Efficient Container Assignment and Layer
Sequencing in Edge Computing

Jiong Lou, Hao Luo, Zhiging Tang, Weijia Jia, Fellow, IEEE and Wei Zhao, Fellow, IEEE

Abstract—Containers are becoming a popular way of running applications in edge computing. Before running the application, the
edge node must download the application’s container image consisting of multiple layers. However, given the limited bandwidth in edge
computing, the container startup latency due to long image download time seriously affects the real-time performance. In this paper, we
jointly determine the container assignment and the layer download sequence to reduce the total startup latency. We formulate the
Container Assignment and Layer Sequencing (CALS) problem and prove its NP-hardness. A Layer-Aware Scheduling Algorithm
(LASA) is proposed, fully considering layer sharing among images. Firstly, layers shared by the same set of images are grouped to
reduce CALS’s problem scale without affecting the optimal result. Secondly, considering both layer sharing and existing layer size on
edge nodes, a layer-aware algorithm is designed to assign containers to appropriate edge nodes. Finally, to determine the layer
download sequence on each edge node, an approximation algorithm is proposed. We further analyze the approximation ratio of LASA
in the case of identical edge nodes with sufficient capacity. Extensive experiments based on real-world data show the effectiveness of

LASA, which reduces the total startup latency by 40% to 60%.

Index Terms—Container scheduling, container startup, edge computing, layer sharing

1 INTRODUCTION

ITH the increasing demand for low-latency and
highly flexible applications, cloudlets [1], fog [2] and
edge computing [3] that are in closer proximity to mobile
devices provide attractive ways to deploy applications.
Ultra-low latency and ultra-high bandwidth 5G technology
further facilitates the development of edge computing [4],
[5]. Virtualization can provide isolated environments for
applications to avoid software-dependency conflicts and en-
hance system robustness [6]. However, in edge computing,
the computation resources and communication resources
are limited compared with the cloud, and the edge envi-
ronment changes are rapid [7], [8]. Traditional virtualiza-
tion techniques, i.e., heavy virtual machine (VM), cannot
resolve these issues. The emerging technique, container, is
believed to be a promising way to deploy applications in
edge computing [9], [10]. Multiple containers on the same
node share the machine’s OS system kernel and thereby
do not require an OS per container, driving higher server
efficiencies, suitable for resource-limited edge nodes.
Though the container is lightweight, its startup latency
can significantly affect users” quality of experience, espe-

o Corresponding author: Weijia Jia, Zhiging Tang.

o]. Lou is with Department of Computer Science and Engineering, Shang-
hai Jiao Tong University, Shanghai, 200240, China, and is also Institute of
Artificial Intelligence and Future Networks, Beijing Normal University,
Guangdong, 519087, PR China (visiting). E-mail: 1j1994@sjtu.edu.cn

e H. Luo is with Guangdong Key Lab of Al and Multi-Modal Data Pro-
cessing, BNU-HKBU United International College Zhuhai, Guangdong,
519087, PR China. E-mail: r130201705@mail .uic.edu.cn

o Z. Tang and W. [ia are with Institute of Artificial Intelligence and Future
Networks, Beijing Normal University (BNU Zhuhai), and W. Jia is also
with Guangdong Key Lab of Al and Multi-Modal Data Processing, BNU-
HKBU United International College Zhuhai, Guangdong, 519087, PR
China. E-mails: domain@sjtu.edu.cn, jiawj@bnu.edu.cn

o W. Zhao is with CAS Shenzhen Institute of Advanced Technology,
Shenzhen, 518055, PR China. E-mail: zhao.wei@siat.ac.cn

cially for applications that have short execution times (e.g.,
processing periodic updates from sensors) or need rapid
response times (e.g., robot motion [11]) in edge computing.
The container startup latency consists of fetching (if not
exist) the container image from the remote registry to its
host machine and installing the image. It is reported that,
on average, a median container startup needs 25 seconds in
Google clouds [12]. In edge computing, the startup latency
is much higher for longer image download time due to
the limited bandwidth. For example, the download time of
an image sized 300 MB is at least 240 seconds with a 10
Mbps link. The image download time occupies the most
proportion of the startup time since the image installation
latency is lower (about one second) and more stable [13]
on heterogeneous devices. Besides, due to limited storage
resources, dynamic user mobility, and a huge number of
container images, it is impossible to store all images on ev-
ery edge node in advance. Thus, the considerable container
startup time becomes an urgent problem to be optimized.
In the literature, some studies are proposed to reduce
container startup latency by fetching image files on demand
[14], extracting common parts of multiple containers [15],
[16], or reorganizing images [17]. However, these studies
either modify the container system architectures [14], [17]
or reduce container isolation [15], [16]. In fact, a container
image consists of multiple individual layers and different
container images share common layers [14], which effi-
ciently saves storage by reducing redundant files. Moreover,
the layer sharing mechanism can also be utilized to reduce
startup latency without modifying containers. Fu et al. [13]
design a layer-match scheduling policy that assigns a con-
tainer to the edge node that stores the most layers required
by the container to reduce the remaining download time.
Nevertheless, the previous studies still ignore the fol-
lowing essential issues: 1) Joint scheduling of multiple con-

tainers. Edge computing can serve multiple users simul-
taneously [18]. Making scheduling decisions for a set of
containers can achieve a lower total startup latency than
scheduling each container independently, like layer-match
scheduling in [13] (called Container Assignment problem).
2) The impact of layer download sequence (called Layer
Sequencing problem). Since a container can run right after
fetching all of its layers, a proper download sequence of
layers belonging to different containers can further reduce
the total startup latency. Furthermore, heterogeneous edge
environments and layer sharing among images make the
problem more challenging.

In this paper, to address these issues, we consider assign-
ing multiple containers to heterogeneous edge nodes and
sequencing layers on each edge node. The Container As-
signment and Layer Sequencing (CALS) problem is formu-
lated as a Mixed Integer Quadratic Programming (MIQP)
problem. Since the CALS problem involves assigning mul-
tiple containers and sequencing layers shared by different
container images, it is proved to be NP-hard.

A three-step Layer-Aware Scheduling Algorithm (LASA)
is proposed to make scheduling decisions efficiently: Firstly,
the layers shared by the same set of containers are grouped.
The optimal result of scheduling a group of layers as
a whole is proved to be equal to scheduling individual
layers. The problem scale is drastically reduced. Secondly,
a layer-aware algorithm is designed to assign containers
to edge nodes properly. At each time, a container-node
pair is selected by considering two important factors, layer
sharing among containers and the size of existing layers
already on edge nodes. After determining every container’s
assignment, the CALS problem is decomposed into multiple
independent sub-problems that optimize each edge node’s
layer download sequence. Finally, to determine the layer
download sequence, a greedy layer sequencing algorithm
with an approximate ratio of 2 is proposed, efficiently
running on each edge node in parallel. The approximation
ratio of LASA is proved to be 2|E| in the case of identical
edge nodes with infinite storage capacity and unlimited
running container number, where |E| is the number of edge
nodes. Extensive simulations are performed to compare the
performance of LASA with existing baselines. The simula-
tion results show that LASA substantially reduces the total
startup time by 40% to 60%.

To the best of our knowledge, we are the first team to
tackle the CALS problem in edge computing. The main
contributions of this paper are summarized as:

1) To minimize container startup latency, we jointly
consider the container assignment and the layer
download sequence, and formulate the CALS prob-
lem, which is proved to be NP-hard.

2) To solve the CALS problem, LASA is proposed to
make scheduling decisions efficiently. To determine
the layer download sequence on each edge node,
a greedy layer sequencing algorithm with an ap-
proximate ratio of 2 is designed, which can run for
each edge node in parallel. Further, We analyze the
computational complexity of LASA and prove the
approximation ratio of LASA in the case of identi-
cal edge nodes with sufficient storage capacity and

unlimited running container number.

3) Finally, we perform extensive experiments with real-
world data collected from DockerHub [19], and
demonstrate the efficiency of the proposed algorithm
in comparison with existing baselines.

2 RELATED WORK
2.1 Container Scheduling

In edge computing, tasks are typically running on specific
containers. Related work about container scheduling and
task scheduling is discussed [20], [21], [22]. Chen et al. [20]
first study the multi-user computation offloading problem
for edge computing and design a distributed task offload-
ing algorithm based on game theory. An approximation
algorithm, called OnDisc [21], is derived to optimize the
response time of online multi-task dispatching and schedul-
ing. A Logic-Based Benders Decomposition algorithm [22]
is designed to maximize the admitted task number, jointly
considering task assignment, resource allocation, and task
execution order. However, these studies do not consider
optimizing the significant container startup latency.

2.2 Dependent Task Scheduling and Network Function
Virtualization Placement

The layer sequencing on an edge node is a special case of the
dependent task scheduling problem that has been further
studied [23], [24]. In [23], the authors propose heuristics to
maximize the overall computation of co-located edge de-
vices. The authors of [24] propose an approximation scheme
to minimize the delay. However, dependent tasks can be
assigned to different nodes, whereas layers of an image
must be downloaded on the same edge node to form the
complete image.

Virtual Network Function (VNF) placement [25], [26],
[27] is also related to this paper. VNF placement is to place
VNFs to minimize the latency [26], reduce costs [28], or
maximize the throughput [29]. However, there are major dif-
ferences between the CALS problem and the VNF placement
problem: 1) The VNF placement problem ignores the startup
time or defines a deployment cost. It neglects the layer
sharing feature and the layer download sequence, making
it far from optimal. 2) VNFs can be scheduled to different
servers, while layers of a container must be downloaded on
the same edge node to which the container is assigned. It is
not appropriate to regard each image layer as a VNE

2.3 Overlapping Job Scheduling

Some studies focus on the parallel machine overlapping job
scheduling problem [30], [31]. Overlapping jobs are jobs
with duplicate contents [31], analogous to layer sharing
among images. Since the overlapping job scheduling prob-
lem is proved to be NP-hard [30], greedy algorithms [30] and
a branch-and-bound algorithm [31] are proposed to solve
it. However, these studies only aim to optimize makespans
of the scheduling problem. In this way, these algorithms
optimize the maximum makespan of each machine without
considering the job sequence. However, the job sequence
can significantly influence each job’s completion time, and
the layer sequence problem on a single edge node is proved
to be NP-hard in Appendix A.

xwiki
geonetwork
tomcat

Fig. 1. Layers of three popular images named geonetwork, tomcat and
xwiki. Circles represent layers that constitute images. The circles on the
left with bold lines represent the layers shared by three images.

2.4 Containerized Application Startup Acceleration

Much effort has been made to accelerate the containerized
application startup. Slacker [14] lazily pulls files during run-
time. Ma et al. [32] propose an edge computing platform ar-
chitecture to support seamless application migration, which
reduces the transferred file volumes by leveraging images’
layered storage. Skourtis et al. [17] find that many layers
only differ in a small number of files, so they reorganize
image layers to reduce storage and network consumption.
Cntr [15] and Pocket [16] move common parts of multiple
containers to a daemon process. However, these approaches
are not transparent, for they require substantial changes to
containers or reduce the isolation of containers. Layer-aware
container scheduling is orthogonal and complementary to
these techniques, and neither container images nor the
container system architecture is modified.

2.5 Layer Match Container Scheduling

A layer-match scheduler [13] is proposed to reduce the
image download time in container management systems
by taking layer sharing into account. The scheduler tries
to place a container at a node storing most image layers
required by this container. The main differences between
this work and [13] are as follows: 1) Joint scheduling of
multiple containers is considered in this work, which can
further reduce the total startup latency. 2) The impact of
layer download sequence is studied to reduce the total
startup latency, which is ignored in [13]. 3) The CALS
problem in the heterogeneous edge computing environment
is investigated in this work.

3 SYSTEM MODEL AND PROBLEM FORMULATION
3.1 Background
3.1.1

A container is a standard unit of software that packages up
code and all its dependencies to be deployed quickly and
reliably to various computing environments. Each container
has its own environment called namespace, where specific
processes are running and isolated from the rest of the sys-
tem. On a physical machine, containers share an operating
system (OS) kernel, using fewer resources than VMs.

An image is a lightweight, standalone, executable soft-
ware package that includes everything needed to run a
container: a Linux distribution, application binaries, config-
uration files, etc. The image is read-only, copy-on-write, and
thus can be shared by multiple containers.

As container images are self-contained, different images
frequently include common files [33]. The layer sharing
mechanism is applied to reduce redundant files. Each image
consists of a list of read-only layers, which can be shared

Containers, Images and Layers

Kubernetes Master

API Server Scheduler Controller

API —
eted
Node 1 Node 2 Node N
pod pod pod
kubelet kubelet kubelet

Kubernetes Nodes
Fig. 2. The Kubernetes cluster of one master and multiple nodes.

among images. Each layer has a hash digest taken over
its content so that it can be uniquely identified [13]. Fig. 1
shows the relationships between layers and images. Layers
are stacked, and union mounted to the container’s root file
system at runtime [32]. The lines between circles represent
the layer stack order in an image but not the download
order, and layers can be downloaded in arbitrary order.

3.1.2 Container Startup Time

The container startup time can dominate the latency of real-
time applications in edge computing [34]. The container
startup time consists of the image download time and instal-
lation time. Since containers share the OS kernel, the image
installation time is stable (around one second) irrespective
of the image size [13]. Compared with the image installation
time, the download time is considerable. According to [17],
for 10,000 most popular images in DockerHub [19], the
average image size achieves 500 MB. On an edge node
connected to the cloud by a 10 Mbps link, it costs 400
seconds to download a middle-size image sized 500 MB.

3.1.3 Kubernetes

Kubernetes [35] is one of the most successful open-source
systems for automating deployment, scaling, and man-
agement of containerized applications. A Kubernetes clus-
ter consists of at least one master and multiple compute
nodes. Fig. 2 shows the architecture of Kubernetes. The
master includes a highly-available database named etcd, an
API Server for exposing APIs, a Scheduler for scheduling
deployments, and a Controller for managing the overall
cluster. Each node is a workhorse of a Kubernetes cluster,
consisting of many pods and a management component
named kubelet. A pod is a collection of containers and
serves as Kubernetes’ core unit of management.

3.2 System Model

Fig. 3 illustrates an edge computing system comprising
multiple user equipments (UEs), a set of heterogeneous edge
nodes £ = {e1,ea,...,€p}, a scheduler and a container
registry. The scheduler collects information and then decides
the container assignment and the layer download sequence.
The container registry in the cloud is a repository for storing
images. The container scheduling process is: (1) Multiple
UEs offload multiple tasks. (2) The scheduler collects infor-
mation of tasks and edge nodes. (3) Based on the collected
information, the scheduler makes decisions of container
assignment and layer sequencing. (4) With the decisions

Cloud O—O0-O0-0O00O00O0

node-env

xwiki
geonetwork
tomcat

Container chistry\

joomla

backdrop Download Queue

o
loooooo

Edge Node 2

ks

o) @
Edge loooooo)

Edge Node 1

@

©)]
Scheduler | <

N
N
N
N

\
Y

@O0 =

100000 — — —»
! ¥ EdgeNode 3

QO000O0

DY

- 0= 00000

@
-
- \ ~® ~ / ~
UE 1 UE 2 UE 3 UE 4 UE 5 UE 6 UE 7

node-env

Fig. 3. Architecture of edge computing system. Each edge node is associated with a download queue, and each circle in the download queue
represents a layer. An edge node downloads layers from the container registry according to the layer sequence in its download queue. As shown
on the right, the layer at the left of the sequence will be downloaded first, constituting a complete image node-env with local layers. The scheduling
process is: (1) Offloading tasks, (2) Collecting information, (3) Making scheduling decisions, (4) Downloading layers, and (5) Running containers.

and other prior information, each edge node constructs a
download queue and downloads layers according to the
sequence in its download queue. (5) Each container starts
to run when all layers belonging to it are ready.

Each task runs on a specific container. Thus, a set of
containers denoted as C' = {¢y, co, . . ., c|C‘} are also used to
represent the set of tasks. The binary variable a;, is denoted
whether the container c; is assigned to the edge node ey. If
c; is assigned to ey, then a;;, = 1, otherwise, a;; = 0. Each
container c¢; should be assigned to one edge node:

> aj=1, Ve €C. 1)

ex€E
The set of unique layers that constitute all images of contain-
ers in C'is denoted as L = {I1,12,...,l1|}. The size of layer
l; is defined as p;. ;; € {0, 1} is defined to indicate whether
a layer [; belongs to container c;’s image. If container c;
requires layer l;, then r;; is set to 1, otherwise, set to 0. r;; is
obtained before scheduling. Layers are shared by different
images so that the edge node only needs to download
a layer once. Binary variable d;; € {0,1} is defined as
whether layer /; will be downloaded on edge node ej. The
time when the edge node e, finishes downloading the layer
l; is defined as layer [;’s ready time t!,. The container c;
cannot start to run on the edge node ¢; until all layers
belonging to its image are downloaded, so its startup time
t5 is larger than its layers’ ready time on the edge node ey:

t; > tékmjajk, Vej € C\Vl; € L,Ve, € E. 2)

Edge nodes are computational devices deployed at ac-
cess points and connect with UEs through low-latency wire-
less communication. The storage, bandwidth and running
container number limitation of an edge node e;, are defined
as sg, by, and my, respectively. The total size of layers stored
on an edge node ¢j, cannot exceed its storage limitation:

> dipi < sk, Ver € E. @)
;€L

A limited number of containers can run concurrently on an
edge node:

> ajp <mp, Ve € E. (4)
c; €C

Each edge node is associated with a download queue and
downloads one layer at the head of the queue (on the left
side) at each time. The layer sequence in the download
queue should be determined. The download precedence of
layers I;, l;; on edge node ¢y, is defined as a binary variable
zk, € {0,1}. If 2%, is set to 1, the layer I; should be
downloaded prior to layer /;/, otherwise, l;; is downloaded
prior to I;. Especially, 2% is equal to 1, making sure that
every layer’s ready time includes its own download time.
Besides, the precedence between two layers obeys that:

o tak, =1, VilyeLi#iYe,eE. (5

The precedence relation between layers is transitive:
af ol +af <2, VLl LeLi#j#EL (6)

The transitive constraint is briefly explained. For instance,
three layers [;, [;, [; are downloaded on an edge node ey. If
layer [; is downloaded before layer [}, i.e., mfj = 1, and layer
l; is downloaded before layer [;, i.e., :c;‘?l = 1, then layer [;
cannot be downloaded before layer [;, i.e., xﬁ = 0. Thus, the
sum of xfj, x?l and . cannot be larger than 2. Considering
both queuing time and download time, the ready time of
the layer [; on the edge node ¢, can be calculated by:

thy=>_ akip;/bx, Vi € L,Ve, € E. @)
l]'EL

An edge node can download multiple layers at the same
time in the real world (concurrent downloading), but the
total startup time cannot be reduced since the downloading
process is limited by the bandwidth. For any scheduling
result (i.e., each layer’s ready time) of the concurrent down-
loading, a corresponding schedule of sequential download-
ing that is better than or equal to it can be constructed in
polynomial time. Firstly, the layers downloaded on an edge
node are relabeled according to the ascending order of their
ready times in concurrent downloading. After relabeling,
layer [; has the earliest ready time, and layer /,, has the
latest ready time. In sequential downloading, the layers are
sequentially downloaded according to the labeling order.
Thus, for layer [;, its ready time ¢!, is 3] pi/bx. In con-
current downloading, since the ready times of layers I; to

Layer Grouping

GLSA
for edge node 1

b

GLSA
for edge node |E|

1 xIE

Fig. 4. The algorithm flow of LASA.

l;_1 are earlier than layer /;, the total size of downloaded
layer data before the ready time of layer /; is at least Y| p;.
There, layer [;’s ready time in concurrent downloading is
3.1 pi/bi at least. If and only if the layers are downloaded
sequentially according to the labeling order, the equality
holds. Therefore, any layer’s ready time and any container’s
startup time cannot be reduced by concurrent downloading.

In this work, the edge computing scenario is simplified.
Firstly, the task data transmission time is neglected for sulffi-
cient bandwidth between edge nodes and UEs. Secondly, we
focus on optimizing container startup time, so the container
runtime is assumed to be equal for all edge nodes. Thirdly,
the image installation time is more stable and shorter than
the image download time. Thus, the image installation time
can be taken as a constant and neglected for simplicity. Our
objective is to optimize the sum of the startup time of all

1 C
containers }, cc t5.

3.3 Problem Formulation
The CALS problem is formulated as:

P1: min Z t5 (8)

{agr,af, dirt5,th,} o eC
s.t. (1),(2),(3),4),5),(6),(7)

digmy, > Y rijag, Vi € LVey € E. (9)
¢ eC

The objective in Equation (8) is to find the optimal sched-
ule Q = [Q%, Q®] that minimizes the sum of all containers’
startup times, where Q* = {ajir|c; € C,ex € E} and
Q° = {a%|l;,ly € Lyer, € E}. di, t$ and tl, can be
computed based on the schedule (2. The constraints in (9)
make sure that for each layer I/;, when any container c;
requiring it is assigned to an edge node e, (i.e, aj; = 1 and
ch cc Tijajk > 0), then the layer /; should be downloaded
to edge node ey, i.e. d;j;, = 1. Otherwise, chec rijajp = 0
and therefore d;i is equal to 0 to minimize download size.
Q2 and 2° make the optimization problem be a Mixed Inte-
ger Quadratic Programming (MIQP) with high complexity.
Next, the NP-hardness of the CALS problem is shown.

Theorem 1. The CALS problem is NP-hard and cannot be
approximated within any factor unless NP = P.

The theorem is proved in Appendix A.

4 LAYER-AWARE SCHEDULING ALGORITHM

O node-env xwiki joomla
geonetwork backdrop

tomcat

Fig. 5. Layer grouping example. In each dotted frame, layers that be-
longing to the same set containers are grouped.

Due to the NP-hardness and inapproximability of CALS in
general, we use the storage capacity and running container
number constraints to generate edge node candidates and
focus on the container assignment and layer scheduling
problem. LASA is designed based on a special case of CALS
(i.e., CALS-S, the layer sequencing problem on a single edge
node with infinite storage capacity and unlimited running
container number).

The algorithm flow of LASA is shown in Fig. 4. LASA
has three steps. Firstly, the common layers shared by the
same set of containers are grouped. The optimal result of
scheduling a group of layers as a whole is proved to be equal
to scheduling individual layers. Thus, the same scheduling
decisions are made for the entire group of layers. The prob-
lem scale is drastically reduced by layer grouping. Secondly,
the Layer-aware Container Assignment Algorithm (LCAA)
is designed to properly assign containers to edge nodes in
sequence. At each time, one container-node pair is selected
by considering both layer sharing among containers and the
existing layer size of each edge node. After determining
container assignment variables a;, the CALS problem is
decomposed into independent sub-problems that optimize
each edge node’s layer download sequence. Finally, the
Greedy Layer Sequencing Algorithm (GLSA) with an ap-
proximate ratio of 2 is proposed to determine the layer
download sequence. In GLSA, each sub-problem is con-
verted to a classic precedence-constrained single machine
job scheduling problem, and the layers are divided into an
ordered list of sets by Sidney Decomposition [36]. The layer
order across sets is determined based on the ordered list,
and the layer order within each set is determined greedily.
The layer sequencing algorithm can efficiently produce layer
sequence variables xfj, for each edge node ey, in parallel.

4.1 Layer Grouping

The total number of binary variables of a;, and z%, is
|E||C|+|E||L|*. Grouping layers can simplify the optimiza-
tion problem before assigning containers and sequencing
layers. Layer grouping is defined as follows:

Definition 1. Any two layers l;, l;; having the same relation
with all containers:

Ve € C, (10)

Tij = Tig,
are added into the same group.

Fig. 5 is an example of layer grouping. Fifty-eight indi-
vidual layers of six containers are converted into eight layer
groups. The ten layers in the middle are simultaneously

shared by three containers, so they are grouped. The twelve
layers shared by joomla and backdrop are combined into
one group. The seven layers on the top only belonging to
node-env are also combined to a group.

The layer grouping is driven by the fact that layers
shared by the same set of containers should be scheduled
as a whole without affecting the optimal objective in (8).

Theorem 2. The optimal objective in (8) of scheduling layer
groups is equal to scheduling individual layers.

Proof. In Appendix B, the theorem is formally proved. [

The layer grouping has low computation complexity.
The total number of r;; is |L||C| and layers are grouped
by traversing the relation parameter r;;. Consequently, the
computation complexity is O(|L||C|).

In container assignment and layer sequencing, layers of
the same group are scheduled together, so the layer is used
to represent the layer group in the following for simplicity.

4.2 Container Assignment

In this step, LCAA is designed to determine container
assignment variables a;, € Q°.

The LCAA considers two critical factors: (1) Layer shar-
ing among containers. If containers are assigned to edge
nodes without considering layer sharing, different edge
nodes will download duplicated layers, which costs extra
bandwidth. Downloading redundant layers also increases
the queuing latency. Therefore, the total startup time of all
containers increases. (2) The existing layer size of each edge
node. Assigning containers to edge nodes barely according
to layer sharing between the containers and edge nodes
leads to unbalanced workloads among edge nodes. Though
redundant layer downloading is eliminated, it will make
layers be downloaded on a few edge nodes and leave other
nodes underutilized, leading to high queuing latency.

To trade off the layer sharing and the existing layer
size among edge nodes, a heuristic algorithm that greedily
selects one container-node pair at each time is designed. The
container assignment algorithm is shown in Algorithm 1.

In Algorithm 1, the inputs are the bandwidth set
{brlex € E}, storage set {si|ex, € E}, running container
number limitation {mylex, € FE}, layer size {p;|l; € L}
and relation information {r;;|l; € L,c¢; € C}. The outputs
are containers’ assignment decisions aj;. In lines 1 - 2,
the existing layer set L* of each edge node, the running
container number of each edge node Nj, the remaining
container set C”, and the assignment decision a;; of each
container ¢; on each edge node e; are initialized by an
empty set, 0, C' and 0, respectively. Lines 3 - 18 describe
loops of assigning containers to edge nodes. Within each
loop, a container-node pair is selected by calculating the
score in line 10, which consists of both layer sharing and
existing layer size. The term), , p; in line 10 represents
the layer size increment after the assignment. Less layer size
increment means more layer sharing and fewer redundant
layers. The term), .« p; in line 10 represents the size
of layers already existing on the edge node. Assigning
containers to the edge nodes with the least existing layer
size can alleviate unbalanced workloads. @ € [0,1] is a
hyperparameter used to trade off these two factors, and the

Algorithm 1 LCAA

Input: {bilex, € E}, {sklex € E}, {milex € E}, {pill; €
L}, {rlj|ll € L,Cj € C}
Output: a;i
1: Initialize L* < {}, N}, < 0,a,; < 0, V¢; € C,Vey € E
2: Initialize C" < C
3: while C" # () do
4 gg— =1k, < —1
2Zli€L Pi

5: scoreg < W

6: forc; € C" do

7: fore, € F do

8: L'« Lk @] {lz”z € L,’I’ij = 1}

9: A L \ L*

10: score +— a Q)ZliEALbiﬁa 2ierk Pi

11: if score < score, and ZlieL’ p; < s and Ny +
1 < my then

12: ja < J,Score, < score,k, < k

13: end if

14: end for

15: end for

16: Ajoke < 1, Nka <—Nka +1,C" %CT\{CJ}L}
17: LFe « LFe U{li|l; € L,ry;, = 1}
18: end while

result is normalized by each edge node’s bandwidth b;. In
line 11, only edge nodes that do not exceed storage capacity
and running container number limitation are allowed to
be candidates. In line 12, the container-node pair with the
least score is selected. The assignment decision a;,,, the
number of edge node’s containers Ny, the container set C"
and the edge node’s layer set L*« are updated in lines 16 -
17. After running |C| loops, the assignment variable a,, for
each container c¢; on each edge node ey, is produced.

4.3 Layer Sequencing

Binary variables d;j, are determined by assignment variables
a;ir based on Equation (9). P1 is decomposed into |E|
independent sub-problems, which can be solved in parallel.
The sub-problem for the edge node ¢y, is defined as follows:

st. zF, € {0,1}, Vil € Ly, (12)

ok =1, Vi € Ly, (13)

o, 42k =1, Vil € Ly, i #7, (14)

af a4 o <2, VL€ Lyi#j#1, (15

the=>_ afp;/b, Vi € Ly, (16)
I;€Ly

t5 > theriy, Vi € Ly, Vej € Cy, 17)

where C, = {¢jl¢; € Cia;, = 1} and L = {li|l; €
L,d;;, = 1} are the container set and the layer set of the
edge node ey, respectively. Though with a single edge node,
P4 is generally NP-hard and difficult to get an exact solution,
as proved in Appendix A.

The sub-problem in (11) can be converted to a special
case of l|prec|> w;c;. 1l|prec|y wjc; is the problem of

sequencing precedence-constrained jobs on a single ma-
chine to minimize the total weighted completion time. Sid-
ney Decomposition [36] is an efficient algorithm to solve
1l|prec| Y w;c; with an approximate ratio of 2. Therefore,
inspired by Sidney Decomposition [36], an efficient layer
sequencing algorithm is designed.

Firstly, how to convert a sub-problem to an instance
of 1|prec| " w;c; is introduced. For a sub-problem k, both
containers and layers are regarded as jobs, i.e., Jy = Ly UC}.
The difference between 1|prec| w;c; and 1|prec| " ¢; is
that the former problem sets a weight for every job. In
the converted problem, each layer /; and each container c;
are regarded as the job j; and the job j;, respectively. The
weights and sizes of jobs are defined as:

wi_{ OifjiELk ._{

pi if ji € Ly
. .) p’L -
1if Ji € Ch
The converted optimization problem of 1|prec|) wic; is

0if j; € Cp,

defined as:
P5: min Z wjtg :mkin Z t; (18)
{Ifi”t;}jjejk Ty 7 €Ck
st af, €{0,1}, Vi, ji € Jx, (19)
zy =1, Vi € Jp, (20)
o+ al, =1, Vjijy € Jei# 1, (21)
af ok ol <20 Vg€ dni# £ (22)

th=> afpi/oe= > akp;/br, Vji € Jr, (23)
Ji€Jk Ji€LK

vy =1, Vji € Ly, Vj; € Ci,rij =1, (24)
where 7 is j;’s completion time and also equal to c¢;’s
startup time or [;’s ready time. Constraints in (24) is equal
to constraints in (17) since each container c; is regarded as
a job sized 0. Thus, the converted problem’s objective and
constraints are equal to the original problem.

Then, we give a brief introduction to Sidney Decomposi-
tion [36], which is a 2-approximation algorithm for general
instances of 1|prec| Y w;c;. It decomposes jobs into a list of
disjoint sets Y, = [S1,S2,...|US, = Ji] ordered by the

Jjj€So Wi . . .
Tes Each set comprises multiple jobs.

Sidney proves that for an optimal sequence, jobs in different
sets must run following the set order. In Sidney’s algorithm,
jobs in the same set can run in an arbitrary sequence under
precedence constraints. More details can refer to [36]. In
this paper, Sidney Decomposition is implemented by the
pseudoflow algorithm for linear parametric minimum cut
problem [37]. Sidney Decomposition is applied to get a list
of disjoint sets Y}, and then the layer sequence within each
set is determined greedily.

As shown in Algorithm 2, GLSA inspired by Sidney
Decomposition [36] is proposed to determine the layer
sequence on each edge node e;. The inputs of Algorithm 2
are the layer size set {p;|l; € Ly}, the relation information
{rijlli € L,c; € Cy}, the bandwidth b; of e, and the
entire container set Cj. The outputs are the layer sequence
variables z¥,, layer ready time t.,, and container startup
time ¢5. In line 1, the list of sets Y}, is produced by Sidney
Decomposition function. In line 2, the sequenced layer set

ratio p(S,) =

Algorithm 2 GLSA
Input: {p;|l; € Ly}, {ri;|li € Li,c; € Cr}, bi, Ci
Output: 2%, t,, 15
1: Y, = SidneyDecomposition({p;|l; € Li},{rill; €
Lk-, cj € Ok})

2: Tnitialize Lsequenced < {}
3: for S, € i, do
N {}

5: forj; €S, do

6: ifc; € C, then

7: Sg — Sg U {Cj}

8: end if

9: end for

10: while S¢ # () do

11: forc; € S5 do

12: LJ < {lz|l2 € Lk,?"ij = 1} \ Lsequenced
13: P X eni pi

14: end for

15: J argminj pj

16: S¢S\ {¢;}

17: forl; € L7 do

18: ok 1

19: for I € Lsequenced do
20: zk ak, 1,0

21: end for

22: Lsequenced — Lsequenced) {lz}
23: end for

2 e Ser il
25: end while

26: end for

Lgequencea is initialized by an empty set. In lines 3 - 26,
layers within each disjoint set are sorted. Since the weight
w; of every layer is equal to 0, a layer /; in a set S, must
belong to one of container c; in the same set S,. Otherwise,
the layer I; should be removed from the set S, since the
redundant layer /; with weighted 0 lower the p(S,). Thus,
layers in a set are sequenced in the unit of containers. The
container set S¢ is extracted from each set S, in lines 4 - 9. In
lines 10 - 25, containers in S5 are sorted by their remaining
layer size. In lines 11 - 14, each container’s remaining layer
size p’ in the container set S is calculated, and the container
c; with the least remaining layer size is selected in line 15.
In lines 17 - 23, the layer sequence variables related to the
remaining layers of the selected container c; are determined,
and the remaining layers of the selected container c; are
added into the sequenced layer set. In this algorithm, the
adding sequence of the selected container’s remaining lay-
ers is arbitrary. After selection, the startup time ¢} for each
container c; is calculated in line 24.

Lemma 3. The proposed layer sequencing algorithm has an
approximation ratio of 2.

Proof. According to [36], any algorithm for 1|prec| . w;c;
consistent with Sidney Decomposition has an approxima-
tion ratio of 2. GLSA only changes the layer order within
each disjoint set without changing the layer order across
different sets. Besides, the sub-problem is equal to the
converted problem. Thus, the proposed layer sequencing
algorithm has an approximation ratio of 2. O

1.0
0.8
20.6 / — LASA - Avg. of LASA
/; / — RS - Avg.of RS
/ { LS Avg. of LS
/ — SDS - Avg.of SDS
0.4 — K8S -~ Avg ofK8S
p — DE - Avg. of DE
PSO Avg. of PSO
d — GA - Avg.of GA
0.2 1000 2000 3000 4000
Startup Time (s)
(a) Uniform distribution
1.0
0.8
80.6 = Avg. of LASA
- Avg. of RS
Avg. of LS
- Avg. of SDS
0.4 = Avg. of K8S
Avg. of DE
Avg. of PSO
- Avg. of GA
0.2
1000 2000 3000 4000

Startup Time (s)

(b) Zipf distribution

Fig. 6. CDF of container startup time for LASA and baselines under
uniform and Zipf distributions.

4.4 Complexity Analysis

The computation complexity of LASA is analyzed. Firstly,
as mentioned in Sec. 4.1, the computation complexity of
grouping layers is O(|L||C]). Then, container assignment
variables are computed by Algorithm 1 in O(|C|?|E|) time.
Then, the CALS problem is decomposed into independent
sub-problems. For sub-problems, the computation complex-
ity of problem conversion is O(|Lg| + |Ck|). The compu-
tation complexity of implementing Sidney Decomposition
is O(mnlogn) [37], where n = |Lg| + |Cx| and m =
2li€Lyc;eC, Tij- The computation complexity of the layer
sequencing within each set in lines 2 - 26 of Algorithm 2 is
O(|Cx|?|Lk|). Therefore, the total computation complexity
of LASA is O(|CP2|E| + (X, e . e i) (L] +1C) log(| L] +
|C|) + |C|?|L|). Experiments are conducted to prove the
LASA is quite efficient with a realistic trace. The result is
depicted as Fig. 18 and Fig. 19 in Sec. 5.3.

4.5 Approximation Ratio of LASA

Theorem 4. The LASA is a polynomial-time 2| E|-approximation
algorithm for CALS of identical edge nodes with infinite storage
capacity and unlimited running container number, where |E)| is
the number of edge nodes.

In Appendix C, the theorem is formally proved.

5 EVALUATION

The experiments are conducted in a simulation environ-
ment. The simulation environment and LASA are imple-
mented in Python 3.6 on a desktop with an Intel Core i7-
10750H 2.60GHz CPU and 16GB RAM. In the experiments,

. les 1300
Z257, Z1100] — LASA == PSO
o ! -+ LASA -- PSO b DE —+ GA
'E £ 900

. £ 700

£ £ 500

15 g

& g 300

£ =100

=10

0 2000 4000 2000 4000
Iteration Number Iteration Number

(a) Total startup time (b) Execution time

Fig. 7. Results for LASA and meta-heuristic baselines with different
number of iterations under uniform distribution.

5 le5 3 le5
s - LASA -+ K8S - - LASA - K8S
Zy RS = DE =z RS -+ DE
) - LS PSO ﬂé - LS PSO
E | - SDS — GA E SDS - GA
= SDS 3. & 2] - SDS 3
[=5 f=5
= =
E E
&2 3,
= =
el e

=

100 200 300 100 200 300
Number of Containers Number of Containers

(a) Uniform distribution (b) Zipf distribution

Fig. 8. Total startup time comparison with different container numbers.

a real edge computing scenario with multiple edge nodes
is considered. By default, the bandwidth is set to 10 Mbps,
the number of edge nodes is set to 15, the running container
number limitation is set to 50, the storage capacity limit is
set to 20 GB, the total number of containers is set to 200, and
o is set to 0.5.

Container data from [13] is used. They collected the latest
versions of the 5K most popular images from DockerHub
[19]. In the simulation, 155 most frequently used images
are selected from their dataset, and the total size of 155
images is 60 GB. There are 810 unique layers in total, and
the total size of unique layers is 30 GB. For each experiment,
the container set is randomly chosen from the 155 images
following the uniform and Zipf [38] distributions. The Zipf
distribution fits to model file popularity [39], task request
popularity [13], and user image request distribution [40]. In
this paper, the Zipf distribution is used to model the cases
that the container request distribution is skewed. The Zipf
distribution is also applied in one of the baselines, Layer-
match Scheduling [13], which generates more convincing
comparison results. The shape factor of Zipf is set to 1.1 by
default. Each experiment is repeated ten times.

LASA is compared with seven baselines: (1) Random
Scheduling (RS): Randomly select a container-node pair at
each time and sequence layers according to the assignment
order. (2): Layer-match Scheduling [13] (LS): For each con-
tainer, select an edge node with the most amount of its
image layers stored locally and sequence layers according
to the assignment order. (3): Sidney Decomposition-based
Scheduling (SDS): First sequence containers by Sidney De-
composition, then continuously assign containers to one
node until achieving threshold, and sequence layers by
GLSA. (4): Kubernetes Scheduling (K8S): Kubernetes default
scheduling policy schedules containers to edge nodes with
the required images stored locally, otherwise, to the edge

1le5

= 4 <+ LASA - K8S
O =z RS - DE
Pt 3 — LS PSO
E E3 - SDS — GA
= =
o f=9
2 £
3 52
w w
E E
]]
= =1
0
5 10 15 20 25 5 10 15 20 25

Number of Edge Nodes Number of Edge Nodes

(a) Uniform distribution (b) Zipf distribution

Fig. 9. Total startup time comparison with different edge node numbers.

les les
— 2.0
7] = rasa - kss 201+ Lasa - kss
z RS - DE z RS - DE
> P — LS PSO
£, ELS] o+ sps — GA
[=
[=9 o
= =
= =
5 5
21 2
<]
2 2
e =
0

2 4 6 8
Maximum Storage Limit (GB)

Maximum Storage Limit (GB)

(a) Uniform distribution (b) Zipf distribution

Fig. 10. Total startup time comparison with different maximum storage
capacity.

node with the least total download size. (5) Differential
Evolution (DE) [41]: In DE, the chromosome combines a
container-node affinity vector and a container priority vec-
tor. A chromosome is interpreted by first sorting containers
in the descending order of container priority and then select-
ing the edge node with the highest container-node affinity
for each container. (6) Particle Swarm Optimization (PSO)
[42]: The definition of particle and fitness is as same as chro-
mosome and interpretation in DE. (7) Genetic Algorithm
(GA) [43]: The definition of chromosome and interpretation
is as same as DE. The main difference is that GA focuses
on the crossover while DE focuses on the mutation. The
population size and iteration number of three meta-heuristic
baselines are 50 and 200. The mutation probability of DE and
GA is 0.001. In PSO, inertia weight, cognitive parameter, and
social parameter are 0.7, 0.5, and 0.5.

5.1

In this subsection, extensive experiments are conducted to
compare the performance of LASA against the baselines.
The cumulative distribution function (CDF) of the con-
tainer startup time of LASA and baselines is shown in
Fig. 6. Fig. 6(a) shows the overall performance of different
algorithms when containers follow the uniform distribution.
Compared with the baselines, the CDF curve of LASA is
always closer to the left, which means that the startup time
of LASA is consistently shorter. The dotted line represents
the average container startup time. Compared with RS, LS,
SDS, K8S, DE, PSO, and GA, LASA reduces the average
startup time by 60%, 40%, 36%, 52%, 41%, 43%, and 17%,
respectively. Similarly, Fig. 6(b) shows that compared with
the baselines, the average startup time of LASA is reduced

Comparison with Baselines

le5 le5
-~ LASA K8S

-+ LASA - K8S

RS -+ DE
— LS PSO
Ei1s - SDS — GA

]

W
=
w

Total Startup Time (s)
z B
Total Startup Time (s)

200 400 600 800 1000 250 500 750 1000
Maximum Storage Limit (GB) Maximum Storage Limit (GB)

(a) Uniform distribution (b) Zipf distribution

Fig. 11. Total startup time comparison with scaled maximum storage
capacity.

le5 leS

301+ LasA o kss) AZ'O -+ LASA - K88 ~
K RS -+ DE <z RS - DE
225] — LS PSO g — LS PSO
ﬁ - SDS — GA = 1.51 == SDS — GA
£20 / o g
5 g9
215 z2

1.0 0.5

20 30 40 50 60 20 30 40 50 60
Maximum Container Limit Maximum Container Limit

(a) Uniform distribution (b) Zipf distribution

Fig. 12. Total startup time comparison between LASA and baselines with
different maximum running container number limitation.

by 6% to 66% under the Zipf distribution. The container
startup time of the Zipf distribution is shorter than the
uniform distribution since more containers of the same type
share a few images under the Zipf distribution and thereby
unique layers are fewer. The performance of K8S is much
better under the Zipf distribution, for it tends to assign
containers of the same type to one edge node.

The performance of LASA is compared against meta-
heuristic baselines with different iteration numbers. The
results are shown in Fig. 7. In Fig. 7(a), the best sched-
ule of each meta-heuristic algorithm until each iteration
is recorded. PSO quickly falls into the local minimum in
a few iterations, so the execution is terminated early. The
total startup times of GA and DE continue to decrease as
the iteration number increases. Since the elements of the
container-node affinity vector and the container priority vec-
tor are ordered to generate the final schedule, the crossover
operation is more efficient than the mutation. Therefore, the
convergence speed of GA that focuses on the crossover is
faster than DE. The total startup time of GA is lower than
LASA after 1400 iterations and 7% lower than LASA in
5000 iterations. To compare the execution time of different
algorithms fairly, multiprocessing and multithreading are
not applied in this experiment. Compared with LASA that
generates a schedule in 0.33 seconds, the meta-heuristic
baselines require up to thousands of seconds to find a
satisfactory schedule.

Then, the total startup times of LASA and baselines are
evaluated with identical edge nodes. Fig. 8 shows the eval-
uation results. It suggests that with sufficient resources, the
total startup time of LASA has an approximately linear rela-
tion with the number of containers. As the container number

le6 leS
1.007 -+ LASA K8S - LASA - K8S
3 RS -~ DE
6 — LS PSO
- SDS — GA

[¥)

Total Startup Time (s)
Total Startup Time (s)
N

5 10 15 20 25 5 10 15 20 25
Maximum Bandwidth Limit (Mbps) Maximum Bandwidth Limit (Mbps)

(a) Uniform distribution (b) Zipf distribution

Fig. 13. Total startup time comparison between LASA and baselines with
different maximum bandwidth capacity.

le5 le5

- LASA -+ A3 & GLSA
Al & GLSA —+ A4 & GLSA
- A2 & GLSA

- LASA - A3 & GLSA
21.2 Al & GLSA — A4 & GLSA
-+ A2 & GLSA

N
o

Total Startup Time (s)
= &
Total Startup Time (s)
o
oo

0 15 20 25 30 10 15 20 25 30
Number of Edge Nodes Number of Edge Nodes

(a) Uniform distribution (b) Zipf distribution

Fig. 14. Total startup time comparison between LCAA and four baselines
with different numbers of edge nodes.

increases, LASA consistently achieves the best performance.
The improvement of LASA is even more as the number of
containers increases since more containers indicate a longer
queuing time to be optimized. Fig. 9 shows the evaluation
results of different edge node numbers. As the edge node
number increases, the average size of layers downloaded on
each edge node decreases, and the queuing time and the
total startup time decrease. RS achieves the worst results
since it randomly schedules containers.

Fig. 10, Fig. 12 and Fig. 13 show the performance
comparison under heterogeneous storage capacity, running
container number limitation and bandwidth. As shown in
Fig. 10, each edge node’s storage is randomly distributed
between 0 and the maximum storage, and the maximum
storage capacity of edge nodes is set from 1 to 9 GB. Fig. 10
shows that when the storage is insufficient, e.g., the maxi-
mum storage capacity is 1 GB, the result of LASA is worse
than PSO and GA. In this case, LASA downloads layers of
164 containers, but PSO and GA only download layers of 82
and 62 containers, respectively. This result shows that PSO
and GA search for schedules that reduce the total startup
time by downloading fewer larger containers. As the storage
capacity increases, the performance of LASA is obviously
better than other algorithms. To further compare different
algorithms in common cases of sufficient storage capacity
on edge nodes, the maximum storage capacity is scaled to
1000 GB. It can be observed in Fig. 11 that all algorithms’
performance is stable as the maximum storage capacity
increases and LASA still outperforms other baselines.

In Fig. 12, the running container number limitation is
randomly distributed between 0 and the maximum run-
ning container number limit. When the running container

10

22
= 40.0 a
S)
8,375 220
g T+ LASA -~ A3 &GLSA g
2 35.0 Al & GLSA — A4 & GLSA 2
£ ~ A2&GLSA E //.
£325 Z18
2 2 <+ LASA - A3 & GLSA
2300 /o/‘/ & |, AT&GLSA — A3&GLSA
- A2 & GLSA
10 15 20 25 30 10 15 20 25 30

Number of Edge Nodes Number of Edge Nodes

(a) Uniform distribution (b) Zipf distribution

Fig. 15. Bandwidth usage comparison between LCAA and four base-
lines with different numbers of edge nodes.

o

"+ LASA - A3 &GLSA '+ Lasa - A3&GLSA
1.25 Al & GLSA - A4 & GLSA Al & GLSA —~ A4 & GLSA
- A2&GLSA - A2 &GLSA
8 808
2 1.00 \‘—\ g \
= =
E E
~ 075 \ < 0.6 \/\
< <
= =
- -
0.50 \——os._, 04
10 15 20 25 30 10 15 20 25 30

Number of Edge Nodes Number of Edge Nodes

(a) Uniform distribution (b) Zipf distribution

Fig. 16. Load balance comparison between LCAA and four baselines
with different numbers of edge nodes.

number limit is the bottleneck (i.e., less than 30), as the
running container number increases, more containers can
be assigned, and thus the total startup time increases. When
edge nodes can hold all containers, LASA’s performance
becomes stable and better than the baselines. In Fig. 13, each
edge node’s bandwidth is randomly distributed between 0
and the maximum bandwidth. With the increase of the max-
imum bandwidth, the total startup time of all algorithms is
reduced, and LASA still outperforms the baselines.

5.2 Effect of LCAA and GLSA

In this subsection, the effect of LCAA and GLSA is analyzed
separately.

Firstly, the layer sequencing algorithm is set to GLSA,
and LCAA is compared with four baselines: (A1) Contin-
uously assign containers according to the order of Sidney
Decomposition to one edge node until achieving the thresh-
old (i.e., the capacity constraints). (A2) Randomly select a
container-node pair at each time. (A3) Assign containers to
each edge node fairly. (A4) Assign the container to one edge
node with the least estimated startup time (i.e., the image is
placed at the end of the download queue by default).

Fig. 14 shows the total startup time of different container
assignment algorithms. Compared with all baselines, LCAA
consistently reduced the total startup time as the edge node
number increased. Moreover, the bandwidth usage and the
load balance of different container assignment algorithms
are further analyzed. Fig. 15 shows the bandwidth usage
of different container assignment algorithms. Less band-
width usage means less redundant downloading. The total
downloading size, Y., g > <1, dikPi, is used to represent
bandwidth usage. As the edge node number increases, the

les5 le4

3 150 —+— LASA Y —+— LASA
-E LCAA & S1 57 LCAA & S1
= 1.25 —+— LCAA & S2 = —+— LCAA & S2
E —— LCAA&S3 E —— LCAA & S3
& 1.00 &
z Ze6
< <
5 5
= =

10 15 20 25 30 10 15 20 25 30

Number of Edge Nodes Number of Edge Nodes

(a) Uniform distribution (b) Zipf distribution

Fig. 17. Total startup time comparison between LCAA and three base-
lines with different numbers of edge nodes.

=z 0751 LASA w/ layer grouping = —o— LASA w/ layer grouping
E ' LASA w/o layer grouping g 0.2 LASA w/o layer grouping
= =

= 0.50 =

£ £ 0.1

8025 3

= =

m 58]

o
=3
S
=3
o

100 200 300 ’ 100 200 300
Number of Containers Number of Containers

(a) Uniform distribution (b) Zipf distribution

Fig. 18. The impact of layer grouping on execution time with different
numbers of containers.

container assignment is more scattered, which incurs less
layer sharing and more redundant downloading. Compared
with the best baseline, Al, the bandwidth usage of LCAA
is reduced by 11% and 8% under the uniform and Zipf
distribution. Fig. 16 shows the load balance of different con-
tainer assignment algorithms. Unbalanced workloads make
more layers downloaded on a few edge nodes, which leads
to longer queuing times. The standard deviation of edge
\/le\ZekeE(xk -)%,
where xj, = > . dikpi, is used to represent the degree of
load balance. The smaller the standard deviation, the better
the load balance. A1, A2, and A3 rely on the random edge
node permutation or random edge nodes selections, so their
results are relatively unstable. The standard deviation of
LCAA is lower than A1, A2 and A3. The standard deviation
of A4 is lower than LCAA since A4 tends to schedule the
container to the edge node with the least download size at
each time, which leads to more balanced workloads. These
results show that LCAA achieves a better tradeoff between
bandwidth usage and load balance than other baselines.

In general, for random assignment A2, the distribution
of containers is more dispersed with more edge nodes,
which incurs more downloading. However, in Fig. 15(b),
the downloading size of A2 with 25 edge nodes is less
than with 20 edge nodes. To find out the reason, we fix
the edge computing network and the container dataset,
and use different random seeds to repeat the experiment
with 25 edge nodes. It can be observed in Fig. 20 that
the performance of three baselines is largely influenced by
the random seed since they randomly select edge nodes
(A1), containers (A4), or container-node pairs (A2). The
performance of A2 is unstable with different random seeds,
so the total downloading size may be less with more edge
nodes in some cases. More experiment results of different
Zipf factors are in Appendix D.

nodes’ download overhead, o =

11

—o— LASA w/ layer grouping
LASA w/o layer grouping LASA w/o layer grouping

- = 0.1

2 0.25

10 15 20 25 30 10 15 20 25 30
Number of Edge Nodes Number of Edge Nodes

2 —— LASA w/ layer grouping
0.75

Execution Time (s)
(=]
wn
(=]
Execution Time (s)

o
=3
S
=3
o

(a) Uniform distribution (b) Zipf distribution

Fig. 19. The impact of layer grouping on execution time with different
numbers of edge nodes.

Then, the container assignment algorithm is set to
LCAA, and GLSA is compared with three baselines: (S1)
Sequence layers according to the container assignment or-
der. (82) Sequence layers by container size in descending
order. (§3) The optimal sequence obtained by using IBM
CPLEX optimizer [44]. Fig. 17 shows the startup time of
different layer sequencing algorithms when containers fol-
low the uniform and Zipf distribution. Compared with S1,
S2, the startup time of GLSA is reduced by up to 4%,
6% under uniform distribution and 0.5%, 1.3% under the
Zipf distribution. Since the Zipf distribution is long-tailed,
most containers share a few images, and unique layers are
fewer. Thus, the improvement of GLSA under the uniform
distribution is more than the Zipf distribution. The gap
between the optimal result and GLSA on startup time is only
0.3% and 0.2% under the uniform and Zipf distribution,
respectively. The reasons why the improvement of layer
sequencing is less than the container assignment are as
follows: (1) GLSA offers a proper container assignment
order to the S1. (2) The amounts of shared layers on each
edge node decrease as the edge node number increases.

5.3 Execution Time

TABLE 1
Problem Scale Reduction by Layer Grouping.

Container Number 50 | 100 | 150 | 200 | 250 | 300
Uniform " / grouping 94 | 188 | 248 | 296 | 328 | 349
w/o grouping | 307 | 552 | 709 | 827 | 911 | 965

inf w/ grouping 44 78 111 141 | 152 | 171

P w/o grouping | 166 | 275 | 362 | 434 | 462 | 516

The impact of layer grouping on the algorithm execution
time is evaluated and the results are shown in Fig. 18 and
Fig. 19. In Fig. 18, as the number of containers increases from
50 to 300, layer grouping reduces execution time by around
50% than without layer grouping. Additionally, the compar-
ison of the layer number and the group number shown in
TABLE 1 illustrates the reason why layer grouping reduces
the execution time. After grouping, the group number is
reduced by up to 70% and 73% under uniform and Zipf
distributions. Therefore, the problem scale is significantly
reduced, and the algorithm execution time is reduced. In
Fig. 19, as the edge node number increases from 10 to 30,
layer grouping reduces execution time by up to 59%.

5.4 Impact of the Hyperparameter

12

le4
20
=)
=Z75
o 919
= 2
2701 + LAsA - A3 & GLSA % gl LASA
g % = Al & GLSA - A4 & GLSA =
5 - A2 & GLSA k= -+ A2 & GLSA
& 6.3 =l
3 NS N 217
g 2
ﬁ 6.0 \//\/\/\ LEE
16
—0—0—0—0—0—0—0—0—

Al & GLSA -+ A4 & GLSA

—0—0—0—0—0—0—0—¢0—¢

- LASA - A3 &GLSA
Al & GLSA = A4 & GLSA '
0.61 = A2&GLSA

- A3 & GLSA

Load Balance

(VA

2 3 45 6 7 8 9 0 1
Random Seed

0 1

(a) Total startup time

Fig. 20. Impact of the random seed.

2 3 45 6 7 8 9 0 1
Random Seed

(b) Bandwidth usage

2 3 45 6 7 8 9
Random Seed

(c) Load balance

les o
© 8 301 —=— uniform distribution
g 1.2 E;D é 0.8 zipf distribution
E & . RO k=
21.0 —s#— uniform distribution 5 251 u‘mfor'm ‘?'Strbet'on =
g zipf distribution g zipf distribution 206
208 £ 204 3
8 =)

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
a a a

(a) Total startup time

Fig. 21. Impact of the hyperparameter «.

In this subsection, the impact of the hyperparameter o on
the total startup time, bandwidth usage, and load balance
is evaluated. The hyperparameter o trades off the layer
sharing and the existing layer size. When a is 1, LASA
assigns containers to the edge node with the smallest exist-
ing layer size, which represents less queuing time to some
extent. When « is 0, LASA chooses the container-node pair
with the smallest downloading increment. When o takes
the value between 0 and 1, LASA trades off existing layer
size and layer sharing. Fig. 21 shows the impact of o under
the default setting. As « increases, the total download size
gradually increases, the standard deviation of the download
size gradually decreases (i.e., unbalanced workloads), and
the total startup time first decreases and then increases.
According to the evaluation results, « is heuristically set to
0.5 to trade off bandwidth usage and load balance properly.

6 DISCUSSION
6.1 User Mobility

In edge computing, user mobility management is a big issue
[45]. Mobile users can offload different tasks at any place
and any time, so the total number of images can be huge.
It is impossible to download and store all images on each
resource-limited edge node in advance.

To address this issue, user mobility prediction and con-
tainer caching can be applied. User mobility prediction esti-
mates the distribution of each user’s future positions [46].
With this information, the corresponding candidate edge
servers can be selected to download and cache the required
images in advance. Specifically, the candidate edge server
selection can be integrated with line 11 of Algorithm 1.

(b) Bandwidth usage

(c) Load balance

6.2 Online Container Scheduling

Online container scheduling is a practical scenario where
containers can be scheduled once offloaded by users with-
out waiting for joint scheduling. More issues should be con-
sidered in the online scheduling problem. Firstly, container
assignment decisions should be made to reduce the accu-
mulated task latency in the long term. The correlations of
decisions at different time points should be further studied.
Secondly, some image layers can be selectively evicted when
the storage of edge nodes is in short. The layer eviction
policy is also very hard to design for the layer sharing
feature and the varying distribution of container requests.
Thirdly, the task execution time should also be considered.
After finishing the task execution, the occupied computation
and storage resources can be released. The problem objective
will be turned to minimizing the total task latency.

The online scheduling problem can be modeled as a
Markov decision process. A centralized reinforcement learn-
ing agent is trained to replace the LCAA. The agent makes
container assignment decisions to optimize the accumulated
task latency in the long term. GLSA can still be applied
on each edge server to resequence the layers triggered by
a new container assignment. For layer eviction, the layer
size, invoke frequency, and edge node capacity are jointly
considered to design a customized layer scoring algorithm.

6.3 Implementation in Kubernetes

In this paper, we focus on modeling the system, formulating
the CALS problem, and designing LASA. Extensive sim-
ulations are conducted on real-world data collected from
DockerHub [19]. The prototype implementation in Kuber-
netes is left as future work. Besides, some new issues like

layer eviction and online scheduling also appear during
our ongoing implementation in Kubernetes, which includes
container assignment and layer sequencing. In container
assignment, task requests that arrived in Kubernetes are
scheduled by Kubernetes Scheduler. Kubernetes Scheduler
selects a suitable edge node for the task in a 2-step operation:
Firstly, it finds the set of edge nodes where it is feasible to
schedule the task as in line 11 of Algorithm 1. Secondly,
the scheduler collects the information of the remaining edge
nodes, computes a score for each edge node based on Al-
gorithm 1, and selects the edge nodes. In layer sequencing,
according to the result of Algorithm 2, the layers of one
image are actually downloaded continuously on each edge
node. Images can be downloaded according to the down-
load queue of layers by using the docker pull command.

7 CONCLUSIONS

In this paper, we jointly schedule multiple containers to
reduce the total startup time by considering the layer shar-
ing feature. LASA is designed to make scheduling decisions
efficiently. Firstly, layers shared by the same set of containers
are grouped to reduce the problem scale of CALS. Secondly,
considering both the layer sharing and existing layer size on
edge nodes, a heuristic algorithm is proposed to schedule
containers to appropriate edge nodes. The CALS problem
is decomposed into multiple independent sub-problems.
Finally, a layer sequencing algorithm with an approximate
ratio of 2 is designed to determine the layer download
sequencing on each edge node. We use a real-world trace
to conduct extensive experiments. The experimental results
prove the effectiveness of the LASA algorithm, which re-
duces the total startup time by 40% to 60%.

ACKNOWLEDGMENTS

This work is supported by Guangdong Key Lab of
Al and Multi-modal Data Processing, BNU-HKBU
United International College (UIC), Zhuhai, No.
2020KSYS007; Chinese National Research Fund (NSFC),
No. 61872239; Zhuhai Science-Tech Innovation Bureau,
Nos. ZH22017001210119PWC and 28712217900001 and
Guangdong Engineering Center for Artificial Intelligence
and Future Education, Beijing Normal University, Zhuhai,
Guangdong, China.

REFERENCES

[1] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The
case for vim-based cloudlets in mobile computing,” IEEE pervasive
Computing, 2009.

[2] E Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. ACM, 2012, pp.
13-16.

[3] W.Shi,].Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, 2016.

[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g
network edge cloud architecture and orchestration,” IEEE Com-
munications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.

[5] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5g networks with mobile edge computing,”
IEEE Wireless Communications, vol. 25, no. 3, pp. 80-87, 2018.

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

13

J. Zhang, X. Zhou, T. Ge, X. Wang, and T. Hwang, “Joint task
scheduling and containerizing for efficient edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 8, pp.
2086-2100, 2021.

Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-].
Hwang, and Z. Ding, “A survey of multi-access edge computing in
5g and beyond: Fundamentals, technology integration, and state-
of-the-art,” IEEE Access, vol. 8, pp. 116 974-117 017, 2020.

X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A compre-
hensive survey,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 2, pp. 869-904, 2020.

L. Wang, L. Jiao, T. He, J. Li, and M. Miihlhduser, “Service
entity placement for social virtual reality applications in edge
computing,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. 1EEE, 2018, pp. 468-476.

Q. Qu, R. Xu, S. Y. Nikouei, and Y. Chen, “An experimental study
on microservices based edge computing platforms,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2020, pp. 836-841.

“irobot ready to unlock the next generation of smart homes
using the aws cloud,” https://aws.amazon.com/solutions/
case-studies/irobot/9, 2019.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,”
in Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1-17.

S. Fu, R. Mittal, L. Zhang, and S. Ratnasamy, “Fast and efficient
container startup at the edge via dependency scheduling,” in 3rd
{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 20),
2020.

T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Slacker: Fast distribution with lazy docker con-
tainers,” in 14th {USENIX} Conference on File and Storage Technolo-
gies ({FAST} 16), 2016, pp. 181-195.

J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr:
Lightweight {OS} containers,” in 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), 2018, pp. 199-212.

M. Park, K. Bhardwaj, and A. Gavrilovska, “Toward lighter con-
tainers for the edge,” in 3rd {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 20), 2020.

D. Skourtis, L. Rupprecht, V. Tarasov, and N. Megiddo, “Carving
perfect layers out of docker images,” in 11th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 19), 2019.

M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud
with computing access point,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. 1EEE, 2017, pp. 1-9.
“Docker official images,” https://github.com/docker-library/,
2021.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795-2808, 2015.

H. Tan, Z. Han, X.-Y. Li, and E. C. Lau, “Online job dispatching
and scheduling in edge-clouds,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. 1EEE, 2017, pp. 1-9.

H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and
C. Assi, “Dynamic task offloading and scheduling for low-latency
iot services in multi-access edge computing,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 3, pp. 668-682, 2019.
K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,”
in 2015 IEEE 8th international conference on cloud computing. 1EEE,
2015, pp. 9-16.

Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained mobile
computing,” IEEE Transactions on Mobile Computing, vol. 16, no. 11,
pp- 3056-3069, 2017.

L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,” IEEE
Transactions on communications, vol. 64, no. 9, pp. 3746-3758, 2016.
R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic,
latency-optimal vnf placement at the network edge,” in Ieee in-
focom 2018-ieee conference on computer communications. I1EEE, 2018,
pp. 693-701.

Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu, B. Hu,
and R. Y. Kwok, “Distributed and dynamic service placement in

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

pervasive edge computing networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 6, pp. 1277-1292, 2020.

R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with
deep reinforcement learning,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 292-303, 2019.

G. Sallam and B. Ji, “Joint placement and allocation of virtual net-
work functions with budget and capacity constraints,” in IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications. IEEE,
2019, pp. 523-531.

H. Zhu and O. H. Ibarra, “On some approximation algorithms for
the set partition problem,” in Proceedings of the 15th Triennial Conf.
of Int. Federation of Operations Research Society. ~Citeseer, 1999.
J.-Y. Wang, “Minimizing the total weighted tardiness of overlap-
ping jobs on parallel machines with a learning effect,” Journal of
the Operational Research Society, vol. 71, no. 6, pp. 910-927, 2020.

L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Transactions
on Mobile Computing, vol. 18, no. 9, pp. 2020-2033, 2018.

N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Sk-
ourtis, L. Rupprecht, A. Anwar, and A. R. Butt, “Duphunter:
Flexible high-performance deduplication for docker registries,” in
2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20),
2020, pp. 769-783.

N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Sk-
ourtis, A. K. Paul, K. Chen, and A. R. Butt, “Large-scale analysis of
docker images and performance implications for container storage
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 4, pp. 918-930, 2020.

“Kubernetes,” https:/ /kubernetes.io, 2021.

J. B. Sidney, “Decomposition algorithms for single-machine se-
quencing with precedence relations and deferral costs,” Operations
Research, vol. 23, no. 2, pp. 283-298, 1975.

D. S. Hochbaum, “The pseudoflow algorithm: A new algorithm
for the maximum-flow problem,” Operations research, vol. 56, no. 4,
pp- 992-1009, 2008.

D. M. Powers, “Applications and explanations of zipf’s law,”
in New methods in language processing and computational natural
language learning, 1998.

M.]. Siavoshani, F. Parvaresh, A. Pourmiri, and S. P. Shariatpanahi,
“Coded load balancing in cache networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 2, pp. 347-358, 2019.
L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Explor-
ing layered container structure for cost efficient microservice de-
ployment,” in IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. 1EEE, 2021, pp. 1-9.

R. Storn and K. Price, “Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces,”
Journal of global optimization, vol. 11, no. 4, pp. 341-359, 1997.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN'95-international conference on neural networks,
vol. 4. IEEE, 1995, pp. 1942-1948.

T. Weise, “Global optimization algorithms-theory and applica-
tion,” Self-Published Thomas Weise, 2009.

IBM, “Ibm cplex optimizer,” [EB/OL], https://www.ibm.com/
analytics/cplex-optimizer Accessed Aug 24, 2021.

N. Aljeri and A. Boukerche, “Mobility management in 5g-enabled
vehicular networks: Models, protocols, and classification,” ACM
Computing Surveys (CSUR), vol. 53, no. 5, pp. 1-35, 2020.

E. E. Maleki, L. Mashayekhy, and S. M. Nabavinejad, “Mobility-
aware computation offloading in edge computing using machine
learning,” IEEE Transactions on Mobile Computing, 2021.

Jiong Lou received the B.S. degree from De-
partment of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, China, in
2016 and is currently a Ph.D. candidate in De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University, China. His cur-
rent research interests include edge computing,
resource allocation, and reinforcement learning.

14

Hao Luo received B.Sc. degree in computer sci-
ence and technology from Civil Aviation Univer-
sity of China, Tianjin, China, in 2016 and M.Sc
degree in computer science and technology from
Huagiao University , Xiamen, China, in 2020. He
is currently working as a research assistant with
Institute of Artificial Intelligence and Network,
Beijing Normal University.

Zhiging Tang received the B.S. degree from
School of Communication and Information En-
gineering, University of Electronic Science and
Technology of China, China, in 2015 and is
currently a Ph.D. candidate in Department of
Computer Science and Engineering, Shanghai
Jiao Tong University, China. His current research
interests include edge computing, resource allo-
cation, and reinforcement learning.

Weijia Jia is currently a Chair Professor, Direc-
tor of BNU-UIC Institute of Artificial Intelligence
and Future Networks, Beijing Normal University
(Zhuhai) and VP for Research of BNU-HKBU
United International College (UIC) and has been
the Zhiyuan Chair Professor of Shanghai Jiao
Tong University, China. He was the Chair Pro-
fessor and the Deputy Director of State Kay
Laboratory of Internet of Things for Smart City at
the University of Macau. His contributions have
been recognized as optimal network routing and
deployment; anycast and QoS routing, sensors networking, Al (knowl-
edge relation extractions; NLP etc.) and edge computing. He has over
600 publications in the prestige international journals/conferences and
research books and book chapters. He has received the best product
awards from the International Science & Tech. Expo (Shenzhen) in
2011-2012 and the 1st Prize of Scientific Research Awards from the
Ministry of Education of China in 2017 (list 2). He is the Fellow of IEEE
and the Distinguished Member of CCF.

; k

Wei Zhao completed his undergraduate studies
in physics at Shaanxi Normal University, China,
in 1977, and received his MSc and PhD de-
grees in Computer and Information Sciences
at the University of Massachusetts at Amherst
in 1983 and 1986, respectively. Professor Zhao
has served important leadership roles in aca-
demic including the Chief Research Officer at
the American University of Sharjah, the Chair of
Academic Council at CAS Shenzhen Institute of
Advanced Technology, the eighth Rector of the
University of Macau, the Dean of Science at Rensselaer Polytechnic
Institute, the Director for the Division of Computer and Network Systems
in the U.S. National Science Foundation, and the Senior Associate
Vice President for Research at Texas A&M University. Professor Zhao
has made significant contributions to cyber-physical systems, distributed
computing, real-time systems, and computer networks. He led the effort
to define the research agenda of and to create the very first funding pro-
gram for cyber-physical systems in 2006. His research results have been
adopted in the standard of Survivable Adaptable Fiber Optic Embedded
Network. Professor Zhao was awarded the Lifelong Achievement Award
by the Chinese Association of Science and Technology in 2005.

