithms. Experimental results show that
the proposed algorithm has better performance than all
baseline algorithms.

The contributions are summarized as follows.

1) We formulate the newly identified Layer
Dependency-aware Scheduling (LDS) problem
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Fig. 2: An example of layer dependency-aware scheduling
in MEC.

in heterogeneous MEC scenarios to minimize the
overall task completion time. The download time of
layers and the computation time of task execution
are considered with heterogeneous edge nodes.

2) To continuously make the online scheduling de-
cisions, a novel LDLS algorithm based on policy
gradient RL is proposed with improved action se-
lection. An FM-based embedding method is pro-
posed to extract both the high-dimensional and low-
dimensional layer dependency features.

3) Real-world data sets are used for evaluation. The
proposed algorithms are compared with several
state-of-the-art baselines. The experimental results
show that the LDLS algorithm outperforms the
image-based and layer-based algorithms by 54%
and 19% on average, respectively.

The rest of the paper is organized as follows. In Section
2, the related work and motivation are introduced. System
model and problem formulation are described in Section 3.
Dependency scheduling algorithm is proposed in Section
4. Performance is evaluated in Section 5. Some issues are
discussed in Section 6 and Section 7 concludes the paper.

2 RELATED WORK AND MOTIVATION

2.1 Container in Mobile Edge Computing

The container, image, layer, and their relations are illustrated
in Fig. 2.

Container: Containers are based on lightweight OS-level
virtualization technology that isolates and manages an ap-
plication’s resource usage and optionally provides tools for
managing the application’s dependencies. The significant
benefits of containers are lightweight resource isolation and
container images [7].

Image: An image is a read-only template with instruc-
tions for creating a container, which includes all its de-
pendencies, including the code, binaries, system tools, and
configuration files, etc.

Layer: Containers are stored by a layered file system.
Each layer encapsulates a set of files and directories put
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Fig. 3: Edge nodes and tasks

TABLE 1: Layer size

Layer l1 l2 l3 l4 l5 l6
Size 1 MB 2 MB 2 MB 3 MB 6 MB 20 MB

together when the image is built and associated with a
collision-resistant hash digest taken over its content.

As shown in Fig. 2, containers are running on edge
nodes to tackle the tasks from a set of users. A container
is an instance of an image. Each image contains several
layers, and the layers can be shared by multiple images.
For example, the image m1 contains layers l1 - l5. And the
image m3 contains layers l1, l2, l4, l6, and l7. The layers l1,
l2, and l4 are shared by images m1 and m3.

All layers contained in the requested image must exist
on the edge node. Otherwise, it needs to be downloaded
from the registry in the cloud. The registry stores all images
comprised of layers. Layers are stacked on top of each other
in a particular order to form the requested image. However,
the construction order of the layer has no impact on the
scheduling decision. Because before constructing the image,
all the layers contained in this image must exist locally.
Only the existence of the layer will affect the scheduling
decisions. So from the perspective of task scheduling, the
layers contained in each image form a set, not a sequence.

Containers have been widely deployed in cloud data
centers [29]–[32]. However, current container deployment
approaches are not suitable for the MEC scenarios. First,
pulling images from the registry in the cloud to an edge
node takes a long time over high-latency, or low-bandwidth
links [7]. Then, limited edge resources combined with user
mobility means that applications deployed at each edge
node change frequently [33]. Placing a local registry or cache
at every edge node can be expensive and unrealistic [7].
Much of existing work to reduce the startup time is cloud-
oriented, focusing on changes to the registry, which mitigate
the advantage of container isolation [12]–[16], [34], [35].

2.2 Reinforcement Learning
Reinforcement learning has been widely used for task
scheduling in MEC since it can make continuous real-time
decision-making. Tang et al. [36] investigate the channel
model in the heterogeneous network and propose a novel
deep RL-based algorithm to allocate radio resources in MEC
dynamically. Qian et al. [37] apply a Deep Q-Network
(DQN) method to solve the user cache optimization and
base station cache optimization problems in MEC. Xiong
et al. [38] propose a deep RL approach to minimize the
long-term weighted sum of average completion time of jobs
and the average number of requested resources. Xu et al.

TABLE 2: Download size for different scheduling policies

Method k1 k2 Layers Size

Imaged-based
Greedy n1 n1

n2 l2, l3 24 MB
n2 l6

Optimal n1 n1
n1 l2, l3 24 MB
n2 l6

Layer-based
Greedy n1 n2

n1 l2, l3 11 MB
n2 l2, l3, l4

Optimal n2 n2
n1 None 7 MB
n2 l2, l3, l4

[39] leverage RL techniques to automatically configure the
control and networking systems under a dynamic industrial
MEC environment. Wang et al. [40] use an RL network
to solve the joint node selection and cache replacement
problem in MEC.

RL is very suitable for solving the LDS problem be-
cause the impact of the continuous decision is significant
when layer dependency is considered. However, no RL-
based method is ever proposed for such an LDS problem
to our best knowledge. Besides, the complexity of the MEC
heterogeneous environment also brings challenges to RL’s
state input. To better understand the scheduling process,
more discussions are given in the following subsection.

2.3 Case Study

As shown in Fig. 3, it is assumed that there are two edge
nodes n1 and n2 (The detailed notations are defined in the
next section). On node n1, there exist three layers l1, l4, and
l5. And on node n2, there are layers l1, l5, and l6. Suppose
there are two different types of image m1 and m2. Image m1

is composed of layers l1 − l5. And image m2 is composed
of layers l1 − l6. There are two users generating tasks k1
and k2, and requesting containers c1 and c2, respectively.
Besides, containers c1 and c2 are based on images m1 and
m2, respectively.

It is assumed that the arrival of task k1 and task k2
are in sequence. Since the decision is made online, task k2
is not known when task k1 is scheduled. The sizes of the
layers are shown in TABLE 1. The decision-making results
are analyzed as follows.

The scheduling results of different policies are shown
in TABLE 2. First, let us consider image-based scheduling.
Since node n1 and node n2 do not have all the layers
required by images m1 and m2, there is no image on node
n1 or n2 from the perspective of the scheduler, i.e., node
n1 and node n2 are the same. In this case, the scheduling
results are the same (assuming to traverse in order), i.e.,
first task k1 is scheduled to node n1, and then when task k2
is scheduled, there is still no image m2 on both nodes, so it
is scheduled to node n1. When task k1 is scheduled, layers
l2 and l3 need to be downloaded, and the download cost is
2 + 2 = 4 MB. When task k2 is scheduled, the layer l6 is
needed. As a result, the total download size is 4 + 20 = 24
MB.

Secondly, when the tasks are scheduled based on layer.
For greedy strategy based on download cost, when task k1 is
scheduled, the download cost required by node n1 is 2+2 =
4 MB (Layers l2 and l3 are needed) and the download cost
required by node n2 is 2 + 2 + 3 = 7 MB (Layers l2, l3,
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and l4 are needed), so task k1 is scheduled to node n1. Then
when task k2 is scheduled, the download cost required by
node n1 is 20 MB (Layer l6), and the cost required by node
n2 is 2 + 2 + 3 = 7 MB (Layers l2, l3, and l4), so task k2 is
scheduled to node n2. The total cost is 11 MB.

However, the greedy algorithm based on layer down-
load size is not optimal. For example, if task k1 is scheduled
to node n2, and then task k2 is also scheduled to node n2,
the total download size is only 2+ 2+ 3 = 7 MB (Layers l2,
l3, and l4), which is better than the greedy algorithm. This
requires that the possible impact between the continuous
decisions can be considered when scheduling. Coinciden-
tally, the reward of RL algorithms can solve this problem
very well, which is suitable for solving continuous decision-
making problems [25].

Based on the observations, it is projected that the layer
dependency-aware scheduling can effectively tackle with
through RL, which has been ignored by current work.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model of MEC is first defined.
Then the cost is introduced. Finally, the LDS problem is
formulated and analyzed.

3.1 System Model
In MEC, edge nodes are deployed close to users. The user
connects to the nearest base station. Some delay-sensitive
tasks from users are first transmitted to the base stations,
then scheduled to different edge nodes for processing. The
requested services are created on the corresponding edge
nodes. Currently, the services require containers to run, and
containers’ operation requires container images, which are
further composed of layers. For ease of reference, the main
notations used in this paper are summarized in TABLE 3.

To illustrate the problem, an MEC scenario is considered.
A set of tasks K = {k1, k2, ..., k|K|} is generated from
different users and offloaded to edge nodes for processing,
where | · | is used to indicate the number of elements in
the set, e.g., |K| is the number of tasks. To process the
tasks, a group of different containers C = {c1, c2, ..., c|C|}
is created and deployed on a set of edge nodes. Each
container needs an image file. The set of images is denoted
as M = {m1,m2, ...,m|M|}. Since requesting a container
is equivalent to requesting the corresponding image, and
the difference between a container and an image is only a
writable container layer, the two concepts are unified [8].
In other words, the task requests the container, and the
container needs the corresponding layers. The set of layers
is denoted as L = {l1, l2, ..., l|L|}.

The set of edge nodes is denoted as N =
{n1, n2, ..., n|N|}, which is deployed at the edge of core
network. And the remote cloud is considered as another
edge node n|N|+1 with unlimited computation resources.
For a node n ∈ N, it maintains three sets: the set of
running containers Cn(t) ⊂ C, the set of local images
Mn(t) ⊂M, and the set of local layers Ln(t) ⊂ L. Besides,
each node has its CPU frequency fn, bandwidth bn, and
storage space dn. The number of containers that each node
can run simultaneously is limited, i.e., the node n can run
up to Cn containers at the same time.

TABLE 3: Notations

Section 3
K Task set
k Task (k ∈ K)
|K| Number of tasks
C Container set
c Container (c ∈ C)
M Image set
L Layer set
l Layer (l ∈ L)
N Edge node set
n Edge node (n ∈ N)
n|N|+1 Remote cloud
Cn(t) Running container set on node n at time t (Cn(t) ⊂ C)
Mn(t) Local image set on node n at time t (Mn(t) ⊂ M)
Ln(t) Local layer set on node n at time t (Ln(t) ⊂ L)
fn CPU frequency of node n
bn Bandwidth of node n
dn Storage space of node n
Cn Max number of running containers on node n
Lc Layer set contained in container c
xl
c Variable to indicate whether container c contains layer l

dl Size of layer l
pk Requested CPU resource of task k
ck Requested container of task k
nk Assigned node of task k
un
k Variable to indicate whether task k is scheduled to node n

yln(t) Variable to indicate whether layer l is on node n at time t
zln(t) Download finish time for layer l on node n
T d
k Download time of task k

T c
k Computation time of task k

Tk Total task completion time of task k
Section 4
st Edge system state
sn,l
t Layer state for node n
T r
n(t) Total remaining download time

sn,r
t Resource state for node n
sNt State for all nodes
sk,n,e
t Estimated number of layers that need to be downloaded
sk,n,d
t Estimated layer download time
sk,n,w
t Estimated waiting time
sk,n,p
t Estimated computation time
skt State for the task k
at Action
rt Reward function
T d
n(t) Download finish time

T d
n Download time of node n

R(τ) Cumulative reward
γ Discount factor (γ ∈ (0, 1))
π Policy
Aπ(s, a) Advantage function
V π(s) Value function
Qπ(s, a) State-action value function
Ât Estimator of the advantage function
L(θ) Loss function
D Replay memory
Dn Counter of transitions
π∗ Best policy
uat Prejudgment of the action at
uN Maximum number of sampling times
un Sampling times
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Moreover, the set of layers contained in container c ∈ C
is Lc =

{
xl
c|l ∈ L

}
, where xl

c = 1 if the container c contains
layer l. Otherwise, xl

c = 0. Besides, the size of layer l ∈ L is
dl. For each task k ∈ K generated from a user at time t, the
requested CPU resource is pk, and the requested container
is ck. After scheduling, the node assigned by this task is
represented as nk =

{
un
k |n ∈ N ∪ {n|N|+1}

}
, where un

k = 1
if the task k is scheduled to node n, otherwise, un

k = 0.

3.2 Cost
In the MEC scenario, user tasks’ completion time is closely
related to user experience [41]. Generally, task completion
time mainly includes the initialization time (download time)
and the computation time. Since the transmission time from
the user to the wireless base station is very small compared
with the download time and computation time, it is not
considered [7], [42], [43]. For example, a face recognition
task or an object detection task usually takes hundreds of
megabytes to download an image, but only a few hundreds
of kilobytes to transfer the task data [2], [44], [45].

It is assumed that task k requesting container c is sched-
uled to node n at time t. The times are calculated as follows.

Download Time: To calculate the download time, the
variable yln(t) ∈ {0, 1} is introduced. If layer l is on node n
at time t, yln(t) = 1, 0 otherwise. zln(t) ∈ [0,+∞) is used
to denote the download finish time for layer l on node n. If
layer l already exists or has not started to download, then
zln(t) = t.

For each node, it is assumed that only one layer can be
downloaded at one time. Each node has a layer download
queue. If a new layer needs to be downloaded, it is added
to this queue and may have to wait for another layer in the
download process. Therefore, the download time for task k
can be obtained as the maximum download finish time of
all required layers:

T d
k = max

l∈L

(
zln(t)× xl

c

)
− t. (1)

Computation Time: The computation time is the pro-
cessing time of the task k on the node n, which can be
obtained as follows:

T c
k =

pk
fn

. (2)

As a result, the total task completion time of task k is
calculated as follows:

Tk = T d
k + T c

k . (3)

If the task is scheduled to the cloud, all layers must
be downloaded every time and cannot be shared since the
cloud is serverless [46]. In addition, scheduling to the cloud
incurs some additional costs. So we do not consider the
situation where all tasks are scheduled to the cloud.

3.3 Problem Formulation
In this subsection, some constraints are first introduced,
then the layer dependency-aware scheduling problem is
formulated and analyzed.

Constraints: It is assumed that the scheduler is located
at the remote cloud or a master node [4]. When scheduling,
the decision made needs to meet the limit of the number

of containers running simultaneously of the node and the
storage resource limit of the node. The container number
limit is described as:

|Cn(t)| ≤ Cn, ∀t,∀n. (4)

And the storage resource limit of each node is defined as
follows: ∑

l∈L

(
1− yln(t)

)
× dl ≤ dn, ∀t,∀n. (5)

Moreover, each task should be scheduled to only one
node or the cloud, which is represented as:∑

n∈N∪{n|N|+1}

un
k = 1, ∀k. (6)

Problem Formulation: We aim to minimize the overall
task completion time from a long-term perspective, which
is defined in Eq. (3). The target is to find the best strategy
which can minimize the overall time while obeying the
constraints. Therefore, the LDS problem in MEC is defined
as follows:
Problem 1.

minT =
∑
k∈K

Tk, (7)

s.t. (4)− (6)
xl
c ∈ {0, 1}, yln(t) ∈ {0, 1}, zln(t) ∈ [0,+∞),
∀n ∈ N,∀k ∈ K,∀l ∈ L.

(8)

Problem Analysis: Problem 1 is an advanced bin-
packing problem, which is NP-hard and can only be solved
heuristically. The goal is to make online decisions in a dy-
namic MEC system and obtain long-term benefits. However,
decisions are made according to a deterministic strategy at
each time slice for most of the existing heuristic algorithms.
This strategy is fixed and cannot consider the dynamic
MEC environment and the impact of continuous decisions,
which makes them unstable in MEC. For meta-heuristic
algorithms, all future information needs to be known if
used to solve this problem from a long-term perspective.
Nevertheless, the tasks arriving in the future are unknown,
and the MEC environment is dynamically changing. So
it is challenging to use meta-heuristic algorithms to solve
this problem. In addition, if a meta-heuristic algorithm is
used only to solve the decision of one single time slice,
this requires many rounds of iteration, which is very time-
consuming. Moreover, the impact between the previous and
subsequent time slices cannot be considered in this way.
Getting better decisions for a single time slice does not
mean getting better results in the long term, as already
explained in the case study in Section 2.3. As a result, most
of the existing heuristic and meta-heuristic algorithms are
unstable in a real MEC environment. They cannot consider
the impact of continuous decisions and are unable to achieve
fast decision-making when facing large-scale problems.

In this problem, the first-order transition probability of
the tasks’ resource demand is quasi-static for an extended
period and not uniform distribution by adequately choos-
ing the time slice duration [47]. Moreover, the arrival of
tasks and the environment’s update have the memoryless
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property [4]. Therefore, this problem can be modeled as a
Markov Decision Process (MDP).

Reinforcement learning-based algorithms are suitable for
solving MDP problems [48]. In RL algorithms, at each time
t, the RL agent collects system state st, and calculates the
reward during last time slice rt−1. Then, the agent selects
action at according to a pre-defined strategy. After perform-
ing the action, the system transits to the new state st+1

in the next time slice. Similarly, the RL agent repeats the
above operations, i.e., calculating reward rt and selecting
new action at+1 according to st+1. Based on the collected
state, action, reward, and a proper discount factor, a value
can be calculated to denote the expected long-term return
with discount, as opposed to the short-term reward. The
reward is an immediate signal received in a given state,
while value is a long-term expectation. The RL agent might
receive a low, immediate reward even as it selects an action
with great potential for long-term value. By value function,
the RL agent can optimize the policy and make decisions
from a long-term perspective.

There are many kinds of RL algorithms. One of the
essential branching points is whether the agent has a model
or learns a model of the environment [25]. With a model,
a function can predict state transitions and rewards. If the
agent wants to use a model in the MEC scenario, it must
learn the model purely from experience. However, various
heterogeneous features and other MEC biases are learned,
resulting in an agent that performs well concerning the
learned model but behaves sub-optimally or terribly in the
real MEC environment. Also, model-based RL is not very
robust and cannot adapt to changing MEC environments
[26]. Therefore, the model-free RL algorithm is selected.

With model-free RL, there are two main approaches
to representing and training agents: policy-based approach
(e.g., policy gradient) and value-based approach (e.g., Q-
learning) [25], [49], [50]. The policy-based approach learns a
policy explicitly as πθ(at|st), while the Q-learning approach
learns an approximator Qθ(st, at). Then, the decision is
made according to the policy or approximator. In MEC,
Q-learning has the following apparent shortcomings com-
pared with the policy gradient method: 1) The state of the
MEC system is huge and complicated, which makes it very
difficult for Q-learning to represent and calculate the Q-
value well. While the policy gradient method can extract
and represent the MEC system with the policy network. 2)
The output of Q-learning is a deterministic strategy. Never-
theless, there are usually multiple suitable scheduling strate-
gies during a time slice in MEC. Although Q-learning has
an action exploration mechanism, it only randomly selects
actions to avoid falling into the local optimum. Therefore,
the performance is not as good as the policy-based method
that directly outputs stochastic strategies. 3) When select-
ing actions, the action with the max Q-value is selected.
This makes Q-learning more likely to select overestimated
values, which will result in over-optimistic estimates of
Q-values. The policy gradient method directly evaluates
the policy network through the value function. And the
action is selected according to the policy, which avoids the
overestimation caused by Q-value and tends to make the
training stable and reliable. Although the first shortcoming
can be solved by combining deep neural networks with Q-

learning, the latter two shortcomings are inherent problems.
As a result, the policy gradient method can achieve better
performance in the MEC environment.

4 OUR ALGORITHMS

In this section, the algorithm settings are first introduced.
Then, the LDLS algorithm is illustrated.

4.1 Algorithm Settings
The main components of RL are the agent and the MEC
environment. The agent makes scheduling decisions. To
train an agent, the state, action, reward, and policy are
needed.

State: A state st is a complete description of the MEC
environment, which contains two aspects: the nodes and the
task. To fully explore the layer dependency on each node
and consider the computation resources, the state of node n
is divided into the following two parts.

Layer Information: To fully extract the layer dependency
information, the layer distribution on each node is very
significant, i.e., y1n(t) · · · y

|L|
n (t). Besides, if the layer is down-

loading, the remaining download time is also critical, which
is denoted as z1n(t) · · · z

|L|
n (t). Finally, due to the heterogene-

ity of layers, the size of each layer also affects decision-
making. As a result, the layer state for node n can be
denoted as:

sn,lt =

y1n(t) · · · y
|L|
n (t)

z1n(t) · · · z
|L|
n (t)

dl1 · · · dl|L|

 . (9)

Resource Information: Node resources related to schedul-
ing mainly include the CPU frequency fn and bandwidth
bn. The total remaining download time T r

n(t) on the node is
also essential information for the agent, which is obtained
as:

T r
n(t) = T d

k − t. (10)

Then, the resource state for node n is denoted as:

sn,rt = [fn, bn, T
r
n(t)] . (11)

Finally, the state for all nodes are defined as follows:

sNt =
{
sn,lt , sn,rt |n ∈ N

}
. (12)

Secondly, for task k, the set of requested layers Lk can be
obtained by the requested container ck as Lk = Lc. Besides,
some estimated evaluations are carried out to let the agent
better understand each node’s situation. Specifically, for the
task k, the number of layers that need to be downloaded
sk,n,et , layer download time sk,n,dt , waiting time sk,n,wt ,
and computation time sk,n,pt required for this task to be
scheduled to node n is calculated. This information is critical
for the agent and directly affects which node the task is
scheduled to. The estimated information is obtained as
follows:

sk,n,et =
∑
l∈L

xl
c ×

(
1− yln(t)

)
,

sk,n,dt =
∑
l∈L

xl
c ×

(
1− yln(t)

)
× dl

bn
,

sk,n,wt = max
l∈L

(
zln(t)× xl

c

)
− t.

(13)
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And sk,n,pt is obtained according to Eq. (2). Then the state
for the task is obtained as follows:

skt = {Lc, pk} ∪
{
sk,n,et , sk,n,dt , sk,n,wt , sk,n,pt |n ∈ N

}
. (14)

Finally, the state is defined as:

st = sNt ∪ skt . (15)

Action: The action space is the combination of the edge
node set N and the remote cloud n|N|+1, which can be
denoted as:

at ∈ N ∪ {n|N|+1}. (16)

Reward: The reward function rt is critically important.
The agent’s goal is to maximize the reward, while in MEC,
the goal is to minimize the task completion time, so the
reward is obtained as rt = −Tk.

The environment returns the reward after the action
execution. Nevertheless, it is also estimated to do more
training to improve the performance. The estimation of
reward mainly estimates the download time defined in Eq.
(1). Layers are divided into three types: already existing,
downloading, and not existing. For layers that already exist,
the download time is 0. For layers that are downloading,
download finish time is taken as their total finish time, i.e.,
maxl∈L

(
zln(t)× xl

c

)
.

Besides, for those layers that are needed by the requested
image but have not yet started to download, the download
finish time T d

n(t) is obtained as follows:

T d
n(t) =max

(
t, T d

n(t− 1)
)

+
∑
l∈L

dl × (1− yln(t))× 1 ·
{
zln(t) = t

}
× xl

c

bn
,

(17)
where 1 · {} is the Iverson bracket, which is equivalent to 1
when the condition is satisfied. Otherwise, it is equivalent
to 0. At time 0, T d

n(0) = 0. Based on these, the download
time of node n can be obtained as:

T d
n = max

(
max
l∈L

(
zln(t)× xl

c

)
, T d

n(t)

)
− t. (18)

The goal is to maximize the cumulative reward over
long-term scheduling, which is denoted as R(τ) with a
discount factor γ ∈ (0, 1):

R(τ) =
T∑

t=0

γtrt. (19)

Policy: A policy is a rule used by the agent to decide
what actions to take, which is usually denoted by π, i.e.,
a(t) ∼ π(·|s(t)). The probability of the scheduling process
in MEC scenarios is defined as:

P (τ |π) = ρ0(s0)Π
T−1
t=0 P (st+1|st, at)π(at|st), (20)

where ρ0(s0) is the start-state distribution. The expected
return denoted by J(π) is obtained as:

J(π) =

∫
τ
P (τ |π)R(τ) = Eτ∼π[R(τ)]. (21)

The Problem 1 can be transformed into an optimal policy
problem, which aims to obtain the optimal policy π∗:

π∗ = argmax
π

J(π). (22)

4.2 Layer Dependency-aware Learning Scheduling Al-
gorithm

The policy gradient-based LDLS algorithm is introduced in
this section, including policy optimization, policy network,
and action selection.

Policy Optimization: Policy gradient methods compute
an estimator of the policy gradient and plug it into a stochas-
tic gradient ascent algorithm, where the advantage function
is crucially important [49]. The advantage function indicates
the relative advantage of each action, which is denoted as:

Aπ(s, a) = Qπ(s, a)− V π(s), (23)

where the value function V π(s) gives the expected return
if the agent starts in state s and acts according to policy π,
which is defined as:

V π(s) = Eτ∼π[R(τ)|s0 = s]. (24)

And the state-action value function Qπ(s, a) is defined as:

Qπ(s, a) = Eτ∼π [R(τ)|s0 = s, a0 = a] . (25)

Algorithm 1 LDLS

Input: s0
Output: π∗

1: for epoch = 1, 2, ... do
2: Initialize D = ∅, Dn = 0
3: Reset environment
4: Get state s0
5: for t = 1, 2, ... do
6: Run policy πθold in environment
7: Store transition (st, at, rt, rt(θ), st+1) in D
8: Dn ← Dn + 1
9: if Dn mod |D| = 0 then

10: Compute Â1, ..., ÂT by Eq. (29)
11: Compute L(θ) by Eq. (30)
12: Optimize network and update weights θold ← θ
13: end if
14: if done then
15: Break
16: end if
17: end for
18: end for
19: Return π∗

20: end

The most commonly used gradient estimator ĝ has the
form of:

ĝ = Êt

[
∇θ log πθ(at|st)Ât

]
, (26)

which is obtained by differentiating the loss function
LPG(θ) of policy gradient:

LPG(θ) = Êt

[
log πθ(at|st)Ât

]
, (27)

where πθ is a stochastic policy and Ât is an estimator
of the advantage function at time step t. However, it is
appealing to perform multiple steps of optimization on the
loss LPG(θ) using the same scheduling trace. And it often
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Fig. 4: Overview of the LDLS algorithm. The main components include the policy network and the value function network.
The policy network comprises the FM component and several linear neural network layers, and the value function is
composed of several linear layers. The main steps of the algorithm include system state observation, action selection,
reward calculation, network update, etc.

leads to destructively large policy updates. To solve these
problems, the loss function can be customized as [51]:

LTRPO(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
, (28)

where rt(θ) = πθ(at|st)
πθold

(at|st) , and rt(θold) = 1. Besides, the

estimated advantage Ât is calculated as:

Ât =− V (st) + rt + γrt+1+

· · ·+ γT−t+1rT−1 + γT−tV (sT ).
(29)

Without a constraint, maximization of LTRPO(θ) would
lead to an excessively large policy update. Hence, the loss is
further customized into [26]:

L(θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

(30)
where ϵ is a hyperparameter, e.g., ϵ = 0.2. And
clip (rt(θ), 1− ϵ, 1 + ϵ) is used to clip the probability, i.e.,
removes the incentive for moving rt outside of the inter-
val [1 − ϵ, 1 + ϵ]. Then, the minimum of the clipped and
unclipped objective is taken.

The LDLS algorithm is shown in Algorithm 1. For each
epoch, the replay memory D is first initialized as an empty
set. Dn is a counter of transitions, where the transition is
denoted as (st, at, rt, rt(θ), st+1). Then, the environment is
reset, and the initial state s0 is obtained. The agent runs
the policy in the environment for each decision-making
time, i.e., observes the system state, selects an action, and
then calculates the reward. The transition is then stored.
If enough transitions have been collected, the network is
trained as lines 9 - 13. Then, if all tasks are tackled, the
epoch is finished. Finally, the best policy π∗ is returned.

The interactions between the environment, the value
function, and the policy network are shown in Fig. 4. The
details of the networks are described as follows.

Policy Network: There is a significant challenge in MEC
to model feature interactions among layers effectively. For
example, different images may share some layers, and the
distribution of these layers in different nodes can affect

the scheduling results. Furthermore, the layer dependency
interactions are hidden in data and challenging to identify a
priori, especially when the number of features is extensive.

The machine learning-based method is promising for
feature extraction [23]. Some ideas extend CNN or RNN
to predict the feature interactions [52], [53]. However, CNN-
based models are biased to the interactions between neigh-
boring features, while RNN-based models are more suitable
for sequential dependency.

As mentioned in Section 2.1, when making scheduling
decisions, we only consider whether the layer exists locally,
without considering the order of the image construction. In
other words, there is neither a neighbor feature nor a se-
quential dependency. None of CNN or RNN apply to layer
dependency. FM [24] models pairwise feature interactions
as the inner product of latent vectors between features and
shows promising results. To derive a learning model that is
able to learn feature interactions of all orders in an end-to-
end manner, the FM model combined with a deep neural
network is adopted [23].

As shown in Fig. 4, the feature extraction layers of the
node consist of two components: FM component and deep
component. The FM component models pairwise feature
interactions as the inner product of respective feature latent
vectors. It can capture order-2 feature interactions among
layers much more effectively since the layer dependency is
sparse. The output of FM is the summation of an addition
unit and a number of inner product, which is defined as:

hn = ⟨w, e⟩+
d∑

j1=1

d∑
j2=j1+1

⟨Fi, Fj⟩ej1 · ej2 , (31)

where w ∈ Rd and Fi ∈ Rk. The addition unit ⟨w, e⟩
reflects the importance of order-1 features, and the latter
inner product unit represent the impact of order-2 feature
interactions. d is the dimension of the embedding layers,
and ej is the embedding vector.

The deep component is a feed-forward neural network.
To obtain better feature interactions among nodes, a hn is
calculated for each node. As shown in Fig. 4, each node’s
features are grouped as the input. Then, an embedding layer

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 05,2022 at 05:25:31 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3139995, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

is used to compress the input vector to a low-dimensional,
dense real-value vector before further feeding into the first
hidden layer. Moreover, the latent feature vectors F in FM
now serve as network weights learned and used to compress
the input field vectors to the embedding vectors. The neural
network weights are shared between edge nodes, and an
output for all nodes is obtained with the node output layer.

Besides, the task features are input to the hidden linear
layers, and another output layer is used to obtain the overall
feature of the task. After that, the nodes’ and the task’s
outputs are combined to get the policy network’s final
output.

Action Selection: When selecting actions, the agent sam-
ples based on the probability output by the policy network.
It does not judge whether the action is reasonable. However,
in the MEC scenario, many actions are very terrible. For
example, when a selected node runs a large number of
containers, which results in high resource utilization, or a
node has stored many other layers, there is not enough
space to store the required layers, or some other layers
must be deleted. To avoid these actions, some constraints
are added to the action selection process.

First, for the sampled node at = n, if the number of
containers running on the node exceeds a threshold Cn, then
the node is considered to be under a high load, which can
be denoted as:

uc
at

= 1 · {|Cn(t)|+ 1 ≤ Cn} , (32)

where uc
at

= 1 means that the action is acceptable, otherwise
it is a terrible action.

Algorithm 2 Action Selection

Input: at
Output: at

1: Initialize un = 0
2: Get uat by Eq. (34)
3: while uat < 1 do
4: if un ≥ uN then
5: at = n|N|+1

6: break
7: end if
8: Sample at again
9: un = un + 1

10: Get uat for new action by Eq. (34)
11: end while
12: Return at
13: end

Secondly, if the sum of the downloaded and download-
ing layer sizes on the selected node exceeds a threshold,
then scheduling tasks to this node causes the layer to fail
to download the required layers or some layers must be
deleted to succeed, which can be obtained as:

us
at

= 1 ·
{
dn(t) +

(
1 ·

{
zln(t) > 0

}
+ xl

c

)
× dl ≤ dn

}
,

(33)
where dn(t) is the available storage space on node n at time
t. If us

at
= 1, the action is acceptable. Otherwise, it is not a

good action. Besides, it is always acceptable to schedule the

tasks to the remote cloud at a higher cost. The prejudgment
of the action at can be summarized as:

uat = uc
at
us
at

+ 1 · {at = n|N|+1}. (34)

If uat ≥ 1, then at is a feasible action. Otherwise, the action
is sampled again.

The action selection algorithm is shown in Algorithm 2.
A counter un is first initialized to 0. The prejudgment uat

is obtained by Eq. (34). Then, if uat
< 1, which means the

action is not feasible, the action is sampled again, as shown
in lines 3 - 11. Denote the maximum number of sampling
times as uN and the sampling times as un. If the number of
samples exceeds the maximum limit of the counter, the task
is scheduled to the cloud.

4.3 Computational Complexity Analysis
The analysis of computational complexity is as follows. As
shown in Fig. 4, the primary process of the LDLS algorithm
consists of four steps: system state observation, action selec-
tion, reward calculation, and network update.

First, the system state is obtained according to Eq. (15).
As illustrated in Section 3.1, there are |N| nodes and |L|
layers. Thus, the complexity of Eq. (15) is O(|N||L|). Second,
the action is selected according to the policy network and
updated according to Algorithm 2. For Algorithm 2, it
mainly contains a while loop. The sample operation (line 8)
in the loop will call the policy network. The time complexity
of the policy network is only related to the network size,
which can be considered a constant time Ot. So the com-
plexity of Algorithm 2 is O(uNOt), where uN is a constant.
More details on the complexity of the policy network will be
introduced in the network update step. Third, the reward is
defined as rt = −Tk and calculated according to Eq. (3). So
the complexity of reward calculation is O(|L|). These steps
are executed sequentially so that they can be completed in
polynomial time.

Moreover, to evaluate the complexity of the network
update, a theoretical analysis of the computational com-
plexity of the policy network and value function based on
floating point operations (FLOPs) is performed, which is
widely used to measure the computational complexity of
deep learning models [54], [55].

In the policy network as shown in Fig. 4, for the input
of node features, there is an embedding layer, an FM layer,
and three linear layers. The embedding layer is a dictionary
lookup, so it has 0 FLOPs [56]. For the FM layer, the
FLOPs is calculated as (|N| + |L| + 1)d [57], where d is the
dimension of the embedding layers. Denote the input and
output dimensions of the j-th linear layers (from bottom
to top) are Hj

i and Hj
o , respectively. The FLOPs of the

three linear layers are (2H1
i − 1)H1

o , (2H2
i − 1)H2

o , and
(2H3

i −1)H3
o , respectively [58]. Besides, for the input of task

features, there are three linear layers. The total number of
FLOPs of these three linear layers is

∑6
j=4(2H

j
i − 1)Hj

o .
Finally, the actor output layer is linear, so its FLOPs is
(2H7

i − 1)H7
o . Therefore, the total FLOPs of the policy

network is (|N|+ |L|+ 1)d+
∑7

j=1(2H
j
i − 1)Hj

o .
In addition, the value function has three linear layers,

so the total FLOPs of value function is
∑10

j=8(2H
j
i − 1)Hj

o .
Usually, a linear layer is followed by a non-linear activation
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TABLE 4: Statistics of images and layers

Type Image Layer
Number 70 378
Max Size 9371Mb 809Mb
Min Size 291Mb 1Mb
Average Size 3369Mb 414Mb

function, such as a ReLU or a Softmax [59]. It is common
not to count these operations, as they only take up a tiny
fraction of the overall time. For example, a ReLU is just
y = max(x, 0). On a fully-connected linear layer with Hj

o

output neurons, the ReLU uses Hj
o of these computations,

i.e., it has Hj
o FLOPs. Compared with matrix multiplies and

inner products, the FLOPs of the activation function can
be ignored. From the analysis above, we can see that the
computational complexity of the FM layer is far less than
the linear layers. Therefore, compared with traditional deep
RL algorithms, combining FM to the policy network will
only slightly increase the computational complexity in the
process of decision making.

5 EVALUATION

In this section, the performance of the proposed algorithm
is evaluated. The experimental settings are first introduced.
Then, the experimental results are presented and analyzed.

5.1 Experimental Settings

This subsection introduces the data preprocessing, baseline
algorithms, parameter settings, and simulator setup.

Data Preprocessing: The popular images are crawled
from real-world container data [28]. The relations between
images and layers are extracted. After preprocessing, 70
images and 378 layers are extracted for experiments. The
average number of layers per image is 8.6, and more sta-
tistical information about images and layers is shown in
TABLE 4. For each user, the requested container is generated
according to uniform or Zipf distribution [60].

Baselines: To compare the performance, several base-
lines are conducted. Among these baselines, the Dep and
Dep-Soft algorithms are the state-of-the-art layer-based al-
gorithms [7]. The action space of these algorithms is also
the set of edge nodes and the remote cloud. If all nodes do
not have enough resources, then the task is scheduled to the
cloud. The details are as follows.

1) Dep [7]: Dep is a layer-based scheduling algorithm.
It counts the distribution of all layers required by the
requested image on each node to calculate a score
based on the size of the existing layers. Then the
scheduling decision is made based on the score.

2) Dep-Soft [7]: Dep-Soft is a modified version of Dep
algorithm. The score is calculated the same as the
Dep algorithm. Besides, a threshold is set, and a
node is randomly selected among all nodes that
exceed the threshold.

3) Kube [18]: Kube is an image-based scheduling algo-
rithm. It is one of the default scheduling algorithms
of Kubernetes. When scheduling, it counts the dis-
tribution of all requested images on each node and

calculates a score based on the size of the existing
images; then, the schedule is based on the score.

4) Monkey [7]: Monkey is a random algorithm; it
randomly selects a node for scheduling each time.

5) Dep-Down: Dep-Down is modified based on the
Dep algorithm. When calculating the score, the layer
size is changed to the estimated download time.

6) Dep-Wait: Dep-Wait modifies the download time
in the Dep-Down algorithm to the waiting time of
layers that are downloading.

7) Dep-Comp: Dep-Comp modifies the download
time in the Dep-Down algorithm to the sum of task
computation time and download time.

8) GA [61]: Genetic Algorithm (GA) is a meta-heuristic
algorithm inspired by the process of natural selec-
tion by relying on biologically inspired operators
such as mutation, crossover, and selection.

9) DE [62]: Differential Evolution (DE) is a meta-
heuristic algorithm that optimizes a problem by
iteratively trying to improve a candidate solution
concerning a given measure of quality.

10) PSO [63]: Particle Swarm Optimization (PSO) is a
meta-heuristic algorithm. It solves a problem by
having a population of candidate solutions (parti-
cles) and moving them around in the search space
according to a simple mathematical formula over
the particle’s position and velocity.

11) DQL [48]: Deep Q-Learning (DQL) is a value-
based RL algorithm that combines deep neural net-
works and Q-learning to solve high-dimensional
state space problems.

Parameter Settings: The node’s available storage space
is randomly set between 5GB and 15GB, and the available
bandwidth is randomly set between 60Mbps and 90Mbps.
The CPU frequency is randomly generated between 0.8GHz
and 1.2GHz. The default node number is 10, while the node
number is also a variable in some experiments. Besides,
the bandwidth and CPU frequency of the cloud is set to
100Mbps and 1GHz, respectively. Furthermore, the default
task number is 2000. In non-heterogeneous MEC, each
node’s default bandwidth, CPU frequency, storage space,
and maximum container number are set to 70Mbps, 0.9GHz,
15GB, and 10, respectively.

For GA, DE, and PSO algorithms, according to the eval-
uation, the performance is no longer improved after 300
iterations, so their iteration rounds are all set to 300. The
dimensions of the objective function are all 1, the population
size is set to 10, and the range of the independent variable is
[0, |N |], i.e., the set of all edge nodes and the remote cloud.
For the DQL algorithm, two three-layer neural networks are
used to extract node features and task features, respectively,
and then another two-layer neural network is used to merge
the features to output. The learning rate is set to 0.01, the
discount parameter is set to 0.9, and the threshold in action
selection is set to 0.1 [4], [64].

Simulator: An MEC simulation environment is imple-
mented with Python, which mainly includes the classes
of edge node, container, image, layer, task, scheduler, etc.
An environment is created based on these classes to return
the reward, state, etc. Moreover, the environment is online
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Fig. 5: Performance with different task number in heterogeneous MEC (Uniform distribution)
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Fig. 6: Performance with different task number in heteroge-
neous MEC (Zipf distribution)

updated according to the action selected by the agents.

5.2 Experimental Results
To illustrate the proposed LDLS algorithm’s performance,
the experiments are first conducted in a heterogeneous
MEC scenario. Secondly, to verify each resource’s impact,
more experiments are conducted in the non-heterogeneous
MEC scenario. Finally, additional experiments on the LDLS
algorithm are supplemented. The experimental results are
illustrated in scientific notation, e.g., 1e4 equals 1× 104.

Heterogeneous MEC: The performance of the proposed
LDLS algorithm against the baseline algorithms with differ-
ent task numbers and node numbers in heterogeneous MEC
are shown in Figs. 5, 6, and 7, respectively.

Task Number: The total task completion time with dif-
ferent task number is shown in Fig. 5(a). It can be seen
that the LDLS algorithm outperforms the baselines. On

average, the total time of the LDLS algorithm is reduced by
23%, 19%, 72%, 15%, 41%, 11%, 30%, 23%, 31%, 31%, 14%
compared with Dep, Dep-Soft, Kube, Monkey, Dep-Down,
Dep-Wait, Dep-Comp, GA, DE, PSO, and DQL algorithms,
respectively.

Moreover, the total time is composed of download time
and computation time, as shown in Figs. 5(b) and 5(c),
respectively. As the number of tasks increases, the LDLS
algorithm reduces the download time more evidently. This
is because more and more layers need to be downloaded,
which leads to an increase in download time, and it accounts
for an increasing proportion of the total time. Therefore, the
LDLS algorithm chooses to sacrifice the computation time
to reduce the download time and obtain better long-term
performance.

Furthermore, the download time can be divided into
two parts: the time of layers that are being downloaded
(downloading time) and the time of layers waiting to be
downloaded (pending download time). Since the down-
loading time is generally less than the pending download
time (only if there are no pending download layers, the
downloading time is more significant), only the pending
download time is illustrated in Fig. 5(d). It can be seen
that the LDLS algorithm is more inclined to choose nodes
with a shorter pending download time. However, the Kube
algorithm cannot make a good decision, which leads to
a much longer download time as the number of tasks
increases. In addition, comparing Figs. 5(d) and 5(e), it can
be found that the pending download time is much smaller
than the waiting time of the node, which is an advantage for
layer-based algorithms.

Finally, the total download size of each algorithm is
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Fig. 7: Performance with different node number in hetero-
geneous MEC
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shown in Fig. 5(f). The algorithm with a smaller download
size does not always perform better. This is because the
download time on heterogeneous edge nodes is not only
related to download size but also related to bandwidth,
which is analyzed in the following experimental results in
non-heterogeneous MEC.

The results of the task generated with Zipf are shown in
Fig. 6. As the number of tasks increases, the advantage of the
total task completion time of the LDLS algorithm becomes
more prominent. Compared with the baseline algorithms,
LDLS reduces the total task time by up to 36%.

Node Number: As shown in Figs. 7(a) and 7(b), the
LDLS algorithm has an advantage regardless of the task
generation method. Besides, the performance of the Kube
algorithm is unstable with different node numbers. This is
because the Kube algorithm is an image-based scheduling
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Fig. 9: Performance with different task number in non-
heterogeneous MEC

algorithm. It cannot judge the distribution of layers, leading
to terrible decisions, thereby repeatedly downloading many
layers. Further experiments show that the performance of
these baseline algorithms has a great relationship with the
random seed.

Random Seed: Fig. 8 shows the performance of algorithms
with the random seed from 1 to 10 when all other parameter
settings remain unchanged. The performance of the Kube
algorithm is very different, even if the random seed changes
very little. This is because the traversal order in this algo-
rithm is determined according to the random seed. Thus,
different traversal orders cause the image-based scheduling
algorithm to make different choices, which may cause a lot
of repeated layer downloads on different nodes.

In summary, the LDLS algorithm reduces the total time
than the Dep, Dep-Soft, Kube, Monkey, Dep-Down, Dep-
Wait, Dep-Comp, GA, DE, PSO, and DQL algorithms in
heterogeneous MEC by 17%, 16%, 54%, 13%, 33%, 9%, 26%,
17%, 22%, 26%, and 10% on average, respectively.

Non-heterogeneous MEC: To further compare the im-
pact of some key parameters in MEC, experiments are
conducted in non-heterogeneous MEC as shown in Figs. 9
to 12.

Task Number: The performance with different task num-
bers in non-heterogeneous MEC with uniform and Zipf task
distribution is shown in Figs. 9(a) and 9(b), respectively. It
can be concluded that the LDLS algorithm’s performance
is better than baseline algorithms no matter what kind of
distribution. Also, the advantage of the LDLS algorithm
on tasks generated based on the Zipf distribution is more
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Fig. 10: Performance with different node number in non-
heterogeneous MEC

evident. Since it is a non-heterogeneous MEC, the total task
completion time increases almost linearly as the number of
tasks increases.

Node Number: The results are shown in Figs. 10. In most
cases, the LDLS algorithm performs better regardless of the
task generation method. As the number of nodes increases,
the gap between the LDLS algorithm and the baseline al-
gorithm has narrowed. The reason is that the computation
resources increase with larger node numbers; even random
algorithms can achieve better results.

It can be concluded that the performance of tasks gen-
erated by Zipf is better than uniform. Therefore, in the
following experiments, only the performance of tasks with
uniform distribution is compared in non-heterogeneous
MEC.

Bandwidth: The performance with different bandwidth is
shown in Fig. 11. From Fig. 11(a), it can be concluded that
the LDLS algorithm performs much better than other algo-
rithms when the bandwidth is small. As shown in Fig. 11(b)
and Fig. 11(c), both the download time and computation
time of the LDLS algorithm are less than other algorithms
when the bandwidth is small. The LDLS algorithm has
learned a better strategy for scheduling the tasks to the
cloud when bandwidth is insufficient since the download
time is relatively long with small bandwidth. Besides, as
the bandwidth increases, the LDLS algorithm’s performance
always remains better than baseline algorithms.

Container Number: The container number determines the
maximum number of containers that each node can run
simultaneously, which can be regarded as a limitation of

computation resources. The larger the container number,
the more computation resources. As shown in Fig. 12(a),
when the container number becomes more extensive, the
Kube algorithm’s performance gets worse, while the LDLS
algorithm remains stable.

CPU Frequency: The CPU frequency determines the pro-
cessing speed of the node, thereby affecting the task comple-
tion time. As shown in Fig. 12(b), the total task completion
time becomes less when the CPU frequency increases. This
is because when the CPU frequency becomes larger, the
processing speed becomes faster, and the computation time
decreases.

Storage Space: Finally, the performance of different stor-
age spaces is shown in Fig. 12(c). When the storage space
is relatively limited, the LDLS algorithm chooses to offload
tasks to the cloud to reduce the computation time greatly.

LDLS: To further illustrate the performance of the LDLS
algorithm, more experiments are conducted. First, the Cu-
mulative Distribution Function (CDF) of task completion
time is shown in Fig. 13. It can be seen that the proportion
of tasks with a shorter task completion time of the LDLS al-
gorithm is more than baseline algorithms. Thus the average
task completion time of the LDLS algorithm is shorter than
baseline algorithms. This proves that the LDLS algorithm
can optimize the scheduling decisions from a long-term
perspective.

Fig. 14 shows the reward, the loss of the policy network,
the loss of the value function, and the probability of action
selection of the LDLS algorithm. It can be seen from Fig.
14(a) that the LDLS algorithm converges after several hun-
dred rounds of training, which shows that the algorithm
has good convergence. The loss curves in Figs. 14(b) and
14(c) further show the convergence. Fig. 14(d) shows the
sum of the probabilities according to the actions selected
by the policy network in each epoch. The greater the sum
of the probabilities, the more good actions selected by the
policy network, i.e., the better the performance of the policy
network. It can be seen from Fig. 14(d) that although the loss
is no longer reduced after several rounds of the epoch, the
probability of selecting a good action becomes greater, i.e.,
the performance of the policy network is getting better and
better over time.

6 DISCUSSION

From the experimental results, we can see the effectiveness
of our algorithms. The following issues deserved further
investigation.

Task transmission cost. In our MEC scenario, the user
tasks are first transmitted to the base stations, then sched-
uled to different edge nodes for processing. The task trans-
mission time mainly includes the time for the user to trans-
mit task data to the base station and the time to transmit
the data from the base station to the node. The selection of
the user base station is made according to the underlying
protocol, which is not within the scope of this paper. Then
the time to transmit task data to the base station is consid-
ered a constant value for each user task. Besides, edge nodes
are generally connected through an intranet with a stable
bandwidth [42], [43], so the transmission time between the
base station and different nodes can also be considered a
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Fig. 11: Performance with different bandwidth in non-heterogeneous MEC (Uniform distribution)
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Fig. 12: Performance with different container number, CPU frequency, and storage space in non-heterogeneous MEC
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Fig. 13: CDF of the task completion time

small constant value. As a result, the task transmission time
is equivalent to a constant value for each user task.

Compared with the download time of the images and the
computation time of the tasks, the task transmission time is
very short. For example, as shown in TABLE 4, the average
size of layers is 414Mb. In comparison, the photo size that
needs to be transferred after preprocessing is only about 4 -
8Mb [45], [65]. Assuming that the bandwidth from the task
to the base station is only 10Mbps, the transmission time is
then about 0.4 - 0.8 seconds. As shown in Fig. 5, in the case
of 2000 tasks, the average download time of image-based
scheduling (Kube algorithm) is about 70 seconds, while the
average download time of the LDLS algorithm is about 16
seconds. Based on these observations, we do not consider

the transmission time in the system model and focus on
optimizing the download time and computation time [7].

Furthermore, in this paper, we focus on optimizing the
task completion time on the node from the granularity of
the layer. Considering the task transmission time, then the
location of the wireless base station, the wireless channel
condition between the user and the base station, the mo-
bility of users, and the handover of user tasks need to be
considered. This will make the system model very complex,
which is left for our future work.

Layer Sequence. From the perspective of task schedul-
ing, the layers form a set instead of a sequence when extract-
ing layer dependencies. The set of layers can be downloaded
in an arbitrary order when downloading an image. In this
paper, on each edge node, layers are downloaded in the
order requested by the task, and good experimental results
have been obtained. However, we can further optimize the
layer download sequence. For example, when determining
the layer download sequence of multiple images on a sin-
gle edge node, the layer download sequencing problem is
equal to a classic precedence-constrained single machine
job scheduling problem 1|prec|

∑
ti [66], where 1 means

the single machine, prec means jobs have precedence con-
straints, and

∑
ti denotes that the objective is to minimize

the total completion time of all jobs. Jointly optimizing
the task scheduling and the layer download sequencing
problem in an online manner is challenging and interesting,
and we will leave it as future work.
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Fig. 14: Reward, loss of the policy network, loss of the value function, and probability of action selections of the LDLS
algorithm

7 CONCLUSIONS

We have formulated the layer dependency-aware schedul-
ing problem in heterogeneous MEC. A policy gradient-
based algorithm with well-extracted layer dependency in-
formation and improved action selection effectively reduces
the task completion time with limited resources. Compared
with the state-of-the-art baseline algorithms, the proposed
LDLS algorithm outperforms the image-based and layer-
based algorithms by 54% and 19%, respectively.

This is our first attempt at layer dependency-aware
scheduling. We have obtained inspiring experimental re-
sults, proving that scheduling at the granularity of the layer
can effectively reduce the task completion time in hetero-
geneous MEC. On this basis, much work can be done. For
example, tasks can be grouped and scheduled together to
use the layer dependency information further. Moreover, the
download sequence of the layers can be further considered
to optimize the waiting time of layer download for tasks.
Besides, the registry’s deployment on the edge nodes or
layer caching with some selected edge nodes is also up-and-
coming to further reduce the task completion time. These
will be considered in our future work.
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