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Abstract—Containers are becoming a popular way of running applications in edge computing. Before running the application, the

edge node must download the application’s container image consisting of multiple layers. However, given the limited bandwidth in edge

computing, the container startup latency due to long image download time seriously affects the real-time performance. In this article,

we jointly determine the container assignment and the layer download sequence to reduce the total startup latency. We formulate the

Container Assignment and Layer Sequencing (CALS) problem and prove its NP-hardness. A Layer-Aware Scheduling Algorithm

(LASA) is proposed, fully considering layer sharing among images. First, layers shared by the same set of images are grouped to

reduce CALS’s problem scale without affecting the optimal result. Second, considering both layer sharing and existing layer size on

edge nodes, a layer-aware algorithm is designed to assign containers to appropriate edge nodes. Finally, to determine the layer

download sequence on each edge node, an approximation algorithm is proposed. We further analyze the approximation ratio of LASA

in the case of identical edge nodes with sufficient capacity. Extensive experiments based on real-world data show the effectiveness of

LASA, which reduces the total startup latency by 40% to 60%.

Index Terms—Container scheduling, container startup, edge computing, layer sharing

Ç

1 INTRODUCTION

WITH the increasing demand for low-latency and highly
flexible applications, cloudlets [1], fog [2] and edge

computing [3] that are in closer proximity to mobile devices
provide attractive ways to deploy applications. Ultra-low
latency and ultra-high bandwidth 5G technology further
facilitates the development of edge computing [4], [5]. Vir-
tualization can provide isolated environments for applica-
tions to avoid software-dependency conflicts and enhance
system robustness [6]. However, in edge computing, the

computation resources and communication resources are
limited compared with the cloud, and the edge environment
changes are rapid [7], [8]. Traditional virtualization techni-
ques, i.e., heavy virtual machine (VM), cannot resolve these
issues. The emerging technique, container, is believed to be
a promising way to deploy applications in edge computing
[9], [10]. Multiple containers on the same node share the
machine’s OS system kernel and thereby do not require an
OS per container, driving higher server efficiencies, suitable
for resource-limited edge nodes.

Though the container is lightweight, its startup latency
can significantly affect users’ quality of experience, espe-
cially for applications that have short execution times (e.g.,
processing periodic updates from sensors) or need rapid
response times (e.g., robot motion [11]) in edge computing.
The container startup latency consists of fetching (if not
exist) the container image from the remote registry to its
host machine and installing the image. It is reported that, on
average, a median container startup needs 25 seconds in
Google clouds [12]. In edge computing, the startup latency
is much higher for longer image download time due to the
limited bandwidth. For example, the download time of an
image sized 300 MB is at least 240 seconds with a 10 Mbps
link. The image download time occupies the most propor-
tion of the startup time since the image installation latency
is lower (about one second) and more stable [13] on hetero-
geneous devices. Besides, due to limited storage resources,
dynamic user mobility, and a huge number of container
images, it is impossible to store all images on every edge
node in advance. Thus, the considerable container startup
time becomes an urgent problem to be optimized.

In the literature, some studies are proposed to reduce
container startup latency by fetching image files on demand
[14], extracting common parts of multiple containers [15],
[16], or reorganizing images [17]. However, these studies

� Jiong Lou is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China, and also with
the Institute of Artificial Intelligence and Future Networks, Beijing Nor-
mal University, Guangdong 519087, China. E-mail: lj1994@sjtu.edu.cn.

� Hao Luo is with the Guangdong Key Lab of AI and Multi-Modal Data
Processing, BNU-HKBU United International College Zhuhai, Guang-
dong 519087, China. E-mail: r130201705@mail.uic.edu.cn.

� Zhiqing Tang is with the Institute of Artificial Intelligence and Future
Networks, Beijing Normal University (BNU Zhuhai), Zhuhai 519087,
China. E-mail: domain@sjtu.edu.cn.

� Weijia Jia is with the Institute of Artificial Intelligence and Future Net-
works, Beijing Normal University (BNU Zhuhai), Zhuhai 519087, China,
and also with the Guangdong Key Lab of AI and Multi-Modal Data Proc-
essing, BNU-HKBU United International College Zhuhai, Guangdong,
519087, China. E-mail: jiawj@bnu.edu.cn.

� Wei Zhao is with the CAS Shenzhen Institute of Advanced Technology,
Shenzhen 518055, China. E-mail: zhao.wei@siat.ac.cn.

Manuscript received 29 Apr. 2021; revised 12 Feb. 2022; accepted 9 Mar. 2022.
Date of publication 16 Mar. 2022; date of current version 10 Apr. 2023.
This work was supported in part by Guangdong Key Lab of AI andMulti-Modal
Data Processing, BNU-HKBU United International College (UIC), Zhuhai,
under Grant 2020KSYS007; in part by the Chinese National Research Fund
(NSFC), under Grant 61872239; in part by Zhuhai Science-Tech Innovation
Bureau, under Grants ZH22017001210119PWC and 28712217900001 and in
part by the Guangdong Engineering Center for Artificial Intelligence and
Future Education, BeijingNormal University, Zhuhai, Guangdong, China.
(Corresponding authors: Zhiqing Tang and Weijia Jia.)
Digital Object Identifier no. 10.1109/TSC.2022.3159728

1118 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2023

1939-1374 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on April 11,2023 at 11:24:44 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9245-2626
https://orcid.org/0000-0001-9245-2626
https://orcid.org/0000-0001-9245-2626
https://orcid.org/0000-0001-9245-2626
https://orcid.org/0000-0001-9245-2626
https://orcid.org/0000-0001-9368-9190
https://orcid.org/0000-0001-9368-9190
https://orcid.org/0000-0001-9368-9190
https://orcid.org/0000-0001-9368-9190
https://orcid.org/0000-0001-9368-9190
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
mailto:lj1994@sjtu.edu.cn
mailto:r130201705@mail.uic.edu.cn
mailto:domain@sjtu.edu.cn
mailto:jiawj@bnu.edu.cn
mailto:zhao.wei@siat.ac.cn


either modify the container system architectures [14], [17] or
reduce container isolation [15], [16]. In fact, a container image
consists of multiple individual layers and different container
images share common layers [14], which efficiently saves
storage by reducing redundant files. Moreover, the layer
sharing mechanism can also be utilized to reduce startup
latency without modifying containers. Fu et al. [13] design a
layer-match scheduling policy that assigns a container to the
edge node that stores the most layers required by the con-
tainer to reduce the remaining download time.

Nevertheless, the previous studies still ignore the follow-
ing essential issues: 1) Joint scheduling ofmultiple containers.
Edge computing can serve multiple users simultaneously
[18]. Making scheduling decisions for a set of containers can
achieve a lower total startup latency than scheduling each
container independently, like layer-match scheduling in [13]
(called Container Assignment problem). 2) The impact of
layer download sequence (called Layer Sequencing problem).
Since a container can run right after fetching all of its layers, a
proper download sequence of layers belonging to different
containers can further reduce the total startup latency. Fur-
thermore, heterogeneous edge environments and layer shar-
ing among imagesmake the problemmore challenging.

In this paper, to address these issues, we consider assign-
ing multiple containers to heterogeneous edge nodes and
sequencing layers on each edge node. The Container Assign-
ment and Layer Sequencing (CALS) problem is formulated
as a Mixed Integer Quadratic Programming (MIQP) prob-
lem. Since the CALS problem involves assigning multiple
containers and sequencing layers shared by different con-
tainer images, it is proved to beNP-hard.

A three-step Layer-Aware Scheduling Algorithm (LASA)
is proposed to make scheduling decisions efficiently: First,
the layers shared by the same set of containers are grouped.
The optimal result of scheduling a group of layers as a
whole is proved to be equal to scheduling individual layers.
The problem scale is drastically reduced. Second, a layer-
aware algorithm is designed to assign containers to edge
nodes properly. At each time, a container-node pair is
selected by considering two important factors, layer sharing
among containers and the size of existing layers already on
edge nodes. After determining every container’s assign-
ment, the CALS problem is decomposed into multiple inde-
pendent sub-problems that optimize each edge node’s layer
download sequence. Finally, to determine the layer down-
load sequence, a greedy layer sequencing algorithm with an
approximate ratio of 2 is proposed, efficiently running on
each edge node in parallel. The approximation ratio of
LASA is proved to be 2jEj in the case of identical edge
nodes with infinite storage capacity and unlimited running
container number, where jEj is the number of edge nodes.
Extensive simulations are performed to compare the perfor-
mance of LASA with existing baselines. The simulation
results show that LASA substantially reduces the total
startup time by 40% to 60%.

To the best of our knowledge, we are the first team to
tackle the CALS problem in edge computing. The main con-
tributions of this paper are summarized as:

1) To minimize container startup latency, we jointly
consider the container assignment and the layer

download sequence, and formulate the CALS
problem, which is proved to be NP-hard.

2) To solve the CALS problem, LASA is proposed to
make scheduling decisions efficiently. To determine
the layer download sequence on each edge node, a
greedy layer sequencing algorithm with an approxi-
mate ratio of 2 is designed, which can run for each
edge node in parallel. Further,We analyze the compu-
tational complexity of LASA and prove the approxi-
mation ratio of LASA in the case of identical edge
nodes with sufficient storage capacity and unlimited
running container number.

3) Finally, we perform extensive experiments with real-
world data collected from DockerHub [19], and dem-
onstrate the efficiency of the proposed algorithm in
comparison with existing baselines.

2 RELATED WORK

2.1 Container Scheduling

In edge computing, tasks are typically running on specific
containers. Related work about container scheduling and
task scheduling is discussed [20], [21], [22]. Chen et al. [20]
first study the multi-user computation offloading problem
for edge computing and design a distributed task offloading
algorithm based on game theory. An approximation algo-
rithm, calledOnDisc [21], is derived to optimize the response
time of online multi-task dispatching and scheduling. A
Logic-Based Benders Decomposition algorithm [22] is
designed tomaximize the admitted task number, jointly con-
sidering task assignment, resource allocation, and task exe-
cution order. However, these studies do not consider
optimizing the significant container startup latency.

2.2 Dependent Task Scheduling and Network
Function Virtualization Placement

The layer sequencing on an edge node is a special case of the
dependent task scheduling problem that has been further
studied [23], [24]. In [23], the authors propose heuristics to
maximize the overall computation of co-located edge devi-
ces. The authors of [24] propose an approximation scheme
to minimize the delay. However, dependent tasks can be
assigned to different nodes, whereas layers of an image
must be downloaded on the same edge node to form the
complete image.

Virtual Network Function (VNF) placement [25], [26], [27]
is also related to this paper. VNF placement is to place VNFs
to minimize the latency [26], reduce costs [28], or maximize
the throughput [29]. However, there are major differences
between the CALS problem and the VNF placement prob-
lem: 1) The VNF placement problem ignores the startup time
or defines a deployment cost. It neglects the layer sharing
feature and the layer download sequence, making it far from
optimal. 2) VNFs can be scheduled to different servers, while
layers of a container must be downloaded on the same edge
node to which the container is assigned. It is not appropriate
to regard each image layer as a VNF.

2.3 Overlapping Job Scheduling

Some studies focus on the parallel machine overlapping job
scheduling problem [30], [31]. Overlapping jobs are jobs
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with duplicate contents [31], analogous to layer sharing
among images. Since the overlapping job scheduling prob-
lem is proved to be NP-hard [30], greedy algorithms [30]
and a branch-and-bound algorithm [31] are proposed to
solve it. However, these studies only aim to optimize make-
spans of the scheduling problem. In this way, these algo-
rithms optimize the maximum makespan of each machine
without considering the job sequence. However, the job
sequence can significantly influence each job’s completion
time, and the layer sequence problem on a single edge node
is proved to be NP-hard in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSC.2022.3159728.

2.4 Containerized Application Startup Acceleration

Much effort has been made to accelerate the containerized
application startup. Slacker [14] lazily pulls files during run-
time. Ma et al. [32] propose an edge computing platform
architecture to support seamless application migration,
which reduces the transferred file volumes by leveraging
images’ layered storage. Skourtis et al. [17] find that many
layers only differ in a small number of files, so they reorga-
nize image layers to reduce storage and network consump-
tion. Cntr [15] and Pocket [16] move common parts of
multiple containers to a daemon process. However, these
approaches are not transparent, for they require substantial
changes to containers or reduce the isolation of containers.
Layer-aware container scheduling is orthogonal and com-
plementary to these techniques, and neither container
images nor the container system architecture is modified.

2.5 Layer Match Container Scheduling

A layer-match scheduler [13] is proposed to reduce the
image download time in container management systems by
taking layer sharing into account. The scheduler tries to place
a container at a node storing most image layers required by
this container. The main differences between this work and
[13] are as follows: 1) Joint scheduling of multiple containers
is considered in this work, which can further reduce the total
startup latency. 2) The impact of layer download sequence is
studied to reduce the total startup latency, which is ignored
in [13]. 3) TheCALS problem in the heterogeneous edge com-
puting environment is investigated in this work.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Background

3.1.1 Containers, Images and Layers

A container is a standard unit of software that packages up
code and all its dependencies to be deployed quickly and reli-
ably to various computing environments. Each container has
its own environment called namespace, where specific pro-
cesses are running and isolated from the rest of the system.

On a physical machine, containers share an operating system
(OS) kernel, using fewer resources thanVMs.

An image is a lightweight, standalone, executable software
package that includes everything needed to run a container: a
Linux distribution, application binaries, configuration files,
etc. The image is read-only, copy-on-write, and thus can be
shared bymultiple containers.

As container images are self-contained, different images
frequently include common files [33]. The layer sharing
mechanism is applied to reduce redundant files. Each image
consists of a list of read-only layers, which can be shared
among images. Each layer has a hash digest taken over its
content so that it can be uniquely identified [13]. Fig. 1
shows the relationships between layers and images. Layers
are stacked, and union mounted to the container’s root file
system at runtime [32]. The lines between circles represent
the layer stack order in an image but not the download
order, and layers can be downloaded in arbitrary order.

3.1.2 Container Startup Time

The container startup time can dominate the latency of real-
time applications in edge computing [34]. The container
startup time consists of the image download time and
installation time. Since containers share the OS kernel, the
image installation time is stable (around one second) irre-
spective of the image size [13]. Compared with the image
installation time, the download time is considerable.
According to [17], for 10,000 most popular images in Dock-
erHub [19], the average image size achieves 500 MB. On an
edge node connected to the cloud by a 10 Mbps link, it costs
400 seconds to download a middle-size image sized 500 MB.

3.1.3 Kubernetes

Kubernetes [35] is one of themost successful open-source sys-
tems for automating deployment, scaling, and management
of containerized applications. A Kubernetes cluster consists
of at least one master and multiple compute nodes. Fig. 2
shows the architecture of Kubernetes. The master includes a
highly-available database named etcd, an API Server for
exposing APIs, a Scheduler for scheduling deployments, and
a Controller for managing the overall cluster. Each node is a
workhorse of a Kubernetes cluster, consisting of many pods
and amanagement component named kubelet. A pod is a col-
lection of containers and serves as Kubernetes’ core unit of
management.

3.2 System Model

Fig. 3 illustrates an edge computing system comprising mul-
tiple user equipments (UEs), a set of heterogeneous edge
nodes E ¼ fe1; e2; . . . ; ejEjg, a scheduler and a container

Fig. 1. Layers of three popular images named geonetwork, tomcat and
xwiki. Circles represent layers that constitute images. The circles on the
left with bold lines represent the layers shared by three images.

Fig. 2. The Kubernetes cluster of one master and multiple nodes.
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registry. The scheduler collects information and then decides
the container assignment and the layer download sequence.
The container registry in the cloud is a repository for storing
images. The container scheduling process is: (1) Multiple
UEs offload multiple tasks. (2) The scheduler collects infor-
mation of tasks and edge nodes. (3) Based on the collected
information, the scheduler makes decisions of container
assignment and layer sequencing. (4) With the decisions and
other prior information, each edge node constructs a down-
load queue and downloads layers according to the sequence
in its download queue. (5) Each container starts to run when
all layers belonging to it are ready.

Each task runs on a specific container. Thus, a set of con-
tainers denoted as C ¼ fc1; c2; . . . ; cjCjg are also used to rep-
resent the set of tasks. The binary variable ajk is denoted
whether the container cj is assigned to the edge node ek. If
cj is assigned to ek, then ajk ¼ 1, otherwise, ajk ¼ 0. Each
container cj should be assigned to one edge node

X
ek2E

ajk ¼ 1; 8cj 2 C: (1)

The set of unique layers that constitute all images of con-
tainers in C is denoted as L ¼ fl1; l2; . . . ; ljLjg. The size of
layer li is defined as pi. rij 2 f0; 1g is defined to indicate
whether a layer li belongs to container cj’s image. If con-
tainer cj requires layer li, then rij is set to 1, otherwise, set to
0. rij is obtained before scheduling. Layers are shared by
different images so that the edge node only needs to down-
load a layer once. Binary variable dik 2 f0; 1g is defined as
whether layer li will be downloaded on edge node ek. The
time when the edge node ek finishes downloading the layer
li is defined as layer li’s ready time tlik. The container cj can-
not start to run on the edge node ek until all layers belonging
to its image are downloaded, so its startup time tcj is larger
than its layers’ ready time on the edge node ek

tcj � tlikrijajk; 8cj 2 C; 8li 2 L; 8ek 2 E: (2)

Edge nodes are computational devices deployed at
access points and connect with UEs through low-latency
wireless communication. The storage, bandwidth and run-
ning container number limitation of an edge node ek are
defined as sk, bk and mk, respectively. The total size of

layers stored on an edge node ek cannot exceed its storage
limitation X

li2L
dikpi � sk; 8ek 2 E: (3)

A limited number of containers can run concurrently on an
edge node X

cj2C
ajk � mk; 8ek 2 E: (4)

Each edge node is associated with a download queue and
downloads one layer at the head of the queue (on the left
side) at each time. The layer sequence in the download
queue should be determined. The download precedence of
layers li, li0 on edge node ek is defined as a binary variable
xkii0 2 f0; 1g. If xk

ii0 is set to 1, the layer li should be down-
loaded prior to layer li0 , otherwise, li0 is downloaded prior
to li. Especially, x

k
ii is equal to 1, making sure that every

layer’s ready time includes its own download time. Besides,
the precedence between two layers obeys that

xk
ii0 þ xk

i0i ¼ 1; 8li; li0 2 L; i 6¼ i0; 8ek 2 E: (5)

The precedence relation between layers is transitive

xk
ij þ xk

jl þ xk
li � 2; 8li; lj; ll 2 L; i 6¼ j 6¼ l: (6)

The transitive constraint is briefly explained. For instance,
three layers li, lj, ll are downloaded on an edge node ek. If
layer li is downloaded before layer lj, i.e., x

k
ij ¼ 1, and layer

lj is downloaded before layer ll, i.e., x
k
jl ¼ 1, then layer ll can-

not be downloaded before layer li, i.e., x
k
li ¼ 0. Thus, the

sum of xkij, x
k
jl and xkli cannot be larger than 2. Considering

both queuing time and download time, the ready time of
the layer li on the edge node ek can be calculated by:

tlik ¼
X
lj2L

xk
jipj=bk; 8li 2 L; 8ek 2 E: (7)

An edge node can download multiple layers at the same
time in the real world (concurrent downloading), but the
total startup time cannot be reduced since the downloading
process is limited by the bandwidth. For any scheduling

Fig. 3. Architecture of edge computing system. Each edge node is associated with a download queue, and each circle in the download queue repre-
sents a layer. An edge node downloads layers from the container registry according to the layer sequence in its download queue. As shown on the
right, the layer at the left of the sequence will be downloaded first, constituting a complete image node-env with local layers. The scheduling process
is: (1) Offloading tasks, (2) Collecting information, (3) Making scheduling decisions, (4) Downloading layers, and (5) Running containers.
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result (i.e., each layer’s ready time) of the concurrent down-
loading, a corresponding schedule of sequential download-
ing that is better than or equal to it can be constructed in
polynomial time. First, the layers downloaded on an edge
node are relabeled according to the ascending order of their
ready times in concurrent downloading. After relabeling,
layer l1 has the earliest ready time, and layer ln has the latest
ready time. In sequential downloading, the layers are
sequentially downloaded according to the labeling order.
Thus, for layer li, its ready time tlik is

Pi
1 pi=bk. In concurrent

downloading, since the ready times of layers l1 to li�1 are
earlier than layer li, the total size of downloaded layer data
before the ready time of layer li is at least

Pi
1 pi. There, layer

li’s ready time in concurrent downloading is
Pi

1 pi=bk at
least. If and only if the layers are downloaded sequentially
according to the labeling order, the equality holds. There-
fore, any layer’s ready time and any container’s startup
time cannot be reduced by concurrent downloading.

In this work, the edge computing scenario is simplified.
First, the task data transmission time is neglected for suffi-
cient bandwidth between edge nodes and UEs. Second, we
focus on optimizing container startup time, so the container
runtime is assumed to be equal for all edge nodes. Third, the
image installation time is more stable and shorter than the
image download time. Thus, the image installation time can
be taken as a constant and neglected for simplicity. Our
objective is to optimize the sum of the startup time of all con-
tainers

P
cj2C tcj.

3.3 Problem Formulation

The CALS problem is formulated as

P1 : min
fajk;xkii0 ;dik;t

c
j
;tl
ik
g

X
cj2C

tcj (8)

s:t: ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ; ð6Þ; ð7Þ
dikmk �

X
cj2C

rijajk; 8li 2 L; 8ek 2 E: (9)

The objective in Equation (8) is to find the optimal schedule
V ¼ ½Va;Vs� that minimizes the sum of all containers’ startup
times, where Va ¼ fajkjcj 2 C; ek 2 Eg and Vs ¼ fxk

ii0 jli; li0 2
L; ek 2 Eg. dik, tcj and tlik can be computed based on the sched-
ule V. The constraints in (9) make sure that for each layer li,
when any container cj requiring it is assigned to an edge node
ek (i.e, ajk ¼ 1 and

P
cj2C rijajk > 0), then the layer li should

be downloaded to edge node ek, i.e., dik ¼ 1. Otherwise,P
cj2C rijajk ¼ 0 and therefore dik is equal to 0 to minimize

download size.Va andVs make the optimization problem be
a Mixed Integer Quadratic Programming (MIQP) with high
complexity. Next, the NP-hardness of the CALS problem is
shown.

Theorem 1 The CALS problem is NP-hard and cannot be approxi-
mated within any factor unless NP = P.

The theorem is proved in Appendix A, available in the
online supplemental material.

4 LAYER-AWARE SCHEDULING ALGORITHM

Due to the NP-hardness and inapproximability of CALS in
general, we use the storage capacity and running container

number constraints to generate edge node candidates and
focus on the container assignment and layer scheduling
problem. LASA is designed based on a special case of CALS
(i.e., CALS-S, the layer sequencing problem on a single edge
node with infinite storage capacity and unlimited running
container number).

The algorithm flow of LASA is shown in Fig. 4. LASA has
three steps. First, the common layers shared by the same set
of containers are grouped. The optimal result of scheduling a
group of layers as awhole is proved to be equal to scheduling
individual layers. Thus, the same scheduling decisions are
made for the entire group of layers. The problem scale is
drastically reduced by layer grouping. Second, the Layer-
aware Container Assignment Algorithm (LCAA) is designed
to properly assign containers to edge nodes in sequence. At
each time, one container-node pair is selected by considering
both layer sharing among containers and the existing layer
size of each edge node. After determining container assign-
ment variables ajk, the CALS problem is decomposed
into independent sub-problems that optimize each edge
node’s layer download sequence. Finally, the Greedy Layer
Sequencing Algorithm (GLSA) with an approximate ratio of
2 is proposed to determine the layer download sequence. In
GLSA, each sub-problem is converted to a classic prece-
dence-constrained single machine job scheduling problem,
and the layers are divided into an ordered list of sets by Sid-
ney Decomposition [36]. The layer order across sets is deter-
mined based on the ordered list, and the layer order within
each set is determined greedily. The layer sequencing algo-
rithm can efficiently produce layer sequence variables xk

ij,
for each edge node ek in parallel.

4.1 Layer Grouping

The total number of binary variables of ajk and xk
ii0 is

jEjjCj þ jEjjLj2. Grouping layers can simplify the optimiza-
tion problem before assigning containers and sequencing
layers. Layer grouping is defined as follows:

Definition 1 Any two layers li, li0 having the same relation with
all containers

rij ¼ ri0j; 8cj 2 C; (10)

are added into the same group.

Fig. 5 is an example of layer grouping. Fifty-eight indi-
vidual layers of six containers are converted into eight layer
groups. The ten layers in the middle are simultaneously
shared by three containers, so they are grouped. The twelve
layers shared by joomla and backdrop are combined into
one group. The seven layers on the top only belonging to
node-env are also combined to a group.

Fig. 4. The algorithm flow of LASA.
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The layer grouping is driven by the fact that layers
shared by the same set of containers should be scheduled as
a whole without affecting the optimal objective in (8).

Theorem 2 The optimal objective in (8) of scheduling layer
groups is equal to scheduling individual layers.

Proof In Appendix B, available in the online supplemental
material, the theorem is formally proved. tu
The layer grouping has low computation complexity.

The total number of rij is jLjjCj and layers are grouped by
traversing the relation parameter rij. Consequently, the
computation complexity is OðjLjjCjÞ.

In container assignment and layer sequencing, layers of
the same group are scheduled together, so the layer is used
to represent the layer group in the following for simplicity.

4.2 Container Assignment

In this step, LCAA is designed to determine container
assignment variables ajk 2 Va.

The LCAA considers two critical factors: (1) Layer shar-
ing among containers. If containers are assigned to edge
nodes without considering layer sharing, different edge
nodes will download duplicated layers, which costs extra
bandwidth. Downloading redundant layers also increases
the queuing latency. Therefore, the total startup time of all
containers increases. (2) The existing layer size of each edge
node. Assigning containers to edge nodes barely according
to layer sharing between the containers and edge nodes
leads to unbalanced workloads among edge nodes. Though
redundant layer downloading is eliminated, it will make
layers be downloaded on a few edge nodes and leave other
nodes underutilized, leading to high queuing latency.

To trade off the layer sharing and the existing layer size
among edge nodes, a heuristic algorithm that greedily selects
one container-node pair at each time is designed. The con-
tainer assignment algorithm is shown in Algorithm 1.

In Algorithm 1, the inputs are the bandwidth set fbkjek 2
Eg, storage set fskjek 2 Eg, running container number limi-
tation fmkjek 2 Eg, layer size fpijli 2 Lg and relation infor-
mation frijjli 2 L; cj 2 Cg. The outputs are containers’
assignment decisions ajk. In lines 1 - 2, the existing layer set
Lk of each edge node, the running container number of each
edge nodeNk, the remaining container setCr, and the assign-
ment decision ajk of each container cj on each edge node ek
are initialized by an empty set, 0,C and 0, respectively. Lines
3 - 18 describe loops of assigning containers to edge nodes.
Within each loop, a container-node pair is selected by calcu-
lating the score in line 10, which consists of both layer shar-
ing and existing layer size. The term

P
li2DL

pi in line 10
represents the layer size increment after the assignment.

Less layer size increment means more layer sharing and
fewer redundant layers. The term

P
li2Lk pi in line 10 repre-

sents the size of layers already existing on the edge node.
Assigning containers to the edge nodes with the least exist-
ing layer size can alleviate unbalanced workloads. a 2 ½0; 1�
is a hyperparameter used to trade off these two factors, and
the result is normalized by each edge node’s bandwidth bk.
In line 11, only edge nodes that do not exceed storage capac-
ity and running container number limitation are allowed to
be candidates. In line 12, the container-node pair with the
least score is selected. The assignment decision ajaka , the
number of edge node’s containers Nka , the container set Cr

and the edge node’s layer set Lka are updated in lines 16 - 17.
After running jCj loops, the assignment variable ajk for each
container cj on each edge node ek is produced.

Algorithm 1. LCAA

Input:fbkjek 2 Eg, fskjek 2 Eg, fmkjek 2 Eg, fpijli 2 Lg,
frijjli 2 L; cj 2 Cg

Output:ajk
1: Initialize Lk  fg; Nk  0; ajk  0; 8cj 2 C; 8ek 2 E
2: Initialize Cr  C
3: while Cr 6¼ ; do
4: ja  �1; ka  �1
5: scorea  

2
P

li2L pi

minðbkjek2EÞ
6: for cj 2 Cr do
7: for ek 2 E do
8: L0  Lk [ flijli 2 L; rij ¼ 1g.
9: DL  L0 n Lk

10: score ð1�aÞ
P

li2DL piþa
P

li2Lk pi

bk
11: if score < scorea and

P
li2L0 pi � sk and Nk þ 1 � mk

then
12: ja  j; scorea  score; ka  k
13: end if
14: end for
15: end for
16: ajaka  1, Nka  Nka þ 1, Cr  Cr n fcjag
17: Lka  Lka [ flijli 2 L; rija ¼ 1g
18: end while

4.3 Layer Sequencing

Binary variables dik are determined by assignment variables
ajk based on Equation (9). P1 is decomposed into jEj inde-
pendent sub-problems, which can be solved in parallel. The
sub-problem for the edge node ek is defined as follows:

P4 : min
fxk

ii0 ;t
c
j
;tl
ik
g

X
cj2Ck

tcj (11)

s:t: xk
ii0 2 f0; 1g; 8li; li0 2 Lk; (12)

xk
ii ¼ 1; 8li 2 Lk; (13)

xk
ii0 þ xk

i0i ¼ 1; 8li; li0 2 Lk; i 6¼ i0; (14)

xk
ij þ xk

jl þ xk
li � 2; 8li; lj; ll 2 Lk; i 6¼ j 6¼ l; (15)

tlik ¼
X
lj2Lk

xk
jipj=bk; 8li 2 Lk; (16)

tcj � tlikrij; 8li 2 Lk; 8cj 2 Ck; (17)

Fig. 5. Layer grouping example. In each dotted frame, layers that belong-
ing to the same set containers are grouped.
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where Ck ¼ fcjjcj 2 C; ajk ¼ 1g and Lk ¼ flijli 2 L; dik ¼ 1g
are the container set and the layer set of the edge node ek,
respectively. Though with a single edge node, P4 is gener-
ally NP-hard and difficult to get an exact solution, as proved
in Appendix A, available in the online supplemental
material.

The sub-problem in (11) can be converted to a special
case of 1jprecjPwici. 1jprecjPwici is the problem of
sequencing precedence-constrained jobs on a single
machine to minimize the total weighted completion time.
Sidney Decomposition [36] is an efficient algorithm to solve
1jprecjPwici with an approximate ratio of 2. Therefore,
inspired by Sidney Decomposition [36], an efficient layer
sequencing algorithm is designed.

First, how to convert a sub-problem to an instance of
1jprecjPwici is introduced. For a sub-problem k, both con-
tainers and layers are regarded as jobs, i.e., Jk ¼ Lk [ Ck.
The difference between 1jprecjPwici and 1jprecjP ci is
that the former problem sets a weight for every job. In the
converted problem, each layer li and each container cj are
regarded as the job ji and the job jj, respectively. The
weights and sizes of jobs are defined as

wi ¼ 0 if ji 2 Lk

1 if ji 2 Ck

�
; pi ¼ pi if ji 2 Lk

0 if ji 2 Ck

�
:

The converted optimization problem of 1jprecjPwici is
defined as

P5 : min
fxk

ii0 ;t
j
j
g

X
jj2Jk

wjt
j
j ¼ min

xk
ii0

X
jj2Ck

tjj (18)

s:t: xk
ii0 2 f0; 1g; 8ji; ji0 2 Jk; (19)

xk
ii ¼ 1; 8ji 2 Jk; (20)

xk
ii0 þ xk

i0i ¼ 1; 8ji; ji0 2 Jk; i 6¼ i0; (21)

xk
ij þ xk

jl þ xk
li � 2; 8ji; jj; jl 2 Jk; i 6¼ j 6¼ l; (22)

tji ¼
X
jj2Jk

xk
jipj=bk ¼

X
jj2Lk

xk
jipj=bk; 8ji 2 Jk; (23)

xk
ij ¼ 1; 8ji 2 Lk; 8jj 2 Ck; rij ¼ 1; (24)

where tjj is jj’s completion time and also equal to cj’s startup
time or lj’s ready time. Constraints in (24) is equal to con-
straints in (17) since each container cj is regarded as a job
sized 0. Thus, the converted problem’s objective and con-
straints are equal to the original problem.

Then, we give a brief introduction to Sidney Decomposi-
tion [36], which is a 2-approximation algorithm for general
instances of 1jprecjPwici. It decomposes jobs into a list of
disjoint sets Yk ¼ ½S1; S2; . . . j

S
So ¼ Jk� ordered by the ratio

rðSoÞ ¼
P

jj2So wjP
jj2So pj

. Each set comprises multiple jobs. Sidney

proves that for an optimal sequence, jobs in different sets
must run following the set order. In Sidney’s algorithm,
jobs in the same set can run in an arbitrary sequence under
precedence constraints. More details can refer to [36]. In this
paper, Sidney Decomposition is implemented by the pseu-
doflow algorithm for linear parametric minimum cut prob-
lem [37]. Sidney Decomposition is applied to get a list of

disjoint sets Yk, and then the layer sequence within each set
is determined greedily.

Algorithm 2. GLSA

Input:fpijli 2 Lkg, frijjli 2 Lk; cj 2 Ckg, bk, Ck

Output:xk
ii0 , t

l
ik, t

c
j

1: Yk ¼ SidneyDecompositionðfpijli 2 Lkg; frijjli 2 Lk; cj 2 CkgÞ
2: Initialize Lsequenced  fg
3: for So 2 Yk do
4: Sc

o  fg
5: for jj 2 So do
6: if cj 2 Ck then
7: Sc

o  Sc
o [ fcjg

8: end if
9: end for
10: while Sc

o 6¼ ; do
11: for cj 2 Sc

o do
12: Lj  flijli 2 Lk; rij ¼ 1g n Lsequenced

13: pj  P
li2Lj pi

14: end for
15: j argminjp

j

16: Sc
o  Sc

o n fcjg
17: for li 2 Lj do
18: xk

ii  1
19: for li0 2 Lsequenced do
20: xk

i0i; x
k
ii0  1; 0

21: end for
22: Lsequenced  Lsequenced [ flig
23: end for
24: tcj  

P
li2Lsequenced

pi=bk
25: end while
26: end for

As shown in Algorithm 2, GLSA inspired by Sidney
Decomposition [36] is proposed to determine the layer
sequence on each edge node ek. The inputs of Algorithm 2
are the layer size set fpijli 2 Lkg, the relation information
frijjli 2 L; cj 2 Ckg, the bandwidth bk of ek and the entire
container set Ck. The outputs are the layer sequence varia-
bles xk

ii0 , layer ready time tlik, and container startup time tcj.
In line 1, the list of sets Yk is produced by Sidney Decompo-
sition function. In line 2, the sequenced layer set Lsequenced is
initialized by an empty set. In lines 3 - 26, layers within each
disjoint set are sorted. Since the weight wi of every layer is
equal to 0, a layer li in a set So must belong to one of con-
tainer cj in the same set So. Otherwise, the layer li should be
removed from the set So since the redundant layer li with
weighted 0 lower the rðSoÞ. Thus, layers in a set are
sequenced in the unit of containers. The container set Sc

o is
extracted from each set So in lines 4 - 9. In lines 10 - 25, con-
tainers in Sc

o are sorted by their remaining layer size. In lines
11 - 14, each container’s remaining layer size pj in the con-
tainer set Sc

o is calculated, and the container cj with the least
remaining layer size is selected in line 15. In lines 17 - 23,
the layer sequence variables related to the remaining layers
of the selected container cj are determined, and the remain-
ing layers of the selected container cj are added into the
sequenced layer set. In this algorithm, the adding sequence
of the selected container’s remaining layers is arbitrary.
After selection, the startup time tcj for each container cj is
calculated in line 24.
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Lemma 3 The proposed layer sequencing algorithm has an
approximation ratio of 2.

Proof According to [36], any algorithm for 1jprecjPwici
consistent with Sidney Decomposition has an approxima-
tion ratio of 2. GLSA only changes the layer order within
each disjoint set without changing the layer order across
different sets. Besides, the sub-problem is equal to the
converted problem. Thus, the proposed layer sequencing
algorithm has an approximation ratio of 2. tu

4.4 Complexity Analysis

The computation complexity of LASA is analyzed. First, as
mentioned in Section 4.1, the computation complexity of
grouping layers isOðjLjjCjÞ. Then, container assignment vari-
ables are computed by Algorithm 1 in OðjCj2jEjÞ time. Then,
the CALS problem is decomposed into independent sub-
problems. For sub-problems, the computation complexity of
problem conversion is OðjLkj þ jCkjÞ. The computation com-
plexity of implementing SidneyDecomposition isOðmnlognÞ
[37], where n ¼ jLkj þ jCkj andm ¼P

li2Lk;cj2Ck
rij. The com-

putation complexity of the layer sequencing within each
set in lines 2 - 26 of Algorithm 2 is OðjCkj2jLkjÞ. Therefore,
the total computation complexity of LASA is OðjCj2jEj þ
ðPli2L;cj2C rijÞðjLj þ jCjÞlog ðjLj þ jCjÞ þ jCj2jLjÞ. Experiments
are conducted to prove the LASA is quite efficient with a
realistic trace. The result is depicted as Figs. 18 and 19 in
Section 5.3.

4.5 Approximation Ratio of LASA

Theorem 4 The LASA is a polynomial-time 2jEj-approximation
algorithm for CALS of identical edge nodes with infinite storage
capacity and unlimited running container number, where jEj is
the number of edge nodes.

In Appendix C, available in the online supplemental mate-
rial, the theorem is formally proved.

5 EVALUATION

The experiments are conducted in a simulation environ-
ment. The simulation environment and LASA are imple-
mented in Python 3.6 on a desktop with an Intel Core i7-
10750H 2.60GHz CPU and 16GB RAM. In the experiments,
a real edge computing scenario with multiple edge nodes is
considered. By default, the bandwidth is set to 10 Mbps, the
number of edge nodes is set to 15, the running container
number limitation is set to 50, the storage capacity limit is
set to 20 GB, the total number of containers is set to 200, and
a is set to 0.5.

Container data from [13] is used. They collected the latest
versions of the 5K most popular images from DockerHub
[19]. In the simulation, 155 most frequently used images are
selected from their dataset, and the total size of 155 images
is 60 GB. There are 810 unique layers in total, and the total
size of unique layers is 30 GB. For each experiment, the con-
tainer set is randomly chosen from the 155 images following
the uniform and Zipf [38] distributions. The Zipf distribu-
tion fits to model file popularity [39], task request popular-
ity [13], and user image request distribution [40]. In this
paper, the Zipf distribution is used to model the cases that

the container request distribution is skewed. The Zipf distri-
bution is also applied in one of the baselines, Layer-match
Scheduling [13], which generates more convincing compari-
son results. The shape factor of Zipf is set to 1.1 by default.
Each experiment is repeated ten times.

LASA is compared with seven baselines: (1) Random
Scheduling (RS): Randomly select a container-node pair at
each time and sequence layers according to the assignment
order. (2): Layer-match Scheduling [13] (LS): For each con-
tainer, select an edge node with the most amount of its image
layers stored locally and sequence layers according to the
assignment order. (3): Sidney Decomposition-based Schedul-
ing (SDS): First sequence containers by Sidney Decomposi-
tion, then continuously assign containers to one node until
achieving threshold, and sequence layers by GLSA. (4):
Kubernetes Scheduling (K8S): Kubernetes default scheduling
policy schedules containers to edge nodes with the required
images stored locally, otherwise, to the edge node with the
least total download size. (5) Differential Evolution (DE) [41]:
In DE, the chromosome combines a container-node affinity
vector and a container priority vector. A chromosome is inter-
preted by first sorting containers in the descending order of
container priority and then selecting the edge node with the
highest container-node affinity for each container. (6) Particle
Swarm Optimization (PSO) [42]: The definition of particle
and fitness is as same as chromosome and interpretation in
DE. (7) Genetic Algorithm (GA) [43]: The definition of chro-
mosome and interpretation is as same as DE. Themain differ-
ence is that GA focuses on the crossover while DE focuses on
the mutation. The population size and iteration number of
three meta-heuristic baselines are 50 and 200. The mutation
probability of DE andGA is 0.001. In PSO, inertia weight, cog-
nitive parameter, and social parameter are 0.7, 0.5, and 0.5.

5.1 Comparison With Baselines

In this subsection, extensive experiments are conducted to
compare the performance of LASA against the baselines.

The cumulative distribution function (CDF) of the con-
tainer startup time of LASA and baselines is shown in
Fig. 6. Fig. 6a shows the overall performance of different
algorithms when containers follow the uniform distribution.
Compared with the baselines, the CDF curve of LASA is
always closer to the left, which means that the startup time
of LASA is consistently shorter. The dotted line represents
the average container startup time. Compared with RS, LS,
SDS, K8S, DE, PSO, and GA, LASA reduces the average
startup time by 60%, 40%, 36%, 52%, 41%, 43%, and 17%,
respectively. Similarly, Fig. 6b shows that compared with
the baselines, the average startup time of LASA is reduced
by 6% to 66% under the Zipf distribution. The container
startup time of the Zipf distribution is shorter than the uni-
form distribution since more containers of the same type
share a few images under the Zipf distribution and thereby
unique layers are fewer. The performance of K8S is much
better under the Zipf distribution, for it tends to assign con-
tainers of the same type to one edge node.

The performance of LASA is compared against meta-
heuristic baselines with different iteration numbers. The
results are shown in Fig. 7. In Fig. 7a, the best schedule of
each meta-heuristic algorithm until each iteration is
recorded. PSO quickly falls into the local minimum in a few
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iterations, so the execution is terminated early. The total
startup times of GA and DE continue to decrease as the itera-
tion number increases. Since the elements of the container-
node affinity vector and the container priority vector are
ordered to generate the final schedule, the crossover opera-
tion is more efficient than the mutation. Therefore, the con-
vergence speed of GA that focuses on the crossover is faster
than DE. The total startup time of GA is lower than LASA
after 1400 iterations and 7% lower than LASA in 5000 itera-
tions. To compare the execution time of different algorithms
fairly, multiprocessing and multithreading are not applied
in this experiment. Compared with LASA that generates a
schedule in 0.33 seconds, the meta-heuristic baselines
require up to thousands of seconds to find a satisfactory
schedule.

Then, the total startup times of LASA and baselines are
evaluatedwith identical edge nodes. Fig. 8 shows the evalua-
tion results. It suggests that with sufficient resources, the
total startup time of LASA has an approximately linear rela-
tion with the number of containers. As the container number

increases, LASA consistently achieves the best performance.
The improvement of LASA is even more as the number of
containers increases since more containers indicate a longer
queuing time to be optimized. Fig. 9 shows the evaluation
results of different edge node numbers. As the edge node
number increases, the average size of layers downloaded on
each edge node decreases, and the queuing time and the total
startup time decrease. RS achieves the worst results since it
randomly schedules containers.

Figs. 10, 12 and 13 show the performance comparison
under heterogeneous storage capacity, running container
number limitation and bandwidth. As shown in Fig. 10, each
edge node’s storage is randomly distributed between 0 and
the maximum storage, and the maximum storage capacity of
edge nodes is set from 1 to 9 GB. Fig. 10 shows that when the
storage is insufficient, e.g., the maximum storage capacity is
1 GB, the result of LASA is worse than PSO and GA. In this
case, LASA downloads layers of 164 containers, but PSO and
GA only download layers of 82 and 62 containers, respec-
tively. This result shows that PSO and GA search for sched-
ules that reduce the total startup time by downloading fewer
larger containers. As the storage capacity increases, the

Fig. 6. CDF of container startup time for LASA and baselines under uni-
form and Zipf distributions.

Fig. 7. Results for LASA and meta-heuristic baselines with different num-
ber of iterations under uniform distribution.

Fig. 8. Total startup time comparison with different container numbers.

Fig. 9. Total startup time comparison with different edge node numbers.

Fig. 10. Total startup time comparison with different maximum storage
capacity.
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performance of LASA is obviously better than other algo-
rithms. To further compare different algorithms in common
cases of sufficient storage capacity on edge nodes, the maxi-
mum storage capacity is scaled to 1000GB. It can be observed
in Fig. 11 that all algorithms’ performance is stable as the
maximum storage capacity increases and LASA still outper-
forms other baselines.

In Fig. 12, the running container number limitation is ran-
domly distributed between 0 and the maximum running
container number limit.When the running container number
limit is the bottleneck (i.e., less than 30), as the running con-
tainer number increases, more containers can be assigned,
and thus the total startup time increases. When edge nodes
can hold all containers, LASA’s performance becomes stable
and better than the baselines. In Fig. 13, each edge node’s
bandwidth is randomly distributed between 0 and the maxi-
mum bandwidth. With the increase of the maximum band-
width, the total startup time of all algorithms is reduced, and
LASA still outperforms the baselines.

5.2 Effect of LCAA and GLSA

In this subsection, the effect of LCAA and GLSA is analyzed
separately.

First, the layer sequencing algorithm is set to GLSA, and
LCAA is compared with four baselines: (A1) Continuously
assign containers according to the order of Sidney Decom-
position to one edge node until achieving the threshold (i.e.,
the capacity constraints). (A2) Randomly select a container-
node pair at each time. (A3) Assign containers to each edge
node fairly. (A4) Assign the container to one edge node
with the least estimated startup time (i.e., the image is
placed at the end of the download queue by default).

Fig. 14 shows the total startup time of different container
assignment algorithms. Compared with all baselines, LCAA
consistently reduced the total startup time as the edge node

number increased. Moreover, the bandwidth usage and the
load balance of different container assignment algorithms
are further analyzed. Fig. 15 shows the bandwidth usage of
different container assignment algorithms. Less bandwidth
usage means less redundant downloading. The total down-
loading size,

P
ek2E

P
li2L dikpi, is used to represent band-

width usage. As the edge node number increases, the
container assignment is more scattered, which incurs less
layer sharing and more redundant downloading. Compared
with the best baseline, A1, the bandwidth usage of LCAA is
reduced by 11% and 8% under the uniform andZipf distribu-
tion. Fig. 16 shows the load balance of different container
assignment algorithms. Unbalanced workloads make more
layers downloaded on a few edge nodes, which leads to lon-
ger queuing times. The standard deviation of edge nodes’

download overhead, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jEj

P
ek2Eðxk � �xÞ2

q
, where xk ¼P

li2L dikpi, is used to represent the degree of load balance.
The smaller the standard deviation, the better the load bal-
ance.A1,A2, andA3 rely on the random edge node permuta-
tion or random edge nodes selections, so their results are
relatively unstable. The standard deviation of LCAA is lower

Fig. 12. Total startup time comparison between LASA and baselines with
different maximum running container number limitation.

Fig. 13. Total startup time comparison between LASA and baselines with
different maximum bandwidth capacity.

Fig. 11. Total startup time comparison with scaled maximum storage
capacity.

Fig. 14. Total startup time comparison between LCAA and four baselines
with different numbers of edge nodes.

Fig. 15. Bandwidth usage comparison between LCAA and four baselines
with different numbers of edge nodes.
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than A1, A2 and A3. The standard deviation of A4 is lower
than LCAA since A4 tends to schedule the container to the
edge node with the least download size at each time, which
leads to more balanced workloads. These results show that
LCAA achieves a better tradeoff between bandwidth usage
and load balance than other baselines.

In general, for random assignment A2, the distribution
of containers is more dispersed with more edge nodes,
which incurs more downloading. However, in Fig. 15b,
the downloading size of A2 with 25 edge nodes is less
than with 20 edge nodes. To find out the reason, we fix the
edge computing network and the container dataset, and
use different random seeds to repeat the experiment with
25 edge nodes. It can be observed in Fig. 20 that the perfor-
mance of three baselines is largely influenced by the ran-
dom seed since they randomly select edge nodes (A1),
containers (A4), or container-node pairs (A2). The perfor-
mance of A2 is unstable with different random seeds, so
the total downloading size may be less with more edge
nodes in some cases. More experiment results of different
Zipf factors are in Appendix D, available in the online sup-
plemental material.

Then, the container assignment algorithm is set to LCAA,
and GLSA is compared with three baselines: (S1) Sequence
layers according to the container assignment order. (S2)
Sequence layers by container size in descending order. (S3)
The optimal sequence obtained by using IBM CPLEX opti-
mizer [44]. Fig. 17 shows the startup time of different layer
sequencing algorithms when containers follow the uniform
and Zipf distribution. Compared with S1, S2, the startup
time of GLSA is reduced by up to 4%, 6% under uniform dis-
tribution and 0:5%, 1:3% under the Zipf distribution. Since
the Zipf distribution is long-tailed, most containers share a
few images, and unique layers are fewer. Thus, the improve-
ment of GLSA under the uniform distribution is more than
the Zipf distribution. The gap between the optimal result

and GLSA on startup time is only 0:3% and 0:2% under the
uniform and Zipf distribution, respectively. The reasons
why the improvement of layer sequencing is less than the
container assignment are as follows: (1) GLSA offers a proper
container assignment order to the S1. (2) The amounts of
shared layers on each edge node decrease as the edge node
number increases.

5.3 Execution Time

The impact of layer grouping on the algorithm execution
time is evaluated and the results are shown in Figs. 18 and
19. In Fig. 18, as the number of containers increases from 50
to 300, layer grouping reduces execution time by around
50% than without layer grouping. Additionally, the compar-
ison of the layer number and the group number shown in
Table 1 illustrates the reason why layer grouping reduces
the execution time. After grouping, the group number is
reduced by up to 70% and 73% under uniform and Zipf dis-
tributions. Therefore, the problem scale is significantly
reduced, and the algorithm execution time is reduced. In
Fig. 19, as the edge node number increases from 10 to 30,
layer grouping reduces execution time by up to 59%.

5.4 Impact of the Hyperparameter

In this subsection, the impact of the hyperparameter a on
the total startup time, bandwidth usage, and load balance is
evaluated. The hyperparameter a trades off the layer shar-
ing and the existing layer size. When a is 1, LASA assigns
containers to the edge node with the smallest existing layer
size, which represents less queuing time to some extent.
When a is 0, LASA chooses the container-node pair with the
smallest downloading increment. When a takes the value
between 0 and 1, LASA trades off existing layer size and
layer sharing. Fig. 21 shows the impact of a under the
default setting. As a increases, the total download size grad-
ually increases, the standard deviation of the download size
gradually decreases (i.e., unbalanced workloads), and the

Fig. 17. Total startup time comparison between LCAA and three base-
lines with different numbers of edge nodes.

Fig. 16. Load balance comparison between LCAA and four baselines
with different numbers of edge nodes.

Fig. 18. The impact of layer grouping on execution time with different
numbers of containers.

Fig. 19. The impact of layer grouping on execution time with different
numbers of edge nodes.
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total startup time first decreases and then increases. Accord-
ing to the evaluation results, a is heuristically set to 0.5 to
trade off bandwidth usage and load balance properly.

6 DISCUSSION

6.1 User Mobility

In edge computing, user mobility management is a big issue
[45]. Mobile users can offload different tasks at any place
and any time, so the total number of images can be huge. It
is impossible to download and store all images on each
resource-limited edge node in advance.

To address this issue, user mobility prediction and con-
tainer caching can be applied. User mobility prediction esti-
mates the distribution of each user’s future positions [46].
With this information, the corresponding candidate edge
servers can be selected to download and cache the required
images in advance. Specifically, the candidate edge server
selection can be integrated with line 11 of Algorithm 1.

6.2 Online Container Scheduling

Online container scheduling is a practical scenario where
containers can be scheduled once offloaded by users without

waiting for joint scheduling. More issues should be consid-
ered in the online scheduling problem. First, container
assignment decisions should be made to reduce the accumu-
lated task latency in the long term. The correlations of deci-
sions at different time points should be further studied.
Second, some image layers can be selectively evicted when
the storage of edge nodes is in short. The layer eviction policy
is also very hard to design for the layer sharing feature and
the varying distribution of container requests. Third, the task
execution time should also be considered. After finishing the
task execution, the occupied computation and storage
resources can be released. The problem objective will be
turned tominimizing the total task latency.

The online scheduling problem can be modeled as a Mar-
kov decision process. A centralized reinforcement learning
agent is trained to replace the LCAA. The agent makes con-
tainer assignment decisions to optimize the accumulated
task latency in the long term. GLSA can still be applied on
each edge server to resequence the layers triggered by a
new container assignment. For layer eviction, the layer size,
invoke frequency, and edge node capacity are jointly con-
sidered to design a customized layer scoring algorithm.

6.3 Implementation in Kubernetes

In this paper, we focus on modeling the system, formulating
the CALS problem, and designing LASA. Extensive simula-
tions are conducted on real-world data collected from Dock-
erHub [19]. The prototype implementation in Kubernetes is
left as future work. Besides, some new issues like layer evic-
tion and online scheduling also appear during our ongoing
implementation in Kubernetes, which includes container
assignment and layer sequencing. In container assignment,
task requests that arrived in Kubernetes are scheduled by

Fig. 20. Impact of the random seed.

TABLE 1
Problem Scale Reduction by Layer Grouping

Container Number 50 100 150 200 250 300

Uniform
w/ grouping 94 188 248 296 328 349
w/o grouping 307 552 709 827 911 965

Zipf
w/ grouping 44 78 111 141 152 171
w/o grouping 166 275 362 434 462 516

Fig. 21. Impact of the hyperparameter a.
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Kubernetes Scheduler. Kubernetes Scheduler selects a suit-
able edge node for the task in a 2-step operation: First, it
finds the set of edge nodes where it is feasible to schedule
the task as in line 11 of Algorithm 1. Second, the scheduler
collects the information of the remaining edge nodes, com-
putes a score for each edge node based on Algorithm 1, and
selects the edge nodes. In layer sequencing, according to the
result of Algorithm 2, the layers of one image are actually
downloaded continuously on each edge node. Images can
be downloaded according to the download queue of layers
by using the docker pull command.

7 CONCLUSION

In this paper, we jointly schedule multiple containers to
reduce the total startup time by considering the layer sharing
feature. LASA is designed to make scheduling decisions effi-
ciently. First, layers shared by the same set of containers are
grouped to reduce the problem scale of CALS. Second, con-
sidering both the layer sharing and existing layer size on edge
nodes, a heuristic algorithm is proposed to schedule contain-
ers to appropriate edge nodes. The CALS problem is decom-
posed into multiple independent sub-problems. Finally, a
layer sequencing algorithm with an approximate ratio of 2 is
designed to determine the layer download sequencing on
each edge node. We use a real-world trace to conduct exten-
sive experiments. The experimental results prove the effec-
tiveness of the LASA algorithm, which reduces the total
startup time by 40% to 60%.
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