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Startup-aware Dependent Task Scheduling with
Bandwidth Constraints in Edge Computing
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Abstract—In edge computing, applications can be scheduled in the granularity of inter-dependent tasks to proximate edge servers to
achieve high performance. Before execution, the edge server must initialize the corresponding runtime environment, named task
startup. However, existing studies on dependent task scheduling severely ignore bandwidth constraints during task startups, which is
impractical and incurs a long startup latency. To fill in this gap, we first model the task startup process with bandwidth constraints on
edge servers. Then, we formulate the dependent task scheduling problem with startup latency in heterogeneous edge computing. To
efficiently generate schedules and satisfy the real-time requirements in edge computing, a novel low-complexity list scheduling
algorithm integrated with cloud clone, Startup-aware Dependent Task Scheduling (SDTS), is proposed. Constrained by bandwidth and
computation resources, SDTS first coordinates task startup, dependent data transmission, and task execution to optimize each task’s
finish time. Then, a cloud clone for each task is deployed to utilize scalable resources and initialized runtime environments.
Furthermore, task scheduling refinement is designed to release the bandwidth and computation resources consumed by redundant
tasks and improve the schedule. Extensive simulations based on real-world datasets show that SDTS substantially reduces 30%-60%
makespan compared with existing baselines.

Index Terms—Dependent Task, Edge Computing, Startup Latency, Makespan Optimization

✦

1 INTRODUCTION

COMPARED to the remote cloud, edge computing brings
the processing capability to the edge of the network [1].

Mobile users can offload applications to the edge servers
that are proximate to the users to leverage sufficient com-
putation resources with low latency [2]. To reduce the
makespan [3], improve the throughput [4] or minimize
the costs [5], a mobile application can be further divided
into multiple inter-dependent tasks, and each task can be
individually offloaded to different edge or cloud servers.

However, before executing a task on an edge server, the
corresponding runtime environment should be initialized
in advance, named task startup, which delays the task
execution and affects users’ quality of experience [6], [7],
[8]. The task startup consists of downloading the runtime
environment (e.g., container images, Virtual Machine (VM)
ISO files, software packages, function codes, etc.) from the
cloud (if not exist) and preparing the runtime environment
(i.e., booting the container and importing packages) [9], [10],
[11]. The size of the runtime environment is considerable,
which can reach tens of MB to several GB [12], [13]. Since the

• Corresponding author: Zhiqing Tang and Weijia Jia.
• J. Lou is with Department of Computer Science and Engineering, Shang-

hai Jiao Tong University, Shanghai, 200240, China, and also with Institute
of Artificial Intelligence and Future Networks, Beijing Normal University,
Guangdong, 519087, PR China. E-mails: lj1994@sjtu.edu.cn

• Z. Tang and W. Jia are with Institute of Artificial Intelligence and Future
Networks, Beijing Normal University (BNU Zhuhai), and W. Jia is also
with Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-
HKBU United International College Zhuhai, Guangdong, 519087, PR
China. E-mails: domain@sjtu.edu.cn, jiawj@bnu.edu.cn

• W. Zhao is with CAS Shenzhen Institute of Advanced Technology,
Shenzhen, 518055, PR China. E-mail: zhao.wei@siat.ac.cn

• J. Li is with the Department Computer Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China. E-mail: lijiecs@sjtu.edu.cn

limited memory and storage capacity of edge servers, and
the increasing number of task types, it is impossible to store
or initialize runtime environments required by all tasks.
Therefore, the task startup is inevitable, which incurs a
significant delay, especially in edge computing with limited
downloading bandwidths.

Most of the studies on dependent tasks scheduling ig-
nore the task startup [3], [5], [14], [15] or directly add a
constant server/VM booting time [16], [17]. Only a few
studies [6], [7] coarsely consider the task startup when
making task scheduling decisions. In [7], the authors define
a constraint that a task can only be offloaded to the edge
servers where its runtime environment is already initialized,
without considering the task startup process before exe-
cution. In [6], GenDoc is proposed to schedule dependent
tasks with on-demand function configuration that is similar
to task startup. They assume that multiple functions can
be configured simultaneously on an edge server, and each
function’s configuration time is constant regardless of the
bandwidth constraint. However, since the size of a runtime
environment can be up to hundreds of MB, the environment
downloading of multiple tasks on the same edge server can
significantly prolong the startup latency (compared with the
single environment downloading) since the environment
downloading process is constrained by the limited band-
width. Therefore, edge server bandwidth is an important
constraint that cannot be ignored in task startup.

Given the task startup latency with bandwidth con-
straints in edge computing, the following new challenges
appear in the area of dependent task scheduling: (1) How
to comprehensively model the dependent task schedul-
ing with the task startup process. The task startups with
bandwidth constraints on the same edge server should be
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carefully considered. (2) How to properly coordinate task
startup, task execution, and dependent data transmission
in heterogeneous edge computing. The task startups are
constrained by the bandwidth, while the task executions are
limited by the computation resources. (3) How to efficiently
utilize the initialized runtime environments in the powerful
cloud to release bandwidth and computation resources in
edge servers and reduce the makespan further. All these
challenges make the dependent task scheduling problem
more intractable.

In this paper, we first model the task startup process with
bandwidth constraints on edge servers to address the first
challenge. Based on the task startup modeling that reflects
the realistic scenario, the dependent task scheduling prob-
lem with startup latency in heterogeneous edge computing
is formulated. Since the problem is NP-hard and the real-
time requirements in edge computing, a low-complexity list
scheduling algorithm integrated with cloud clone, Startup-
aware Dependent Task Scheduling (SDTS), is proposed. To
overcome the second challenge, task prioritization and edge
server selection are particularly designed for dependent
tasks with startup latency. SDTS judges each task’s schedul-
ing urgency according to both the runtime environment
size and the longest path of its descendant tasks. Then, it
optimizes each task’s finish time by wisely overlapping the
startup time, dependent data transmission time, and other
tasks’ execution time. To solve the third challenge, SDTS
deploys a cloud clone1 for each task to mitigate the impact
of startup latency and leverage powerful cloud resources.
SDTS adaptively decides to receive the dependent data from
precedent tasks on edge servers or in the cloud. Moreover,
to release the bandwidth and computation resources con-
sumed by useless task executions, task scheduling refine-
ment is designed to identify and remove redundant tasks
that have no contribution to reducing the makespan during
the scheduling process. After the scheduling process, it
tightens the schedule to reduce the makespan by utilizing
the released resources.

In the case of the unary processing model (i.e., an edge
server can execute a task at one time), the time complexity
of SDTS is O(|V|2|S|), where |V| and |S| are the number of
tasks and edge servers, respectively. Its time complexity is
as low as HEFT [19], a famous list algorithm for scheduling
dependent tasks. Extensive simulations based on real-world
datasets from Alibaba [20] prove that SDTS substantially
outperforms baselines in terms of makespan.

To the best of our knowledge, we are the first team
to study the scheduling problem of dependent tasks with
startup latency under bandwidth constraints in heteroge-
neous edge computing. The contribution of this paper is
summarized as follows:

1) The task startup process with bandwidth constraints
on edge servers is modeled. Based on the task
startup modeling, the scheduling problem of de-
pendent tasks with startup latency in heterogeneous
edge computing is formulated.

2) A novel low-complexity list scheduling algorithm
is proposed to solve the problem. In edge server
selection, the task startup time, dependent task

1. A cloud clone is a task replication [18] that is executed in the cloud.

scheduling time, and task execution time are wisely
coordinated to reduce each task’s finish time.

3) For each task, a cloud clone is deployed to leverage
the powerful computation resources and initialized
runtime environments in the cloud. Task schedul-
ing refinement is particularly designed to efficiently
remove redundant tasks to release bandwidth and
computation resources, and tighten the schedule
after the scheduling process.

4) Finally, extensive experiments with real-world data
from Alibaba [20] are performed to demonstrate
that SDTS substantially reduces 30%-60% makespan
compared with existing baselines.

2 RELATED WORK

In this section, the related work is classified in following
aspects: (1) Dependent task scheduling in edge computing.
(2) Dependent task scheduling with startup latency.

2.1 Dependent Task Scheduling in Edge Computing
There are several studies on dependent task scheduling in
edge computing to minimize the makespan [3], [14], [21],
[22], reduce the costs [5], [23], or maximize the through-
put [4], [24]. MAUI [25] and CloneCloud [21] rely on a
standard ILP solver to partition the entire application and
decide which methods should be remotely executed to save
energy. ThinkAir [14] is proposed to enhance the power of
cloud computing by parallelizing method executions using
multiple VM images. In [3], Mahmoodi et al. first study
joint scheduling and offloading for mobile applications with
arbitrary component dependencies. Since the problem is
NP-hard, the authors find the optimal solution by using IBM
CPLEX optimizer [26].

Recent studies [5], [6], [7], [27] consider the more com-
plex scenarios consisting of edge servers and a remote cloud.
Kao et al. [27] design a polynomial-time approximation
algorithm (Hermes) to minimize the makespan under re-
source cost constraints when assigning task graphs that can
be described as serial trees to multiple devices. However,
in Hermes, the edge devices are assumed to execute an
infinite number of tasks simultaneously. ITAGS [5] identifies
each task’s scheduling decision to minimize the total cost
of an application under the deadline. It first uses a binary-
relaxed version of the original problem to assign each task
a sub-deadline and then greedily optimizes the scheduling
of each task subject to its sub-deadline. In [28], the authors
propose a heuristic algorithm to make scheduling decisions
for dependent tasks to minimize the average makespan of
applications, subject to their respective deadline constraints.

However, these studies assume that all runtime environ-
ments are already initialized on each server and any task
can be executed on any edge server, which is impractical in
resource-limited edge computing.

2.2 Dependent Task Scheduling with Startup Latency
Task startup is close to some other concepts, e.g., server-
less function cold start [8], container startup [10] and VM
booting [29]. These latencies can be up to tens of sec-
onds [8], [30], [31], so several approaches,e.g., lightweight
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Fig. 1. (a) The simple example of dependent tasks. (b) The optimal
schedule for the model where the task startup is neglected. (c) The
optimal schedule for the model where multiple tasks’ environments can
be initialized concurrently without any bandwidth contention. (d) The
schedule of (c) is adopted to the dependent tasks scheduling with
startup latency under bandwidth constraints. (e) The optimal schedule
for dependent tasks with startup latency under bandwidth constraints.

environment [32], [33] and environment cache [34], [35] are
proposed to accelerate it.

There are also a few studies on scheduling dependent
tasks with startup latency. In [7], Zhao et al. define a con-
straint that a task can only be offloaded to the edge servers
configured with the corresponding required environment,
but they do not consider the task startup process. In [36],
Lin et al. propose a strategy to speed up microservice
startups and lower image storage consumption by exploring
the advantage of layer sharing. However, they simply start
executing tasks after finishing the startup process of all
tasks. In [37], the authors estimate the invocation time of
each function in the workflow and speculatively deploy
resources ahead of the estimated invocation time to reduce
cold starts, but they do not consider the task scheduling
problem on heterogeneous edge servers.

In [6], GenDoc is proposed to schedule dependent tasks
with on-demand function configuration. They first make the
function configuration decisions and then decide the start
time for each task. However, they assume that multiple
functions can be configured concurrently without band-
width constraints on each other, which is an impractical and
irrational model. In this article, the task startup process with
bandwidth constraints is comprehensively modeled. Then,
some tasks’ execution time can be overlapped with other
tasks’ startup time, which can further reduce the makespan
of dependent tasks. Finally, the makespan of dependent
tasks is minimized by properly determining each task’s exe-
cution server, start time, and the environment downloading
order on each edge server.

3 MOTIVATION

In this section, the importance of considering the bandwidth
constraint during the task startup is shown. Fig. 1 illustrates
the optimal schedules for a task graph (v1 → v2) in different
models. The task graph is shown in Fig. 1(a). In this illus-
trative example, two dependent tasks with different sizes of

TABLE 1
Notations

Notation Description
S Set of edge servers
|S| Total number of edge servers
sc Cloud server
su Mobile device
ck Maximal number of tasks can run on edge server sk

simultaneously
dk,l Latency per unit data transmission from edge server

sk to edge server sl
bk Downloading bandwidth of the edge server sk
dc Latency per unit data transmission of the edge-cloud

link
a Application
G Task graph of application a
T Completion time of application a
V Set of tasks in application a
E Set of dependencies in application a
n Total number of tasks in application a
ti,k Execution time of task vi on server sk
ei,j Dependency data from task vi to task vj
pi Environment size of task vi
tsi,k Start time of task vi on server sk
tfi,k Finish time of task vi on server sk
tdi,k Environment downloading time of task vi on server

sk
tri,k Environment downloading finish time of task vi on

server sk
tpi,k Environment preparation time of task vi on server sk
wi Priority of task vi

environments are assumed to have identical execution times
on homogeneous edge servers.

Fig. 1(b) shows the optimal schedule for the model
where the task startup is neglected. In this optimal schedule,
two tasks are executed on the same edge server sequentially.
In the model of Fig. 1(c), multiple tasks’ environments
can be initialized independently and are not constrained
by the bandwidth, which has been adopted in previous
studies [6], [16]. In the optimal schedule for this model, two
tasks are still scheduled on the same edge server, and both
environments are initialized at the beginning. However, in
the realistic scenario, the downloading process of multiple
tasks’ environments at the same time will affect each other
due to the constraints of the limited bandwidth. Therefore, it
is essential to consider the startup process of multiple tasks.

In the more realistic model of Fig. 1(d) and Fig. 1(e),
the downloading process of multiple environments is con-
strained by the edge node’s bandwidth. In this paper, it is
assumed that the downloading of one task’s environment
can fully utilize an edge node’s bandwidth [38], [39], [40].
With full utilization of the bandwidth, sequential down-
loading of environments is better than parallel downloading
in terms of the individual downloading finish time of each
task’s environment. For example, given two environments
identically sized p and an edge server with bandwidth b,
parallel downloading them with fair bandwidth allocation
results in downloading finish times 2p

b and 2p
b , respectively;

with sequential downloading, the downloading finish times
are p

b and 2p
b , respectively.

In this model, environment preparation does not occupy
the bandwidth but utilizes computation resources. On an
edge server, a task’s execution time can be overlapped
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Fig. 2. An example of the system model. The application on the left is released by a mobile device, and dependent tasks are scheduled to different
servers (including edge and cloud servers). An example of edge computing is in the middle, where edge servers and the cloud can communicate
with each other by a fully connected network. On the right, dependent tasks are scheduled to edge servers or the cloud.

with other tasks’ startup time. In Fig. 1(d), the schedule
of Fig. 1(c) is adopted, which is far from optimal. Since
the execution of task v2 is delayed by the considerable
environment downloading time of v1 and v2, the schedule
generates an idle time interval. The makespan of schedule
in Fig. 1(d) is 15.8. The optimal schedule is shown in
Fig. 1(e), where each task is scheduled to an individual edge
server. In this optimal schedule, two tasks’ environments
are downloaded in parallel on two edge servers. Task v2’s
environment downloading time is overlapped with task v1’s
environment downloading time and execution time, so the
execution of task v2 will not be delayed. The makespan
of schedule in Fig. 1(e) is 12.1, which is 23% shorter than
Fig. 1(d).

The illustrative example shows that the scheduling algo-
rithm should be specifically designed to solve the problem
of dependent task scheduling with startup latency.

4 SYSTEM MODEL AND PROBLEM FORMULATION

4.1 System Model

Fig. 2 depicts an overview to illustrate the dependent task
scheduling with startup latency. In edge computing, multi-
ple resource-limited edge servers and the remote cloud are
fully connected. A mobile device releases an application that
can be scheduled at the level of dependent tasks. The server
to which tasks are scheduled must initialize the correspond-
ing runtime environments in advance. On each edge server,
the environment downloading process included in the task
startup is modeled as sequential downloading, which is
introduced in the last section. For ease of reference, the key
notations used in the paper are summarized in TABLE 1.

Edge server. The set of all edge servers in the edge
computing network is denoted as S = {s1, s2, . . . , s|S|}.
To model the heterogeneous processing capabilities of edge
servers, the unrelated machine model where each task
has machine-dependent execution time on each server is

adopted [6], [41], [42]. Each edge server sk has a lim-
ited capacity of computation resources that can execute ck
functions simultaneously. The links connecting edge servers
have heterogeneous bandwidths. For ease of representation,
the bandwidth between two edge servers sk and sl is
defined as the latency per unit data transmission dk,l, and
specifically, dk,l = dl,k. The data transmission time on the
same edge server is negligible, i.e., dk,k = 0 [5].

Cloud server. The cloud server is denoted as sc. The
cloud sc has an infinite capacity of computation resources,
which means that it can execute an infinite number of
tasks simultaneously. The cloud has already initialized run
environments for all tasks, which means zero task startup
time in the cloud. The latency per unit data transmission of
the edge-cloud link is denoted as dc, which is much longer
than dk,l between two edge servers sk and sl. dc,c is also
assumed to be zero since the negligible transmission time
inside the cloud [5].

Application. The application is denoted as a and re-
leased by a mobile device su. The application structure is
described by a Directed Acyclic Graph (DAG), named task
graph G = (V,E), where V is the set of nodes represent-
ing tasks, and E is the set of directed edges representing
dependencies between tasks. The execution time of each
task is defined by the execution time matrix T , where each
element ti,k specifies the execution time of task vi ∈ V on
server sk ∈ S ∪ {sc}. Task replication [6], [18] is allowed
in this paper, which means that a task can be executed in
more than one server to reduce the makespan. The directed
edge (i, j) ∈ E specifies that there is some required data
transmission, ei,j , from task vi to task vj . If task vi and
task vj are placed on sk and sl, respectively, the data
transmission time is ei,jdk,l. For each edge (i, j) ∈ E, task
vi is the predecessor of task vj , and task vj is the successor
of task vi. In practice, the task graph G can be obtained
by applying a program profiler [14], [25]. In this paper, the
corresponding task graph is given when the mobile device
su releases the application [5], [6].
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Before executing a task vi on edge server sk, the task
startup should be finished. The task startup time mainly
consists of two parts: (1) Environment downloading time
tdi,k = pi

bk
, where bk is the downloading bandwidth of the

edge server sk and pi is the environment size of task vi.
(2) Environment preparation time tpi,k including data unzip
time, package import time, etc., which also depends on the
task and the server. The environment downloading time and
environment preparation time of each task on the cloud are
equal to zero, i.e., tdi,c = 0 and tpi,c = 0 [6].

Two dummy nodes with zero execution and startup
time are inserted into the task graph. One dummy task
named source task is inserted at the start to trigger the
application, and another one named sink task is inserted at
the end to receive all the results. The total number of tasks in
application a is changed to n = |V|+2. Then, task graph G
is relabeled by topological sorting so that for every directed
edge (i, j), task vi comes before vj in the ordering. After
insertion and sorting, both V and E are updated. The source
task and the sink task are denoted as v1 and vn, respectively,
which are executed on the release mobile device su. For a
task vi, tasks on the paths from vi to the sink task vn are
its descendant tasks, and tasks on the paths from the source
task v1 to vi are its ancestor tasks.

4.2 Problem Formulation
In this section, all constraints are introduced and the
makespan optimization problem of dependent task schedul-
ing with startup latency is formulated.

After an application a is released at the time of zero,
the source task starts to run on the mobile device su, i.e.,
ts1,u = 0. The source task v1 and sink task vn run on the
mobile device su, so that start times of these two tasks on
other servers are set to a large enough number M :

ts1,k = tsn,k = M, ∀sk ∈ S ∪ {sc}. (1)

To satisfy the real-time requirements of applications in
edge computing, once a task vi starts to run on a server
sk, it cannot be paused or migrated until it completes. The
constraints can be represented as:

tfi,k = tsi,k + ti,k, ∀vi ∈ V, ∀sk ∈ S ∪ {sc}. (2)

Considering data transmission from task replications,
the start time of a task vi must be later than the earliest time
when the dependency data transmission of its precedence
task’s replication is finished:

tsi,k ≥ min
sl∈S∪{sc}

{tfj,l + ej,idl,k}

∀(j, i) ∈ E, ∀sk ∈ S ∪ {sc}.
(3)

In this paper, the sequential downloading model of
multiple tasks’ environments is adopted, which means that
each edge server only downloads one task’s environment at
one time. Therefore, the environment downloading time of
different tasks on the same edge server are not overlapped:

max{tri,k − tdi,k, t
r
j,k − tdj,k} ≥ min{tri,k, trj,k},

∀vi, vj ∈ V, vi ̸= vj , ∀sk ∈ S,
(4)

where tri,k and trj,k are environment downloading finish
times of task vi and task vj on server sk, respectively.

Specifically, the environment downloading finish time of
each task vi in the cloud sc is zero, i.e., tri,c = 0.

A server sk can start executing the task vi after down-
loading and preparing the environment:

tsi,k ≥ tri,k + tpi,k, ∀sk ∈ S ∪ {sc}, ∀vi ∈ V. (5)

Due to the limited resources (e.g., memory and CPU),
an edge server sk can only execute ck tasks simultaneously.
For ease of representation, the capacity of edge server sk is
regarded as ck virtual cores. The virtual execution core of
task vi on edge server sk is donated as hi,k ∈ {1, 2, . . . , ck}.
The task occupies the virtual execution core since the server
starts to prepare its environment [8]. Therefore, the time du-
ration when the virtual core is occupied by task vj includes
the task’s execution time and environment preparation time.
The virtual core occupation time of any two tasks on the
same virtual core of an edge server is not overlapped:

max{tsi,k − tpi,k, t
s
j,k − tpj,k} ≥ min{tfi,k, t

f
j,k},

∀vi, vj ∈ V, vi ̸= vj , ∀sk ∈ S, hi,k = hj,k.
(6)

Since the sink task receives the final execution results
on the mobile device su and all tasks obey dependent
constraints in Eq. (3), the completion time T of application
a is equal to sink task vn’s finish time tfn,u:

T = tfn,u (7)

The objective of the scheduling problem is to minimize
the makespan of the application a:

Problem 1.

min
{tri,k,tsi,k,hi,k}

T (8)

s.t. Eq. (1) − (7),

To minimize the makespan of the application a, a
schedule that satisfies all the above constraints should be
generated. The schedule of the application a is defined
as {tri,k, tsi,k, hi,k|vi ∈ V, sk ∈ S ∪ {sc}}, including the
environment downloading finish time, each task’s start time
and the occupied virtual core.

Theorem 1. The dependent task scheduling problem with startup
latency is NP-hard.

Proof. The dependent task scheduling problem with startup
latency is NP-hard since it contains the dependent schedul-
ing problem in [5] as a special case, which ignores the task
startup time and assumes unary edge servers.

5 ALGORITHM

5.1 SDTS

Due to the NP-hardness of the scheduling problem and
the real-time requirements in edge computing, we propose
SDTS, a low-complexity list scheduling algorithm integrated
with cloud clone.

As shown in Algorithm 1, SDTS mainly consists of four
steps: (1) Task prioritization. The priority of a task is com-
puted according to the environment size and its descendant
tasks’ workload. (2) Edge server selection. Each task is
scheduled to the edge server with the earliest finish time by
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Algorithm 1: SDTS

Input: S, G, ti,k, tdi,k
Output: hi,hi,k,tsi,k,tsi,c,tri,k

1 Initialize the data transmission graph G̃ with a
virtual end node ve;

2 L = [v1];
3 for sk ∈ S do
4 tck = 0

/* Task prioritization */
5 Compute the priority for each task via Eq.(9);
6 while L is not empty do
7 vi = argmaxvi∈L wi;
8 if vi = v1 or vi = vn then
9 hi = u ;

10 Compute tsi,u via Eq.(15);
11 G̃.add node(vi), G̃.add edge(vi, ve);
12 else

/* Edge server selection */
13 Call Algorithm 2 to select an edge server for

vi;
/* Cloud clone deployment */

14 Compute tii,c via Eq.(20);
15 tsi,c = tii,c;
16 Update L;
17 G̃.add node(vi), G̃.add node(ṽi);
18 G̃.add edge(vi, ve), G̃.add edge(ṽi, ve);

/* Task scheduling refinement */
19 Call Algorithm 3 to refine the schedule;

/* Task scheduling refinement */

20 Tighten the schedule based on G̃;

considering the task startup, dependency data transmission,
and task execution. (3) Cloud clone deployment. For each
non-dummy task, a clone is deployed in the cloud to benefit
from the powerful cloud resources and avoid task startup.
(4) Task scheduling refinement. After each task’s scheduling,
redundant tasks are efficiently identified and removed. At
last, the schedule is further improved by utilizing the free
time slots.

Task prioritization. A task vi’s priority wi is defined as:

wj = tdi + ri, (9)

where tdi and ri are the average environment downloading
time and the upward rank, respectively.

The average environment downloading time of task vi

is defined as tdi =
∑

sk∈S tdi,k
|S| . Since the environment down-

loading of a task is only influenced by precedent environ-
ment downloading on the same edge server, the task’s prior-
ity only considers its own average environment download-
ing time instead of the average environment downloading
time of its descendant tasks. To reduce the makespan, tasks
with heavy environments should be scheduled earlier.

The upward rank ri represents the length of the longest
path from task vi to the sink task [19], recursively defined
by:

rj = max
(j,i)∈E

{ri + ej,id}+ tj , (10)

Algorithm 2: Edge Server Selection

Input: S, G, vi, tdi,k
Output: hi,hi,k,tsi,k,tri,k,tck,lk,u

1 Compute tfi,k and hi,k of the task vi on each edge
server sk via Eq.(17) and Eq.(18);

2 hi = argmax
sk∈S

{tfi,k};

3 Compute tsi,k with sk = hi via Eq.(15);
4 tri,k = tck + tdi,k;
5 tck = tck + tdi,k, u = hi,k;
6 lk,u is updated by inserting vi’s virtual core

occupation interval [tsi,k − tpi,k, t
f
i,k];

where tj =
∑

sk∈S tj,k

|S| is the average processing time of task

vj and d =
∑

sk∈S

∑
sl∈S dk,l

|S|2 is the average time per unit
data transmission between edge servers. For the sink task
vn, rn = tn = 0. Normally, tasks with higher upward rank
have more descendant tasks and is more urgent to schedule.

The task priority defined in Eq. (9) additionally considers
the average environment downloading time. A ready task
list L is defined as the list of tasks whose predecessors’
scheduling decisions are already made. At each time, a task
with the highest priority is selected from the ready task list
and scheduled to one of the edge servers.

Edge server selection. A proper edge server and the
start time should be determined for executing the ready
task with the highest priority. The prime idea is to greedily
schedule each task to the edge server with the earliest finish
time, which jointly considers task startup time, input data
transmission time, and task processing time. Algorithm 2
describes the process of selecting a proper edge server for
the ready task vi, and we illustrate it in the following.

Since the task startup time and the data transmission
time can be overlapped, the start time of task vi satisfies the
following constraint:

tsi,k ≥ max{tei,k, tii,k}, (11)

where tei,k and tii,k are the environment ready time and the
input data ready time, respectively.

For environment ready time, to satisfy the constraints in
Eq.(5), the download completion time tck of each edge server
sk is defined and updated. The task scheduling sequence
determines the environment download sequence. Then, the
environment downloading finish time tri,k of task vi on
server sk is computed by

tri,k = tck + tdj,k. (12)

The environment ready time tei,k of task vi on server sk can
be computed by

tei,k = tri,k + tpi,k. (13)

For input data ready time, each dependency data ej,i
is adaptively transferred from the task vj on the edge
server sl or the cloud clone ṽj , which depends on the ej,i’s
transmission finish time. The input data ready time tii,k of
task vi on server sk can be calculated by

tii,k = max
(j,i)∈E

{min{tfj,c + ej,idc, t
f
j,l + ej,idl,k}}. (14)
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In order to improve the resource utilization of edge
servers and make the start time earlier, the insertion-based
policy ESTfind [19] is applied to compute tsi,k. ESTfind
tries to insert a task at the earliest idle time between two
already scheduled tasks on a server’s virtual core if the idle
time slot is large enough to accommodate the task. The start
time tsi,k of task vi on server sk is computed by

tsi,k =


0, i = 1,
ESTfind(sk,max{tei,k, tii,k}, ti,k), 1 < i < n,
tii,k, i = n,

(15)
where the insertion-based policy ESTfind is implemented
by searching for the earliest idle time slot that is capable of
accommodating task vi’s execution time ti,k on server sk’s
virtual cores. ESTfind is defined as:

ESTfind(sk, t, ti,k) =

min
u≤ck,o∈lk,u

{max(t, xs
o,u,k + tpi,k)|x

f
o,u,k

−max(t, xs
o,u,k + tpi,k) ≥ ti,k},

(16)

where lk,u is the idle time slot list of virtual core u on server
sk. xs

o,u,k and xf
o,u,k are the start time and the finish time of

the idle time slot o of virtual core u on server sk, respectively.
The virtual core that contains the selected idle time slot is
obtained by

hi,k = argmin
{1,2,...,ck}

{ min
o∈lk,u

{max(t, xs
o,u,k + tpi,k)|x

f
o,u,k

−max(t, xs
o,u,k + tpi,k) ≥ ti,k}}.

(17)

The finish time of task vi on server sk is computed by

tfi,k = tsi,k + ti,k. (18)

Finally, the edge server sk with the earliest finish time tfi,k
of task vi is selected

hi = argmax
sk∈S

{tfi,k}, (19)

where hi is denoted as the edge server to execute task vi.
Cloud clone deployment. At the same time as deploying

the task on an edge server, a task clone is also deployed
in the cloud. As mentioned in Section. 4.1, task replica-
tion is allowed in this paper. Task replication [18], or task
duplication [43] is an efficient technique that allows tasks
to be executed multiple times on different servers within
a schedule, providing benefits to makespan minimization.
However, excessive task replications also occupy massive
computation and communication resources [44], which de-
lays the subsequent task execution and finally makes the
makespan longer.

In SDTS, we heuristically set that each task can be
executed only once on the selected edge server (i.e., task
replication is not applied on edge servers). While deploying
a task clone in the cloud will not have these shortcomings
for the following reasons: Firstly, in contract with the limited
resources on edge servers, the computation resources in the
cloud are scalable, which is able to execute a large number
of tasks simultaneously. Secondly, the processing time of a
task in the cloud is usually shorter than on edge servers for
the powerful processing capability of the cloud, which may
compensate for the longer transmission time and reduce the

Algorithm 3: Task Scheduling Refinement

Input: G, G̃, vi
Output: G̃

1 Lc = [];
2 for (j, i) ∈ E do
3 Add edges according to the rules described in

task refinement scheduling;
4 if All successors of vj is scheduled then
5 G̃.remove edge(vj , ve);
6 G̃.remove edge(ṽj , ve);
7 Lc.add(vj), Lc.add(ṽj);

8 while Lc is not empty do
9 vk = Lc.pop();

10 if outdegree(vk) = 0 then
11 G̃.remove node(vk);
12 for (vj , vk) ∈ Ẽ do
13 G̃.remove edge(vj , vk);
14 Lc.add(vj);

15 Release resources occupied by redundant tasks;

makespan. Thirdly, the required run environment of each
task in the cloud is already initialized, which will save
the task startup time and not add the download overhead.
Therefore, SDTS deploys a clone in the cloud for each task.
The clone of task vi is denoted as ṽi, and its start time and
finish time are denoted as tsi,c and tfi,c, respectively.

To determine the start time of a task clone ṽi in the cloud,
the input data ready time tii,c in the cloud is first computed:

tii,c = max
(j,i)∈E

{min{tfj,c, t
f
j,l + ej,idc}}, (20)

where the task vj is assumed to be executed on edge server
sl. In this way, each dependency data ej,i is adaptively
transferred from the task vj on the edge server sk or the
task clone ṽj in the cloud, which is determined by their
transmission finish times. Since the sufficient computation
resources in the cloud, each task clone in the cloud can start
immediately after receiving the input data, i.e., tsi,c = tii,c.

Task scheduling refinement. After the above schedul-
ing, each non-dummy task is deployed both on edge and
cloud servers, and where the input data of each task is
transferred from is adaptively decided according to the
transmission finish time. There exist some redundant tasks
whose output data is useless (i.e., its output data is not
actually transferred to vn through any path). These redun-
dant tasks, including tasks on edge servers or task clones
in the cloud, consume computation resources but have no
contributions to minimizing the makespan. Furthermore,
these consumed edge resources can be released for execut-
ing other urgent tasks instead, which reduces the makespan.
To save resources and reduce the makespan, task scheduling
refinement is designed to remove redundant tasks during
the scheduling process and tighten the schedule after the
scheduling process.

An data transmission graph G̃ = (Ṽ, Ẽ) is constructed
and maintained during the scheduling process. Initially, the
data transmission graph G̃ only contains a virtual end node
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Fig. 3. (1) The data transmission graph G̃ of a simple dependent task
graph (v1 → v2 → v3 → v4 → v5) is changed after scheduling v3. The
solid lines represent the actual data transmission adaptively selected
according to the transmission finish time. (2) The redundant task v2
is removed for it has no contribution to the final results, and the edge
resources occupied by it are released.

ve. Algorithm 3 shows how to maintain G̃ by adding tasks
and removing redundant tasks after scheduling task vi.
When vi is scheduled, both vi and its cloud clone ṽi (if vi
is a non-dummy task) are added to G̃. Two edges vi → ve,
ṽi → ve are added to G̃. It ensures that before the scheduling
decisions of all vi’s successors are made, vi and ṽi should be
reserved. The actual data transmission between vi and each
of its predecessors vj is decided by the following rules:

(1) If vi = v1, there is no precedence of vi.
(2) If vi = vn, for each directed edge (j, i) ∈ E,

vj → vi is added to G̃ if tfj,c + ej,idc ≥ tfj,l + ej,idl,u;
otherwise, ṽj → vi is added to G̃.

(3) For each directed edge (j, i) ∈ E between two non-
dummy tasks vj and vi, vj → vi is added to G̃ if
tfj,c + ej,idc ≥ tfj,l + ej,idl,l; otherwise, ṽj → vi is
added to G̃. vj → ṽi is added to G̃ if tfj,c ≥ tfj,l +

ej,idc; otherwise, ṽj → ṽi is added to G̃.

These rules ensure that there exists a path from v1 to vi
and ṽi so that vi and ṽi can receive the dependent data.
Then, for each task vi (execept vn) whose successors are
all already scheduled, two edges vi → ve and ṽi → ve are
removed from G̃. It means that the vi’s and ṽi’s computation
results are transferred to its successors, and whether vi or
ṽi should be removed depends on their successors. Taking
Fig. 3(1) as an example, the data transmission graph G̃ for a
simple dependent task graph (v1 → v2 → v3 → v4 → v5) is
changed after scheduling v3.

In lines 8-15 of Algorithm 3, redundant tasks without
any contribution to minimizing the makespan are efficiently
identified and removed so that the occupied edge resources
can be released. The tasks reserved in G̃ are denoted as valid
tasks. A valid task must have at least one valid successor
task that contributes to minimizing the makespan. For each
valid task, there must exist a path from it to the virtual end
task ve in G̃. The tasks that cannot reach ve are identified
as redundant tasks and removed from G̃. For example, in

Task
Data 
Dependency

Dummy 
Task

0.96

1.68

0.991.69

2.24

1.38

2.21
2.09

0.87

1.48

2.08

0.91

1.25

0.41 0.40 0.93 0.51

0.83 1.46 1.65 1.08

1.05 0.88 1.00 0.61

0.99 0.96 0.92 0.55

1.03 0.75 0.69 0.89

0.91 1.34 1.41 0.80

0.79 1.16 1.43 0.89

1.31 0.83 1.33 0.81

Execution Time Matrix

0 0.46 0.23 3.3

0.46 0 0.24 3.3

0.23 0.24 0 3.3

3.3 3.3 3.3 0

Transmission Time per Unit Data

Fig. 4. Task graph example on the left, the table of execution time matrix
on the right top and the table of transmission time per unit data on the
right bottom.

Fig. 3(2), tasks v2 is removed for it cannot reach ve and other
tasks are reserved temporarily.

Since some redundant tasks are removed, there are some
new idle time intervals of task execution and environment
downloading on edge servers. Utilizing these idle time
intervals can tighten the schedule and then reduce the
makespan. In line 20 of Algorithm 1, the schedule tight-
ening is achieved by changing the environment download-
ing finish time and task start time as early as possible
without changing other variables (including the runtime
environment downloading sequence, tasks’ occupied virtual
cores, selected edge servers, etc.). The detailed procedure
is as follows: (1) Calculating the download finish time of
each task according to the downloading sequence on each
edge server. (2) Sorting tasks according to the dependent
constraints in Eq. (3) and the task execution sequence on
each virtual core. (3) Calculating the start times for these
ordered tasks. Since the process of tightening the schedule
brings additional computation overhead, it is only applied
once after the entire application is already scheduled.

5.2 Scheduling Example
Fig. 5 illustrates an task graph example from Alibaba
trace [20], which is scheduled by SDTS, GenDoc [6] and
HEFT [19] in an edge computing network. The task exe-
cution time matrix and transmission time table are shown
in Fig. 4. The number of tasks that can be executed simulta-
neously on each edge server is set to 2. The downloading
bandwidth of servers s1, s2, and s3 are 2.81, 2.86 and
1.07, respectively. It is noted that task v1 and task v10
are dummy tasks. The environment sizes of tasks v1, v2,
v3, v4, v5, v6, v7, v8, v9, and v10 are 0, 2.87, 1.36, 7.26,
8.46, 7.38, 6.92, 4.09, 2.21 and 0, respectively. In SDTS, the
priorities of tasks are computed, and the scheduling or-
dering is v1, v6, v7, v2, v4, v5, v8, v3, v9, v10. The scheduling
results of SDTS, GenDoc, and HEFT are shown in Fig. 5.
SDTS produces a better schedule than the other baselines.
Compared with the baselines, SDTS successfully finds a
path ṽ2 → ṽ4 → ṽ5 and offloads it to the cloud to achieve
a shorter makespan. GenDos improperly schedules an im-
portant task v6 to s3 since it ignores the heterogeneous and
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Task Execution 
Time

Environment 
Preparation Time

Environment Data 
Downloading Time

(a) SDTS (b) GenDoc (c) HEFT 

0
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15

Fig. 5. Scheduling of task graph in Fig. 4 with SDTS, GenDoc and HEFT algorithms. (a) SDTS (makespan = 9.74) (b) GenDoc (makespan = 14.62)
(c) HEFT (makespan = 13.74).

constrained downloading bandwidth of edge servers, which
generates a long startup latency. HEFT ignores the startup,
so it schedules six tasks to s1.

5.3 Time Complexity Analysis
Theorem 2. The time complexity of SDTS is O(|V|2|S| +
|V||C|), where |C|, |V|, |S| are the total number of virtual cores,
dependent tasks and edge servers, respectively. In the case of unary
edge server model, the time complexity of SDTS is O(|V|2|S|).

Proof. The proposed algorithm consists of four steps: task
prioritization, edge server selection, cloud clone deploy-
ment, and task scheduling refinement. In task prioritiza-
tion, the time complexity of computing tasks’ priorities is
O(|V| + |E|), where |V| and |E| are task number and
edge number. In edge server selection, the time complexity
of computing the input data ready time of each task, the
environment ready time and the finish time are O(|E||S|),
O(|V||S|) and O(|V||C|), where |S| is the number of edge
servers and |C| =

∑
sk∈S ck. In cloud clone deployment, the

time complexity of computing the start times of task clones
is O(|E| + |V|). In task scheduling refinement, the time
complexity of maintaining data transmission graph G̃ and
tightening the schedule are O(|E|) and O(|V|2). Therefore,
the overall time complexity of the proposed algorithm is
O(|E||S|+ |V|2 + |V||C|), and for dense DAGs, it becomes
O(|V|2|S| + |V||C|). Specially, in the case of unary edge
server model, the total number of virtual cores |C| is equal
to |S|, so the time complexity of SDTS is O(|V|2|S|).

6 EVALUATION

SDTS is evaluated via simulations. Simulation setup about
the edge computing network, applications, and metrics to
evaluate performance are introduced first, followed by the
description of existing baselines. Simulation results and the
corresponding analysis are then presented.

6.1 Simulation setups

The SDTS and the simulation environment are implemented
in Python 3.8 on a desktop with an Intel Core i9-10900K
3.70 GHz CPU and 32GB RAM. Each simulation result has
been repeated ten times with different seeds to mitigate the
influence of randomness. The details are introduced in the
following.

Edge computing network. The edge computing network
consists of 5 edge servers and a remote cloud. The average
time per unit data transmission between edge servers is
denoted as d. For ease of representation, d is normalized to
1. Then dk,l between servers sk and sl is randomly chosen
from [ 12d,

3
2d] to represent the heterogeneous bandwidths in

edge computing. dc is set to 15d by default. The average
of each row of T , ti, is chosen from [ 12 t,

3
2 t] to represent

the workload of vi, where t is the average task execution
time and normalized to 1. Then, the execution time ti,k is
randomly chosen from [ 12 ti,

3
2 ti]. ti,c is set to 3

4 ti by default.
For each edge server sk, the downloading bandwidth bk
is randomly chosen from [ 12b,

3
2b], where b is the average

downloading bandwidth and normalized to 1. For each
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Fig. 6. CDF of makespan for all scheduling algorithms.

edge server, the number of tasks that can be executed
simultaneously, ck, is randomly selected from {1, 2, 3, 4}.

Application. To better compare against the most related
baseline GenDoc, the simulation dataset is also generated
based on Alibaba’s trace of data analytics [20], which con-
tains more than 2 million real applications with DAG depen-
dency information. The average task number of applications
in Alibaba’s trace is 5.3. After filtering duplicated jobs with
the same DAG structure, there are 16176 applications with
unique DAG structures, each of which has 2 to 205 tasks.
Specifically, more than 98% of the DAGs contain less than
50 tasks. The task graph structure of dependent task in
Alibaba’s dataset is applied in the following simulations.

Then, the weights of tasks and edges are generated. The
communication to computation ratio (CCR) is used to rep-
resent the relation between dependencies’ communication
data and tasks’ computation workload. CCR is defined
as CCR = e·d

t
[19], where e is the average amount of

communication data of dependencies. By default, e = 0.5
and CCR = 0.5. The transmission data size of a depen-
dency is randomly chosen from [ 12e,

3
2e]. The download-

ing to computation ratio (DCR) is used to represent the
relation between environment size and tasks’ computation
workload. DCR is defined as DCR = p

b·t , where p is the
average size of tasks’ environment. By default, p = 2 and
DCR = 2. Each task’s environment size is randomly chosen

TABLE 2
Key parameters of simulation setups

Parameters Default value
Average task execution time t 1
d 1
dc 15d
|S| 5
ti,c

3
4
ti

ck {1, 2, 3, 4}
b 1
e 0.5
p 2
CCR 0.5
DCR 2
Average environment preparation time t

p 1
5
t

from [ 12p,
3
2p]. Each task’s environment preparation time tpi,k

is randomly chosen from [ 12 t
p
, 3
2 t

p
], where t

p is the average
environment preparation time. tp is set to 1

5 t by default.
The key parameters of simulation setups are shown in

TABLE 2.
Metrics. In this paper, the application makespan is the

metric used to evaluate each baseline, defined as

Makespan = min{tfn,u} (21)

Baselines. Given the real-time requirements in edge
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TABLE 3
Pairwise Makespan Comparison of the Scheduling Algorithms

SDTS GenDoc HEFT Purely
Cloud

Purely
Local

SDTS
Better

*
98.49% 99.70% 99.28% 100%

Equal 0.83% 0.07% 0.72% 0%
Worse 0.68% 0.22% 0% 0%

GenDoc
Better 0.68%

*
63.85% 87.25% 97.56%

Equal 0.83% 0.46% 12.75% 0.09%
Worse 98.49% 35.69% 0% 2.35%

HEFT
Better 0.22% 35.69%

*
75.63% 92.13%

Equal 0.07% 0.46% 0% 0.72%
Worse 99.70% 63.85% 24.37% 7.15%

Purely
Cloud

Better 0% 0% 24.37%
*

62.02%
Equal 0.72% 12.75% 0% 0%
Worse 99.28% 87.25% 75.63% 37.98%

Purely
Local

Better 0% 2.35% 7.15% 37.98%
*Equal 0% 0.09% 0.72% 0%

Worse 100% 97.56% 92.13% 62.02%

computing, the schedule should be generated in a short
time. Therefore, SDTS is compared against the following
representative and most cited heuristic algorithms.

(1) HEFT [19]: It is a well-known heuristic that aims
to minimize makespans of dependent tasks for het-
erogeneous computing without considering the task
startup latency. The task placement and task order
produced by HEFT are applied.

(2) GenDoc [6]: It is proposed to address the placement
and scheduling problem of dependent tasks with
function configuration. GenDoc first determines
which functions should be configured on each edge
server and then design a dynamic programming
method to schedule each task.

(3) Purely Cloud: It places all the tasks in the cloud.
(4) Purely Local: It places all the tasks on the edge

server that can minimize the makespan.

6.2 Results and Analysis
In the experiment, the overall performance of SDTS and four
baselines under the default simulation settings is first com-
pared. Then, the scheduling results under different settings
are comprehensively analyzed.

Fig. 6(a) depicts the Cumulative Distribution Function
(CDF) of SDTS and four baselines. The overall performance
of SDTS is consistently better than the four baselines. The
average makespan of SDTS, HEFT, GenDoc, Purely Cloud,
and Purely Local are 10.93, 18.22, 15.87, 21.17, and 28.29,
respectively. SDTS achieves 40.02%, 31.12%, 48.37%, and
61.37% average makespan reduction compared with Gen-
Doc, HEFT, Purely Cloud, and Purely Local, respectively.
The reason is that SDTS makes full use of the parallelism
nature of task startup on different edge servers and makes
the startup time of each task overlap with the execution
time of other tasks. GenDoc deploys multiple replications
for a single task, so it performs better than HEFT with
respect to the average makespan and the CDF of makespan.
Compared to Purely Local, HEFT reduces the makespan by
improving the parallelism of dependent task execution.

To further analyze the performance of all algorithms
with different application sizes, applications are divided
into three types according to their sizes: (1) Small-size appli-
cations with less than 20 tasks. (2) Middle-size applications

with 20-50 tasks. (3) Large-size applications with more than
50 tasks. The results are shown in Fig. 6(b), Fig. 6(c) and
Fig. 6(d), respectively. It can be observed that when the
application size is smaller, the makespan reduction of SDTS
is more. For small-size applications, the average makespan
of SDTS is 34%-55% less than the four baselines. While
for large-size applications, the average makespan of SDTS
is close to GenDoc and Purely Cloud. The reason is that
with more tasks, the computation and scalability advantages
of the cloud are more obvious. Both SDTS and GenDoc
offload nearly all dependent tasks to the cloud, leading to
the close performance to Purely Cloud. The performance
of Purely Local is much worse when scheduling large-
size applications, for it exploits no task parallelism. HEFT
tends to execute tasks on edge servers because of its greedy
scheduling and the long latency of the edge-cloud link.
Without leveraging the powerful cloud resources, HEFT also
has poor performance when applications are large.

TABLE 3 lists the pairwise makespan comparison of
SDTS and the four baselines for all applications from the
Alibaba dataset [20]. Each cell in TABLE 3 indicates the
comparison results of the algorithm on the left with the
algorithm on the top. SDTS produces better or compara-
ble schedules for almost all applications compared to the
baselines. For example, compared with the best baseline
GenDoc, SDTS achieves better scheduling in 98.76% of ap-
plications, equivalent scheduling in 0.61% of applications,
and worse scheduling in 0.63% of applications. It means
that SDTS always captures the opportunities to optimize the
schedule. There are two major reasons: (1) SDTS properly
coordinates that task startup and task execution by fully
considering the realistic downloading process of multiple
environments. (2) SDTS deploys cloud clones and refines
scheduling decisions to schedule some tasks to the cloud,
which reduces the makespan.

Next, the impact of different factors on the scheduling
results of all algorithms is analyzed. The default simulation
parameters of the following experiments are set according to
TABLE 2. For each experiment, only one default parameter
is varied to evaluate the performance of SDTS in different
scenarios. The results are shown in Fig. 7.

Impact of the number of edge servers. Fig. 7(a) shows
the scheduling results under different numbers of edge
servers. SDTS consistently outperforms the four baselines
with respect to makespans. With fewer edge servers, the
improvement of SDTS is more obvious, for it is aware of
the environment downloading burden on each edge server.
Purely Cloud produces the same schedule that places all
tasks in the cloud, so that it achieves the same makespan
with different numbers of edge servers. When the number
of edge servers increases, the results of GenDoc become
better since it explores the parallelism of task executions.
The makespan of Purely Local is reduced when the number
of edge servers increases because it is more likely to find an
edge server with less makespan when there are more edge
server candidates. The performance of HEFT is unstable
since it may schedule tasks to edge servers with heavy
environment downloading overhead for unawareness of the
startup time.

Impact of the transmission time of the edge-cloud link.
Fig. 7(b) shows the average makespan of different algo-
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Fig. 7. Average makespans of different algorithms with different numbers
of edge servers, dc

d
, CCR and DCR.

rithms under different dc. With a short transmission time
of the edge-cloud link, offloading all dependent tasks to the
cloud achieves the minimal schedule for most applications,
so the average makespans of SDTS, GenDoc, and Purely
Cloud are close. The reason is that SDTS and GenDoc
always deploy a task replication in the cloud, and the task
clone adaptively receives input data from edge servers or
the cloud. When dc increases, SDTS still maintains good
scheduling results, the average makespan of GenDoc in-
creases for unawareness of environment downloading time
on edge servers, and the average makespan of Purely Cloud
increases linearly due to the long transmission time on the
edge-cloud link. Purely Local schedules all tasks to an edge
server. HEFT greedily schedules a task based on its finish
time on each server, which makes it tend to place tasks on
edge servers for less transmission time. As a result, Purely
Local and HEFT are not influenced by varying dc.

Different CCR and DCR can represent the characters of
a wide range of applications. In the experiments of Fig. 7(c)
and Fig. 7(d), we vary CCR and DCR to evaluate the
performance of SDTS for different applications, respectively.

Impact of CCR. Fig. 7(c) depicts the average makespan of
different algorithms under different CCRs. The overall per-
formance of SDTS is the best of all scheduling algorithms.
For computation-intensive applications with a low CCR,
the communications are negligible, so SDTS, GenDoc, and
Purely Cloud offload all tasks to the cloud to reduce the
makespan. The average makespan of Purely Cloud increases
linearly with the data transmission time of the edge-cloud
link and Purely Local almost has the same makespan since
it schedules all tasks on an edge server.

Impact of DCR. Fig. 7(d) depicts the average makespan
of different algorithms under different DCRs. In this experi-
ment, the cloud server is not considered. SDTS still achieves
the best result under different DSRs. HEFT and GenDoc
have close performance since they schedule tasks without
considering the different task startup times on heteroge-
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Fig. 8. Comparison of SDTS and Edge Scheduling.

neous edge servers, which largely affects the makespan.

6.3 Effectiveness of each Step

To evaluate the effectiveness of cloud clone deployment
and task scheduling refinement, we conduct the following
experiments. Same as the experiments of Fig. 7, the default
simulation parameters of the following experiments are
also set according to TABLE 2. For each experiment, one
parameter is changed to evaluate the performance of SDTS
in different scenarios.

To evaluate the effectiveness of cloud clone deployment
and task scheduling refinement, we remove these two steps
in SDTS and name the remaining two steps Edge Schedul-
ing. The comparison results of Edge Scheduling and SDTS
under different simulation settings are in Fig. 8. In Fig. 8(a),
as the number of edge servers increases, the environment
downloading parallelism becomes enough and tasks can be
finished earlier on edge servers. As a result, the performance
of SDTS is close to Edge Scheduling. Fig. 8(b) shows that
cloud clone deployment and task scheduling refinement
are more effective when the edge-cloud link has sufficient
bandwidth (i.e., smaller dc). With the shorter edge-cloud
transmission time, the total makespan can benefit more
from scheduling tasks to the powerful cloud. Cloud clone
deployment and task scheduling refinement can efficiently
find these optimizing chances. In Fig. 8(c), lower CCR
means less required communication data between tasks, so
execution in the cloud has more advantages. With higher
CCR, SDTS tends to schedule tasks on edge servers since
the transmission latency of the edge-cloud link is more con-
siderable, and thus two algorithms have close performance.
In Fig. 8(d), when the task environment size is larger, the
environment downloading time has a greater impact on the
makespan. Cloud clone deployment and task scheduling
refinement bring more performance improvements since the
already initialized environments in the cloud save much
startup time.
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Fig. 9. The impact of task scheduling refinement on the average number
of task executions.

Next, we conduct two experiments to further evaluate
the effectiveness of task scheduling refinement. The number
of edge servers and the transmission time of the edge-cloud
link vary in the following experiments, respectively. The
results are shown in Fig. 9 and Fig. 10.

Fig. 9 shows the average task execution number of
scheduling algorithms under different numbers of edge
servers, which reflects the resource consumption. HEFT,
Purely Cloud, and Purely Local schedule each task to one
of the edge servers or the cloud (i.e., they do not apply
task replication), so the average task execution numbers of
them are equal to the average task number of applications.
GenDoc tries to fully use the computation resources of each
edge server by deploying multiple replications of tasks on
edge servers and always deploys a task clone in the cloud.
The task execution number of GenDoc is the most of all
algorithms. It increases linearly with the number of edge
servers for the total computation resources of edge servers
also increase linearly with the number of edge servers. The
task execution numbers of SDTS with and without task
scheduling refinement are further compared. Since SDTS
additionally deploys a task clone for each non-dummy
task, without task scheduling refinement, the number of
task executions is constantly equal to 2N − 2. Through
task scheduling refinement, the task execution number is
efficiently reduced and only larger than the average task
number by 1%, which means that in most cases, SDTS
executes a task only once and achieves good performance
(i.e., short makespan) simultaneously.

In the experiment of Fig. 10, the impact of task
scheduling refinement is evaluated in terms of the average
makespan. As shown in line 20 of Algorithm 1, SDTS
only tightens the schedule after all scheduling decisions are
made. SDTS Heavy is designed to tighten the schedule after
each time of removing redundant tasks. As a result, the time
complexity of SDTS Heavy is higher than SDTS by O(|V|3).
In SDTS Heavy, after each time of removing redundant
tasks, the idle time slots are utilized to change the schedul-
ing decisions already generated and the following schedule
decisions are made based on the tightened schedule. We
conduct the experiment to find whether the SDTS Heavy
outperforms SDTS. The result of Fig. 10 shows that the task
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Fig. 10. The impact of task scheduling refinement on the average
makespan.

scheduling refinement brings a slight makespan reduction,
which is about 1.5%. With larger dc (i.e., the longer trans-
mission time of the edge-cloud link), the improvements are
smaller. The reason is that SDTS intends to schedule tasks on
edge servers to avoid the long edge-cloud transmission time
and fewer edge resources can be released by task scheduling
refinement. Besides, it can be observed that SDTS and SDTS
Heavy have very close performance under different settings,
which means that multiple times of scheduling tightening
can hardly improve the schedule further and scheduling
tightening should be applied once to avoid high complexity.

7 CONCLUSION

In this paper, the environment initialization process of mul-
tiple dependent tasks is first modeled, particularly consid-
ering the significant startup latency caused by the limited
bandwidth on edge servers. Next, we formulate the de-
pendent task scheduling problem with startup latency. A
novel list scheduling algorithm named SDTS is proposed to
efficiently solve the problem. SDTS selects the edge server
with the earliest finish time for each dependent task, consid-
ering the downloading workload, computation workload,
and processing capability of edge servers. Besides, SDTS
deployment a cloud clone for each task to utilize the scalable
computation resources in the cloud. Extensive simulations
based on real-world datasets prove that SDTS substantially
outperforms existing baselines in terms of makespan. In the
future, we will study the dependent task scheduling prob-
lem in a realistic edge computing network with dynamic
bandwidth and computation resources.
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