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Abstract—Due to the features of lightweight and easy deployment, the use of containers has emerged as a promising approach for

Mobile Edge Computing (MEC). Before running the container, an image composed of several layers must exist locally. However, it has

been conspicuously neglected by existing work that task scheduling at the granularity of the layer instead of the image can significantly

reduce the task completion time to further meet the real-time requirement and resource efficiency in resource-limited MEC. To bridge

the gap, considering the complex dependency between layers and images, a novel layer dependency-aware container scheduling

algorithm is proposed to reduce the total task completion time. Specifically: 1) We model the online layer dependency-aware scheduling

problem for containers in a heterogeneous MEC, considering the layer download time and task computation time. 2) A policy gradient

algorithm is proposed to solve this problem, and the high-dimensional and low-dimensional relations for layer dependencies are

extracted with improved action selection. 3) Experiments based on the real-world data trace show that the proposed algorithm

outperforms the image-based and layer-based baseline algorithms by 54% and 19% on average, respectively.

Index Terms—Mobile edge computing, dependency-aware scheduling, container, reinforcement learning

Ç

1 INTRODUCTION

MOBILE Edge Computing (MEC) is becoming more and
more popular in recent years. Various heterogeneous

edge nodes are deployed at the edge of the core network to
provide or supplement computing capabilities [1]. By
deploying mobile applications at edge nodes, application
latency can be significantly reduced, such as AR and VR
applications [2], [3], etc. To effectively utilize resources and
deploy applications on edge nodes, the container is widely
used [4], [5], [6], [7]. Before running a container, an image
file must exist locally, including the code, binaries, system

tools, configuration files, etc. [8]. Otherwise, it must be
downloaded from a registry [9].

However, the download time of multiple images will be
very long since the limited bandwidth resources in MEC,
which takes up a higher proportion of the total task comple-
tion time as most tasks are delay-sensitive and do not last
long [7], [10], [11]. Much of existing work to reduce the
download time is cloud-oriented, focusing on changes to
the registry [12], [13]. Slacker [14] reduces startup times by
fetching individual files from the registry on demand,
which would scale poorly when the latency is getting larger.
Cntr [15] and Pocket [16] move common parts of multiple
containers to a common daemon process. All these
approaches require substantial changes to the application
and mitigate the advantage of container isolation.

It has been conspicuously neglected by existing work that
each image is stored in the unit of the layer [17]. The layers
can be shared by multiple images. For example, as shown in
Fig. 1a, the imagem1 is comprised of three layers l1, l2, and l3.
While the layer l1 is shared by images m1 and m2. Existing
container cluster management tools such as Kubernetes [18],
KubeEdge [19], K3s [20], Akraino [21], etc., make the schedul-
ing decisions at the granularity of the image. They consider
the image to exist if and only if all layers required by the image
exist locally. Thus, the scheduler cannot fully use the local
layer information, and the selected node may download
many duplicate layers [11], [22]. For example, it is assumed
that an imagem1 consists of three layers. As shown in Fig. 1b,
one of the layers exists on one node, and two exist on the other
node. From the image-based scheduling perspective, the two
nodes are the same,which is coarse-grained.

It is very promising to make the scheduling decisions at
the granularity of the layer instead of the image to reduce
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the download time and then further reduce the task comple-
tion time in MEC. Nevertheless, the following challenges
need to be solved. First, how to fully extract and utilize the
complex layer dependencies. Existing researchers have pro-
posed a layer-match algorithm based on local layer size for
non-heterogeneous MEC [7]. However, images have differ-
ent download times on different nodes due to the heteroge-
neity of edge nodes in a real MEC scenario. Besides, there
exist hidden dependencies between different tasks since the
layer sharing among multiple images. These layer depen-
dency features are numerous and sparse, and there are cor-
relations and hidden relationships between the features.
Common machine learning methods such as Convolutional
Neural Network (CNN) or Recurrent Neural Network
(RNN) cannot perform feature extraction well. To fully
extract the layer dependencies, in this paper, a Factorization
Machines (FM) based layer interaction feature extraction
method is proposed [23]. Different dimensions of layer
dependency are extracted with weight-sharing embedding
layers and FM layers [24], which are further combined to
assist in scheduling tasks.

The second challenge is making online scheduling deci-
sions based on the extracted layer dependency to gain
long-term benefits in less task completion time, i.e., the
sum of download time and computation time. Compared
with heuristic algorithms, the Reinforcement Learning
(RL) algorithm can fully consider the impact of continuous
decisions [25]. Moreover, the long-term benefits and the
impact of layer dependency can be fully considered with a
reward function. Thus, RL-based algorithms are suitable
for online decision-making, and a policy gradient-based
RL algorithm is further proposed to reduce the task com-
pletion time [26].

In this paper, we are the first team to model the task
scheduling problem at the granularity of the layer in hetero-
geneous MEC, aiming at the minimization of the total task
completion time. A Layer Dependency-aware Learning
Scheduling (LDLS) algorithm is proposed based on the pol-
icy gradient RL algorithm. The resources of heterogeneous
edge nodes, the features of tasks, and the layer dependen-
cies are fully considered the input state. The FM-based
method is used to extract the layer dependency features.
Moreover, constraints are added on the action selection to
avoid terrible actions, e.g., scheduling tasks to heavily
loaded nodes or nodes with insufficient storage space,
which has always been a complicated problem [27]. The RL
agent’s policy network and value function are also carefully
designed to make the feature embeddings and combina-
tions. Finally, experiments are conducted based on real-

world data trace to verify the performance of the algorithm.
The data is crawled from Docker Hub [28]. The proposed
algorithm is compared with the default scheduling algo-
rithm of Kubernetes and the state-of-the-art layer-based
heuristic algorithms. Experimental results show that the
proposed algorithm has better performance than all baseline
algorithms.

The contributions are summarized as follows.

1) We formulate the newly identified Layer Depen-
dency-aware Scheduling (LDS) problem in heteroge-
neous MEC scenarios to minimize the overall task
completion time. The download time of layers and
the computation time of task execution are consid-
ered with heterogeneous edge nodes.

2) To continuously make the online scheduling deci-
sions, a novel LDLS algorithm based on policy gradi-
ent RL is proposed with improved action selection.
An FM-based embedding method is proposed to
extract both the high-dimensional and low-dimen-
sional layer dependency features.

3) Real-world data sets are used for evaluation. The
proposed algorithms are compared with several
state-of-the-art baselines. The experimental results
show that the LDLS algorithm outperforms the
image-based and layer-based algorithms by 54% and
19% on average, respectively.

The rest of the paper is organized as follows. In Section 2,
the related work and motivation are introduced. System
model and problem formulation are described in Section 3.
Dependency scheduling algorithm is proposed in Section 4.
Performance is evaluated in Section 5. Some issues are dis-
cussed in Sections 6 and 7 concludes the paper.

2 RELATED WORK AND MOTIVATION

2.1 Container in Mobile Edge Computing

The container, image, layer, and their relations are illus-
trated in Fig. 2.

Container. Containers are based on lightweight OS-level
virtualization technology that isolates and manages an
application’s resource usage and optionally provides tools
for managing the application’s dependencies. The

Fig. 1. An illustrative example of containers, images, and layers in MEC.

Fig. 2. An example of layer dependency-aware scheduling in MEC.
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significant benefits of containers are lightweight resource
isolation and container images [7].

Image. An image is a read-only template with instructions
for creating a container, which includes all its dependencies,
including the code, binaries, system tools, and configuration
files, etc.

Layer. Containers are stored by a layered file system.
Each layer encapsulates a set of files and directories put
together when the image is built and associated with a colli-
sion-resistant hash digest taken over its content.

As shown in Fig. 2, containers are running on edge nodes
to tackle the tasks from a set of users. A container is an
instance of an image. Each image contains several layers,
and the layers can be shared by multiple images. For exam-
ple, the image m1 contains layers l1 - l5. And the image m3

contains layers l1, l2, l4, l6, and l7. The layers l1, l2, and l4 are
shared by imagesm1 andm3.

All layers contained in the requested image must exist on
the edge node. Otherwise, it needs to be downloaded from
the registry in the cloud. The registry stores all images com-
prised of layers. Layers are stacked on top of each other in a
particular order to form the requested image. However, the
construction order of the layer has no impact on the sched-
uling decision. Because before constructing the image, all
the layers contained in this image must exist locally. Only
the existence of the layer will affect the scheduling deci-
sions. So from the perspective of task scheduling, the layers
contained in each image form a set, not a sequence.

Containers have been widely deployed in cloud data cen-
ters [29], [30], [31], [32]. However, current container deploy-
ment approaches are not suitable for the MEC scenarios.
First, pulling images from the registry in the cloud to an
edge node takes a long time over high-latency, or low-band-
width links [7]. Then, limited edge resources combined
with user mobility means that applications deployed at
each edge node change frequently [33]. Placing a local regis-
try or cache at every edge node can be expensive and unre-
alistic [7]. Much of existing work to reduce the startup time
is cloud-oriented, focusing on changes to the registry, which
mitigate the advantage of container isolation [12], [13], [14],
[15], [16], [34], [35].

2.2 Reinforcement Learning

Reinforcement learning has been widely used for task
scheduling in MEC since it can make continuous real-time
decision-making. Tang et al. [36] investigate the channel
model in the heterogeneous network and propose a novel
deep RL-based algorithm to allocate radio resources in
MEC dynamically. Qian et al. [37] apply a Deep Q-Network
(DQN) method to solve the user cache optimization and
base station cache optimization problems in MEC. Xiong

et al. [38] propose a deep RL approach to minimize the long-
term weighted sum of average completion time of jobs and
the average number of requested resources. Xu et al. [39]
leverage RL techniques to automatically configure the con-
trol and networking systems under a dynamic industrial
MEC environment. Wang et al. [40] use an RL network to
solve the joint node selection and cache replacement prob-
lem in MEC.

RL is very suitable for solving the LDS problem because
the impact of the continuous decision is significant when
layer dependency is considered. However, no RL-based
method is ever proposed for such an LDS problem to our
best knowledge. Besides, the complexity of the MEC hetero-
geneous environment also brings challenges to RL’s state
input. To better understand the scheduling process, more
discussions are given in the following subsection.

2.3 Case Study

As shown in Fig. 3, it is assumed that there are two edge
nodes n1 and n2 (The detailed notations are defined in the
next section). On node n1, there exist three layers l1, l4, and
l5. And on node n2, there are layers l1, l5, and l6. Suppose
there are two different types of image m1 and m2. Image m1

is composed of layers l1 � l5. And image m2 is composed of
layers l1 � l6. There are two users generating tasks k1 and
k2, and requesting containers c1 and c2, respectively.
Besides, containers c1 and c2 are based on images m1 and
m2, respectively.

It is assumed that the arrival of task k1 and task k2 are in
sequence. Since the decision is made online, task k2 is not
known when task k1 is scheduled. The sizes of the layers are
shown in Table 1. The decision-making results are analyzed
as follows.

The scheduling results of different policies are shown in
Table 2. First, let us consider image-based scheduling. Since
node n1 and node n2 do not have all the layers required by
images m1 and m2, there is no image on node n1 or n2 from
the perspective of the scheduler, i.e., node n1 and node n2

are the same. In this case, the scheduling results are the
same (assuming to traverse in order), i.e., first task k1 is
scheduled to node n1, and then when task k2 is scheduled,

Fig. 3. Edge nodes and tasks.

TABLE 1
Layer Size

Layer l1 l2 l3 l4 l5 l6

Size 1 MB 2 MB 2 MB 3 MB 6 MB 20 MB

TABLE 2
Download Size for Different Scheduling Policies

3446 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 6, JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2023 at 14:41:54 UTC from IEEE Xplore.  Restrictions apply. 



there is still no imagem2 on both nodes, so it is scheduled to
node n1. When task k1 is scheduled, layers l2 and l3 need to
be downloaded, and the download cost is 2þ 2 ¼ 4 MB.
When task k2 is scheduled, the layer l6 is needed. As a
result, the total download size is 4þ 20 ¼ 24MB.

Second, when the tasks are scheduled based on layer. For
greedy strategy based on download cost, when task k1 is
scheduled, the download cost required by node n1 is 2þ
2 ¼ 4 MB (Layers l2 and l3 are needed) and the download
cost required by node n2 is 2þ 2þ 3 ¼ 7 MB (Layers l2, l3,
and l4 are needed), so task k1 is scheduled to node n1. Then
when task k2 is scheduled, the download cost required by
node n1 is 20 MB (Layer l6), and the cost required by node
n2 is 2þ 2þ 3 ¼ 7 MB (Layers l2, l3, and l4), so task k2 is
scheduled to node n2. The total cost is 11 MB.

However, the greedy algorithm based on layer download
size is not optimal. For example, if task k1 is scheduled to
node n2, and then task k2 is also scheduled to node n2, the
total download size is only 2þ 2þ 3 ¼ 7 MB (Layers l2, l3,
and l4), which is better than the greedy algorithm. This
requires that the possible impact between the continuous
decisions can be considered when scheduling. Coinciden-
tally, the reward of RL algorithms can solve this problem
very well, which is suitable for solving continuous decision-
making problems [25].

Based on the observations, it is projected that the layer
dependency-aware scheduling can effectively tackle with
through RL, which has been ignored by current work.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model of MEC is first defined.
Then the cost is introduced. Finally, the LDS problem is for-
mulated and analyzed.

3.1 System Model

In MEC, edge nodes are deployed close to users. The user
connects to the nearest base station. Some delay-sensitive
tasks from users are first transmitted to the base stations,
then scheduled to different edge nodes for processing. The
requested services are created on the corresponding edge
nodes. Currently, the services require containers to run, and
containers’ operation requires container images, which are
further composed of layers. For ease of reference, the main
notations used in this paper are summarized in Table 3.

To illustrate the problem, an MEC scenario is considered.
A set of tasks K ¼ fk1; k2; . . . ; kjKjg is generated from differ-
ent users and offloaded to edge nodes for processing, where
j � j is used to indicate the number of elements in the set,
e.g., jKj is the number of tasks. To process the tasks, a group
of different containers C ¼ fc1; c2; . . . ; cjCjg is created and
deployed on a set of edge nodes. Each container needs an
image file. The set of images is denoted as M ¼
fm1;m2; . . . ;mjMjg. Since requesting a container is equiva-
lent to requesting the corresponding image, and the differ-
ence between a container and an image is only a writable
container layer, the two concepts are unified [8]. In other
words, the task requests the container, and the container
needs the corresponding layers. The set of layers is denoted
as L ¼ fl1; l2; . . . ; ljLjg.

TABLE 3
Notations

Section 3

K Task set
k Task (k 2 K)
jKj Number of tasks
C Container set
c Container (c 2 C)
M Image set
L Layer set
l Layer (l 2 L)
N Edge node set
n Edge node (n 2 N)
njNjþ1 Remote cloud
CnðtÞ Running container set on node n at time t

(CnðtÞ � C)
MnðtÞ Local image set on node n at time t (MnðtÞ �M)
LnðtÞ Local layer set on node n at time t (LnðtÞ � L)
fn CPU frequency of node n
bn Bandwidth of node n
dn Storage space of node n
Cn Max number of running containers on node n
Lc Layer set contained in container c
xl
c Variable to indicate whether container c contains

layer l
dl Size of layer l
pk Requested CPU resource of task k
ck Requested container of task k
nk Assigned node of task k
un
k Variable to indicate whether task k is scheduled

to node n
ylnðtÞ Variable to indicate whether layer l is on node n

at time t
zlnðtÞ Download finish time for layer l on node n
Td
k Download time of task k

Tc
k Computation time of task k

Tk Total task completion time of task k

Section 4

st Edge system state
sn;lt Layer state for node n
Tr
nðtÞ Total remaining download time

sn;rt Resource state for node n
sNt State for all nodes
sk;n;et Estimated number of layers that need to be

downloaded
sk;n;dt Estimated layer download time
sk;n;wt Estimated waiting time
sk;n;pt Estimated computation time
skt State for the task k
at Action
rt Reward function
Td
n ðtÞ Download finish time

Td
n Download time of node n

RðtÞ Cumulative reward
g Discount factor (g 2 ð0; 1Þ)
p Policy
Apðs; aÞ Advantage function
V pðsÞ Value function
Qpðs; aÞ State-action value function
Ât Estimator of the advantage function
LðuÞ Loss function
D Replay memory
Dn Counter of transitions
p� Best policy
uat Prejudgment of the action at
uN Maximum number of sampling times
un Sampling times
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The set of edge nodes is denoted asN ¼ fn1; n2; . . . ; njNjg,
which is deployed at the edge of core network. And the
remote cloud is considered as another edge node njNjþ1
with unlimited computation resources. For a node n 2 N, it
maintains three sets: the set of running containers CnðtÞ �
C, the set of local images MnðtÞ �M, and the set of local
layers LnðtÞ � L. Besides, each node has its CPU frequency
fn, bandwidth bn, and storage space dn. The number of con-
tainers that each node can run simultaneously is limited,
i.e., the node n can run up to Cn containers at the same time.

Moreover, the set of layers contained in container c 2 C is
Lc ¼ xl

cjl 2 L
� �

, where xl
c ¼ 1 if the container c contains

layer l. Otherwise, xl
c ¼ 0. Besides, the size of layer l 2 L is

dl. For each task k 2 K generated from a user at time t, the
requested CPU resource is pk, and the requested container
is ck. After scheduling, the node assigned by this task is rep-
resented as nk ¼ unk jn 2 N [ fnjNjþ1g

� �
, where un

k ¼ 1 if the
task k is scheduled to node n, otherwise, un

k ¼ 0.

3.2 Cost

In the MEC scenario, user tasks’ completion time is closely
related to user experience [41]. Generally, task completion
time mainly includes the initialization time (download
time) and the computation time. Since the transmission
time from the user to the wireless base station is very small
compared with the download time and computation time, it
is not considered [7], [42], [43]. For example, a face recogni-
tion task or an object detection task usually takes hundreds
of megabytes to download an image, but only a few hun-
dreds of kilobytes to transfer the task data [2], [44], [45].

It is assumed that task k requesting container c is sched-
uled to node n at time t. The times are calculated as follows.

Download Time. To calculate the download time, the vari-
able ylnðtÞ 2 f0; 1g is introduced. If layer l is on node n at
time t, ylnðtÞ ¼ 1, 0 otherwise. zlnðtÞ 2 ½0;þ1Þ is used to
denote the download finish time for layer l on node n. If
layer l already exists or has not started to download, then
zlnðtÞ ¼ t.

For each node, it is assumed that only one layer can be
downloaded at one time. Each node has a layer download
queue. If a new layer needs to be downloaded, it is added to
this queue and may have to wait for another layer in the
download process. Therefore, the download time for task k
can be obtained as the maximum download finish time of
all required layers:

Td
k ¼ max

l2L
zlnðtÞ � xl

c

� �� t: (1)

Computation Time. The computation time is the process-
ing time of the task k on the node n, which can be obtained
as follows:

Tc
k ¼

pk
fn

: (2)

As a result, the total task completion time of task k is cal-
culated as follows:

Tk ¼ Td
k þ Tc

k : (3)

If the task is scheduled to the cloud, all layers must be
downloaded every time and cannot be shared since the
cloud is serverless [46]. In addition, scheduling to the cloud

incurs some additional costs. So we do not consider the situ-
ation where all tasks are scheduled to the cloud.

3.3 Problem Formulation

In this subsection, some constraints are first introduced,
then the layer dependency-aware scheduling problem is
formulated and analyzed.

Constraints. It is assumed that the scheduler is located at
the remote cloud or a master node [4]. When scheduling,
the decision made needs to meet the limit of the number of
containers running simultaneously of the node and the stor-
age resource limit of the node. The container number limit
is described as

jCnðtÞj � Cn; 8t; 8n: (4)

And the storage resource limit of each node is defined as
follows: X

l2L
1� ylnðtÞ
� �� dl � dn; 8t; 8n: (5)

Moreover, each task should be scheduled to only one
node or the cloud, which is represented asX

n2N[fnjNjþ1g
un
k ¼ 1; 8k:

(6)

Problem Formulation. We aim to minimize the overall task
completion time from a long-term perspective, which is
defined in Eq. (3). The target is to find the best strategy
which can minimize the overall time while obeying the con-
straints. Therefore, the LDS problem in MEC is defined as
follows:

Problem 1.

minT ¼
X
k2K

Tk; (7)

s:t: ð4Þ � ð6Þ
xl
c 2 f0; 1g; ylnðtÞ 2 f0; 1g; zlnðtÞ 2 ½0;þ1Þ;

8n 2 N; 8k 2 K; 8l 2 L:
(8)

Problem Analysis. Problem 1 is an advanced bin-packing
problem, which is NP-hard and can only be solved heuristi-
cally. The goal is to make online decisions in a dynamic
MEC system and obtain long-term benefits. However, deci-
sions are made according to a deterministic strategy at each
time slice for most of the existing heuristic algorithms. This
strategy is fixed and cannot consider the dynamic MEC
environment and the impact of continuous decisions, which
makes them unstable in MEC. For meta-heuristic algo-
rithms, all future information needs to be known if used to
solve this problem from a long-term perspective. Neverthe-
less, the tasks arriving in the future are unknown, and the
MEC environment is dynamically changing. So it is chal-
lenging to use meta-heuristic algorithms to solve this prob-
lem. In addition, if a meta-heuristic algorithm is used only
to solve the decision of one single time slice, this requires
many rounds of iteration, which is very time-consuming.
Moreover, the impact between the previous and subsequent
time slices cannot be considered in this way. Getting better
decisions for a single time slice does not mean getting
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better results in the long term, as already explained in the
case study in Section 2.3. As a result, most of the existing
heuristic and meta-heuristic algorithms are unstable in a
real MEC environment. They cannot consider the impact of
continuous decisions and are unable to achieve fast deci-
sion-making when facing large-scale problems.

In this problem, the first-order transition probability of
the tasks’ resource demand is quasi-static for an extended
period and not uniform distribution by adequately choosing
the time slice duration [47]. Moreover, the arrival of tasks
and the environment’s update have the memoryless prop-
erty [4]. Therefore, this problem can be modeled as a Mar-
kov Decision Process (MDP).

Reinforcement learning-based algorithms are suitable for
solving MDP problems [48]. In RL algorithms, at each time
t, the RL agent collects system state st, and calculates the
reward during last time slice rt�1. Then, the agent selects
action at according to a pre-defined strategy. After perform-
ing the action, the system transits to the new state stþ1 in the
next time slice. Similarly, the RL agent repeats the above
operations, i.e., calculating reward rt and selecting new
action atþ1 according to stþ1. Based on the collected state,
action, reward, and a proper discount factor, a value can be
calculated to denote the expected long-term return with dis-
count, as opposed to the short-term reward. The reward is
an immediate signal received in a given state, while value is
a long-term expectation. The RL agent might receive a low,
immediate reward even as it selects an action with great
potential for long-term value. By value function, the RL
agent can optimize the policy and make decisions from a
long-term perspective.

There are many kinds of RL algorithms. One of the essen-
tial branching points is whether the agent has a model or
learns a model of the environment [25]. With a model, a
function can predict state transitions and rewards. If the
agent wants to use a model in the MEC scenario, it must
learn the model purely from experience. However, various
heterogeneous features and other MEC biases are learned,
resulting in an agent that performs well concerning the
learned model but behaves sub-optimally or terribly in the
real MEC environment. Also, model-based RL is not very
robust and cannot adapt to changing MEC environments
[26]. Therefore, the model-free RL algorithm is selected.

With model-free RL, there are two main approaches to
representing and training agents: policy-based approach
(e.g., policy gradient) and value-based approach (e.g., Q-
learning) [25], [49], [50]. The policy-based approach
learns a policy explicitly as puðatjstÞ, while the Q-learn-
ing approach learns an approximator Quðst; atÞ. Then, the
decision is made according to the policy or approxima-
tor. In MEC, Q-learning has the following apparent
shortcomings compared with the policy gradient
method: 1) The state of the MEC system is huge and
complicated, which makes it very difficult for Q-learning
to represent and calculate the Q-value well. While the
policy gradient method can extract and represent the
MEC system with the policy network. 2) The output of
Q-learning is a deterministic strategy. Nevertheless, there
are usually multiple suitable scheduling strategies dur-
ing a time slice in MEC. Although Q-learning has an
action exploration mechanism, it only randomly selects

actions to avoid falling into the local optimum. There-
fore, the performance is not as good as the policy-based
method that directly outputs stochastic strategies. 3)
When selecting actions, the action with the max Q-value
is selected. This makes Q-learning more likely to select
overestimated values, which will result in over-optimis-
tic estimates of Q-values. The policy gradient method
directly evaluates the policy network through the value
function. And the action is selected according to the pol-
icy, which avoids the overestimation caused by Q-value
and tends to make the training stable and reliable.
Although the first shortcoming can be solved by combin-
ing deep neural networks with Q-learning, the latter two
shortcomings are inherent problems. As a result, the pol-
icy gradient method can achieve better performance in
the MEC environment.

4 OUR ALGORITHMS

In this section, the algorithm settings are first introduced.
Then, the LDLS algorithm is illustrated.

4.1 Algorithm Settings

The main components of RL are the agent and the MEC
environment. The agent makes scheduling decisions. To
train an agent, the state, action, reward, and policy are
needed.

State. A state st is a complete description of the MEC
environment, which contains two aspects: the nodes and
the task. To fully explore the layer dependency on each
node and consider the computation resources, the state of
node n is divided into the following two parts.

Layer Information: To fully extract the layer dependency
information, the layer distribution on each node is very sig-
nificant, i.e., y1nðtÞ � � � yjLjn ðtÞ. Besides, if the layer is down-
loading, the remaining download time is also critical, which
is denoted as z1nðtÞ � � � zjLjn ðtÞ. Finally, due to the heterogene-
ity of layers, the size of each layer also affects decision-mak-
ing. As a result, the layer state for node n can be denoted as

sn;lt ¼
y1nðtÞ � � � yjLjn ðtÞ
z1nðtÞ � � � zjLjn ðtÞ
dl1 � � � dljLj

2
64

3
75: (9)

Resource Information. Node resources related to scheduling
mainly include the CPU frequency fn and bandwidth bn. The
total remaining download time Tr

nðtÞ on the node is also
essential information for the agent, which is obtained as:

Tr
nðtÞ ¼ Td

k � t: (10)

Then, the resource state for node n is denoted as:

sn;rt ¼ fn; bn; T
r
nðtÞ

� �
: (11)

Finally, the state for all nodes are defined as follows:

sNt ¼ sn;lt ; sn;rt jn 2 N
n o

: (12)

Second, for task k, the set of requested layers Lk can
be obtained by the requested container ck as Lk ¼ Lc.
Besides, some estimated evaluations are carried out to
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let the agent better understand each node’s situation.
Specifically, for the task k, the number of layers that
need to be downloaded sk;n;et , layer download time sk;n;dt ,
waiting time sk;n;wt , and computation time sk;n;pt required
for this task to be scheduled to node n is calculated. This
information is critical for the agent and directly affects
which node the task is scheduled to. The estimated infor-
mation is obtained as follows:

sk;n;et ¼
X
l2L

xl
c � 1� ylnðtÞ

� �
;

sk;n;dt ¼
X
l2L

xl
c � 1� ylnðtÞ

� �� dl

bn
;

sk;n;wt ¼ max
l2L

zlnðtÞ � xl
c

� �� t: (13)

And sk;n;pt is obtained according to Eq. (2). Then the state for
the task is obtained as follows:

skt ¼ Lc; pkf g [ sk;n;et ; sk;n;dt ; sk;n;wt ; sk;n;pt jn 2 N
n o

: (14)

Finally, the state is defined as

st ¼ sNt [ skt : (15)

Action. The action space is the combination of the edge
node set N and the remote cloud njNjþ1, which can be
denoted as

at 2 N [ fnjNjþ1g: (16)

Reward. The reward function rt is critically important.
The agent’s goal is to maximize the reward, while in MEC,
the goal is to minimize the task completion time, so the
reward is obtained as rt ¼ �Tk.

The environment returns the reward after the action exe-
cution. Nevertheless, it is also estimated to do more training
to improve the performance. The estimation of reward
mainly estimates the download time defined in Eq. (1).
Layers are divided into three types: already existing, down-
loading, and not existing. For layers that already exist, the
download time is 0. For layers that are downloading, down-
load finish time is taken as their total finish time, i.e.,
maxl2L zlnðtÞ � xl

c

� �
.

Besides, for those layers that are needed by the requested
image but have not yet started to download, the download
finish time Td

n ðtÞ is obtained as follows:

Td
n ðtÞ ¼ max t; T d

n ðt� 1Þ� �
þ
X
l2L

dl � ð1� ylnðtÞÞ � 1 � zlnðtÞ ¼ t
� �� xl

c

bn
; (17)

where 1 � fg is the Iverson bracket, which is equivalent to 1
when the condition is satisfied. Otherwise, it is equivalent
to 0. At time 0, Td

n ð0Þ ¼ 0. Based on these, the download
time of node n can be obtained as

Td
n ¼ max max

l2L
zlnðtÞ � xl

c

� �
; T d

n ðtÞ
� 	

� t: (18)

The goal is to maximize the cumulative reward over
long-term scheduling, which is denoted as RðtÞ with a dis-
count factor g 2 ð0; 1Þ

RðtÞ ¼
XT
t¼0

gtrt: (19)

Policy. A policy is a rule used by the agent to decide what
actions to take, which is usually denoted by p, i.e., aðtÞ 	
pð�jsðtÞÞ. The probability of the scheduling process in MEC
scenarios is defined as

P ðtjpÞ ¼ r0ðs0ÞPT�1
t¼0 P ðstþ1jst; atÞpðatjstÞ; (20)

where r0ðs0Þ is the start-state distribution. The expected
return denoted by JðpÞ is obtained as:

JðpÞ ¼
Z
t

P ðtjpÞRðtÞ ¼ Et	p½RðtÞ
: (21)

The Problem 1 can be transformed into an optimal policy
problem, which aims to obtain the optimal policy p�

p� ¼ argmax
p

JðpÞ: (22)

4.2 Layer Dependency-Aware Learning Scheduling
Algorithm

The policy gradient-based LDLS algorithm is introduced in
this section, including policy optimization, policy network,
and action selection.

Policy Optimization. Policy gradient methods compute an
estimator of the policy gradient and plug it into a stochastic
gradient ascent algorithm, where the advantage function is
crucially important [49]. The advantage function indicates
the relative advantage of each action, which is denoted as

Apðs; aÞ ¼ Qpðs; aÞ � V pðsÞ; (23)

where the value function V pðsÞ gives the expected return if
the agent starts in state s and acts according to policy p,
which is defined as

V pðsÞ ¼ Et	p½RðtÞjs0 ¼ s
: (24)

And the state-action value function Qpðs; aÞ is defined as

Qpðs; aÞ ¼ Et	p RðtÞjs0 ¼ s; a0 ¼ a½ 
: (25)

The most commonly used gradient estimator ĝ has the
form of

ĝ ¼ Êt rulogpuðatjstÞÂt

h i
; (26)

which is obtained by differentiating the loss function LPGðuÞ
of policy gradient

LPGðuÞ ¼ Êt logpuðatjstÞÂt

h i
; (27)

where pu is a stochastic policy and Ât is an estimator of the
advantage function at time step t. However, it is appealing
to perform multiple steps of optimization on the loss LPGðuÞ
using the same scheduling trace. And it often leads to
destructively large policy updates. To solve these problems,
the loss function can be customized as [51]
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LTRPOðuÞ ¼ Êt
puðatjstÞ
puold
ðatjstÞ Ât

" #
¼ Êt rtðuÞÂt

h i
; (28)

where rtðuÞ ¼ puðatjstÞ
puold ðatjstÞ

, and rtðuoldÞ ¼ 1. Besides, the esti-

mated advantage Ât is calculated as

Ât ¼� V ðstÞ þ rt þ grtþ1
þ � � � þ gT�tþ1rT�1 þ gT�tV ðsT Þ: (29)

Without a constraint, maximization of LTRPOðuÞ would
lead to an excessively large policy update. Hence, the loss is
further customized into [26]

LðuÞ ¼ Êt min rtðuÞÂt; clip rtðuÞ; 1� �; 1þ �ð ÞÂt


 �h i
;
(30)

where � is a hyperparameter, e.g., � ¼ 0:2. And clip rtðuÞ;ð 1�
�; 1þ �Þ is used to clip the probability, i.e., removes the
incentive for moving rt outside of the interval ½1� �; 1þ �
.
Then, the minimum of the clipped and unclipped objective
is taken.

The LDLS algorithm is shown in Algorithm 1. For each
epoch, the replay memory D is first initialized as an empty
set. Dn is a counter of transitions, where the transition is
denoted as st; at; rt; rtðuÞ; stþ1ð Þ. Then, the environment is
reset, and the initial state s0 is obtained. The agent runs the
policy in the environment for each decision-making time,
i.e., observes the system state, selects an action, and then
calculates the reward. The transition is then stored. If
enough transitions have been collected, the network is
trained as lines 9 - 13. Then, if all tasks are tackled, the epoch
is finished. Finally, the best policy p� is returned.

The interactions between the environment, the value
function, and the policy network are shown in Fig. 4. The
details of the networks are described as follows.

Policy Network. There is a significant challenge in MEC
to model feature interactions among layers effectively. For
example, different images may share some layers, and the
distribution of these layers in different nodes can affect the
scheduling results. Furthermore, the layer dependency
interactions are hidden in data and challenging to identify
a priori, especially when the number of features is
extensive.

The machine learning-based method is promising for fea-
ture extraction [23]. Some ideas extend CNN or RNN to pre-
dict the feature interactions [52], [53]. However, CNN-based
models are biased to the interactions between neighboring
features, while RNN-based models are more suitable for
sequential dependency.

Algorithm 1. LDLS

Input: s0
Output: p�

1: for epoch = 1, 2, ... do
2: InitializeD ¼ ;,Dn ¼ 0
3: Reset environment
4: Get state s0
5: for t = 1, 2, ... do
6: Run policy puold

in environment
7: Store transition st; at; rt; rtðuÞ; stþ1ð Þ inD
8: Dn  Dn þ 1
9: ifDn mod jDj ¼ 0 then
10: Compute Â1; . . . ; ÂT by Eq. (29)
11: Compute LðuÞ by Eq. (30)
12: Optimize network and update weights uold  u

13: end if
14: if done then
15: Break
16: end if
17: end for
18: end for
19: Return p�

20: end

As mentioned in Section 2.1, when making scheduling
decisions, we only consider whether the layer exists
locally, without considering the order of the image con-
struction. In other words, there is neither a neighbor fea-
ture nor a sequential dependency. None of CNN or
RNN apply to layer dependency. FM [24] models pair-
wise feature interactions as the inner product of latent
vectors between features and shows promising results.
To derive a learning model that is able to learn feature
interactions of all orders in an end-to-end manner, the
FM model combined with a deep neural network is
adopted [23].

Fig. 4. Overview of the LDLS algorithm. The main components include the policy network and the value function network. The policy network com-
prises the FM component and several linear neural network layers, and the value function is composed of several linear layers. The main steps of the
algorithm include system state observation, action selection, reward calculation, network update, etc.
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As shown in Fig. 4, the feature extraction layers of the
node consist of two components: FM component and deep
component. The FM component models pairwise feature
interactions as the inner product of respective feature latent
vectors. It can capture order-2 feature interactions among
layers much more effectively since the layer dependency is
sparse. The output of FM is the summation of an addition
unit and a number of inner product, which is defined as

hn ¼ hw; ei þ
Xd
j1¼1

Xd
j2¼j1þ1

hFi; Fjiej1 � ej2 ; (31)

where w 2 Rd and Fi 2 Rk. The addition unit hw; ei reflects
the importance of order-1 features, and the latter inner
product unit represent the impact of order-2 feature interac-
tions. d is the dimension of the embedding layers, and ej is
the embedding vector.

The deep component is a feed-forward neural network.
To obtain better feature interactions among nodes, a hn is
calculated for each node. As shown in Fig. 4, each node’s
features are grouped as the input. Then, an embedding
layer is used to compress the input vector to a low-dimen-
sional, dense real-value vector before further feeding into
the first hidden layer. Moreover, the latent feature vectors F
in FM now serve as network weights learned and used to
compress the input field vectors to the embedding vectors.
The neural network weights are shared between edge
nodes, and an output for all nodes is obtained with the
node output layer.

Besides, the task features are input to the hidden linear
layers, and another output layer is used to obtain the overall
feature of the task. After that, the nodes’ and the task’s out-
puts are combined to get the policy network’s final output.

Action Selection. When selecting actions, the agent sam-
ples based on the probability output by the policy network.
It does not judge whether the action is reasonable. However,
in the MEC scenario, many actions are very terrible. For
example, when a selected node runs a large number of con-
tainers, which results in high resource utilization, or a node
has stored many other layers, there is not enough space to
store the required layers, or some other layers must be
deleted. To avoid these actions, some constraints are added
to the action selection process.

First, for the sampled node at ¼ n, if the number of con-
tainers running on the node exceeds a threshold Cn, then
the node is considered to be under a high load, which can
be denoted as

ucat ¼ 1 � jCnðtÞj þ 1 � Cnf g; (32)

where uc
at
¼ 1 means that the action is acceptable, otherwise

it is a terrible action.
Second, if the sum of the downloaded and downloading

layer sizes on the selected node exceeds a threshold, then
scheduling tasks to this node causes the layer to fail to
download the required layers or some layers must be
deleted to succeed, which can be obtained as:

us
at
¼ 1 � dnðtÞ þ 1 � zlnðtÞ > 0

� �þ xlc
� �� dl � dn

� �
;

(33)

where dnðtÞ is the available storage space on node n at time
t. If us

at
¼ 1, the action is acceptable. Otherwise, it is not a

good action. Besides, it is always acceptable to schedule the
tasks to the remote cloud at a higher cost. The prejudgment
of the action at can be summarized as

uat ¼ uc
at

us
at
þ 1 � fat ¼ njNjþ1g: (34)

If uat � 1, then at is a feasible action. Otherwise, the action is
sampled again.

The action selection algorithm is shown in Algorithm 2.
A counter un is first initialized to 0. The prejudgment uat is
obtained by Eq. (34). Then, if uat < 1, which means the
action is not feasible, the action is sampled again, as shown
in lines 3–11. Denote the maximum number of sampling
times as uN and the sampling times as un. If the number of
samples exceeds the maximum limit of the counter, the task
is scheduled to the cloud.

4.3 Computational Complexity Analysis

The analysis of computational complexity is as follows. As
shown in Fig. 4, the primary process of the LDLS algorithm
consists of four steps: system state observation, action selec-
tion, reward calculation, and network update.

Algorithm 2. Action Selection

Input: at
Output: at
1: Initialize un ¼ 0
2: Get uat by Eq. (34)
3: while uat < 1 do
4: if un � uN then
5: at ¼ njNjþ1
6: break
7: end if
8: Sample at again
9: un ¼ un þ 1
10: Get uat for new action by Eq. (34)
11: end while
12: Return at
13: end

First, the system state is obtained according to Eq. (15).
As illustrated in Section 3.1, there are jNj nodes and jLj
layers. Thus, the complexity of Eq. (15) is OðjNjjLjÞ. Second,
the action is selected according to the policy network and
updated according to Algorithm 2. For Algorithm 2, it
mainly contains a while loop. The sample operation (line 8)
in the loop will call the policy network. The time complexity
of the policy network is only related to the network size,
which can be considered a constant timeOt. So the complex-
ity of Algorithm 2 is OðuNOtÞ, where uN is a constant. More
details on the complexity of the policy network will be intro-
duced in the network update step. Third, the reward is
defined as rt ¼ �Tk and calculated according to Eq. (3). So
the complexity of reward calculation is OðjLjÞ. These steps
are executed sequentially so that they can be completed in
polynomial time.

Moreover, to evaluate the complexity of the network
update, a theoretical analysis of the computational complex-
ity of the policy network and value function based on
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floating point operations (FLOPs) is performed, which is
widely used to measure the computational complexity of
deep learning models [54], [55].

In the policy network as shown in Fig. 4, for the input of
node features, there is an embedding layer, an FM layer,
and three linear layers. The embedding layer is a dictionary
lookup, so it has 0 FLOPs [56]. For the FM layer, the FLOPs
is calculated as ðjNj þ jLj þ 1Þd [57], where d is the dimen-
sion of the embedding layers. Denote the input and output
dimensions of the jth linear layers (from bottom to top) are
Hj

i and Hj
o, respectively. The FLOPs of the three linear

layers are ð2H1
i � 1ÞH1

o , ð2H2
i � 1ÞH2

o , and ð2H3
i � 1ÞH3

o ,
respectively [58]. Besides, for the input of task features,
there are three linear layers. The total number of FLOPs of
these three linear layers is

P6
j¼4ð2Hj

i � 1ÞHj
o. Finally, the

actor output layer is linear, so its FLOPs is ð2H7
i � 1ÞH7

o .
Therefore, the total FLOPs of the policy network is
ðjNj þ jLj þ 1ÞdþP7

j¼1ð2Hj
i � 1ÞHj

o.
In addition, the value function has three linear layers, so

the total FLOPs of value function is
P10

j¼8ð2Hj
i � 1ÞHj

o. Usu-
ally, a linear layer is followed by a non-linear activation
function, such as a ReLU or a Softmax [59]. It is common
not to count these operations, as they only take up a tiny
fraction of the overall time. For example, a ReLU is just y ¼
maxðx; 0Þ. On a fully-connected linear layer with Hj

o output
neurons, the ReLU uses Hj

o of these computations, i.e., it has
Hj

o FLOPs. Compared with matrix multiplies and inner
products, the FLOPs of the activation function can be
ignored. From the analysis above, we can see that the
computational complexity of the FM layer is far less than
the linear layers. Therefore, compared with traditional deep
RL algorithms, combining FM to the policy network will
only slightly increase the computational complexity in the
process of decision making.

5 EVALUATION

In this section, the performance of the proposed algorithm is
evaluated. The experimental settings are first introduced.
Then, the experimental results are presented and analyzed.

5.1 Experimental Settings

This subsection introduces the data preprocessing, baseline
algorithms, parameter settings, and simulator setup.

Data Preprocessing. The popular images are crawled from
real-world container data [28]. The relations between
images and layers are extracted. After preprocessing, 70
images and 378 layers are extracted for experiments. The
average number of layers per image is 8.6, and more statisti-
cal information about images and layers is shown in Table 4.
For each user, the requested container is generated accord-
ing to uniform or Zipf distribution [60].

Baselines. To compare the performance, several baselines
are conducted. Among these baselines, the Dep and Dep-
Soft algorithms are the state-of-the-art layer-based algo-
rithms [7]. The action space of these algorithms is also the
set of edge nodes and the remote cloud. If all nodes do not
have enough resources, then the task is scheduled to the
cloud. The details are as follows.

1) Dep [7]: Dep is a layer-based scheduling algorithm. It
counts the distribution of all layers required by the
requested image on each node to calculate a score
based on the size of the existing layers. Then the
scheduling decision is made based on the score.

2) Dep-Soft [7]: Dep-Soft is a modified version of Dep
algorithm. The score is calculated the same as the
Dep algorithm. Besides, a threshold is set, and a
node is randomly selected among all nodes that
exceed the threshold.

3) Kube [18]: Kube is an image-based scheduling algo-
rithm. It is one of the default scheduling algorithms
of Kubernetes. When scheduling, it counts the distri-
bution of all requested images on each node and cal-
culates a score based on the size of the existing
images; then, the schedule is based on the score.

4) Monkey [7]: Monkey is a random algorithm; it ran-
domly selects a node for scheduling each time.

5) Dep-Down: Dep-Down is modified based on the Dep
algorithm. When calculating the score, the layer size
is changed to the estimated download time.

6) Dep-Wait: Dep-Wait modifies the download time in
the Dep-Down algorithm to the waiting time of
layers that are downloading.

7) Dep-Comp: Dep-Comp modifies the download time
in the Dep-Down algorithm to the sum of task com-
putation time and download time.

8) GA [61]: Genetic Algorithm (GA) is a meta-heuristic
algorithm inspired by the process of natural selection
by relying on biologically inspired operators such as
mutation, crossover, and selection.

9) DE [62]: Differential Evolution (DE) is a meta-heuris-
tic algorithm that optimizes a problem by iteratively
trying to improve a candidate solution concerning a
given measure of quality.

10) PSO [63]: Particle Swarm Optimization (PSO) is a
meta-heuristic algorithm. It solves a problem by hav-
ing a population of candidate solutions (particles)
and moving them around in the search space accord-
ing to a simple mathematical formula over the parti-
cle’s position and velocity.

11) DQL [48]: Deep Q-Learning (DQL) is a value-based
RL algorithm that combines deep neural networks
and Q-learning to solve high-dimensional state space
problems.

Parameter Settings. The node’s available storage space is
randomly set between 5GB and 15GB, and the available
bandwidth is randomly set between 60Mbps and 90Mbps.
The CPU frequency is randomly generated between 0.8GHz
and 1.2GHz. The default node number is 10, while the node
number is also a variable in some experiments. Besides, the

TABLE 4
Statistics of Images and Layers

Type Image Layer

Number 70 378
Max Size 9371Mb 809Mb
Min Size 291Mb 1Mb
Average Size 3369Mb 414Mb
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bandwidth and CPU frequency of the cloud is set to
100Mbps and 1GHz, respectively. Furthermore, the default
task number is 2000. In non-heterogeneous MEC, each
node’s default bandwidth, CPU frequency, storage space,
and maximum container number are set to 70Mbps,
0.9GHz, 15GB, and 10, respectively.

For GA, DE, and PSO algorithms, according to the evalu-
ation, the performance is no longer improved after 300 itera-
tions, so their iteration rounds are all set to 300. The
dimensions of the objective function are all 1, the population
size is set to 10, and the range of the independent variable is
½0; jN j
, i.e., the set of all edge nodes and the remote cloud.
For the DQL algorithm, two three-layer neural networks are
used to extract node features and task features, respectively,
and then another two-layer neural network is used to merge
the features to output. The learning rate is set to 0.01, the
discount parameter is set to 0.9, and the threshold in action
selection is set to 0.1 [4], [64].

Simulator. An MEC simulation environment is imple-
mented with Python, which mainly includes the classes of
edge node, container, image, layer, task, scheduler, etc. An
environment is created based on these classes to return the
reward, state, etc. Moreover, the environment is online
updated according to the action selected by the agents.

5.2 Experimental Results

To illustrate the proposed LDLS algorithm’s performance,
the experiments are first conducted in a heterogeneous
MEC scenario. Second, to verify each resource’s impact,
more experiments are conducted in the non-heterogeneous
MEC scenario. Finally, additional experiments on the LDLS
algorithm are supplemented. The experimental results are
illustrated in scientific notation, e.g., 1e4 equals 1� 104.

Heterogeneous MEC. The performance of the proposed
LDLS algorithm against the baseline algorithms with differ-
ent task numbers and node numbers in heterogeneous MEC
are shown in Figs. 5, 6, and 7, respectively.

Task Number. The total task completion time with differ-
ent task number is shown in Fig. 5a. It can be seen that the
LDLS algorithm outperforms the baselines. On average, the
total time of the LDLS algorithm is reduced by 23%, 19%,
72%, 15%, 41%, 11%, 30%, 23%, 31%, 31%, 14% compared
with Dep, Dep-Soft, Kube, Monkey, Dep-Down, Dep-Wait,
Dep-Comp, GA, DE, PSO, and DQL algorithms,
respectively.

Moreover, the total time is composed of download time
and computation time, as shown in Figs. 5b and 5c, respec-
tively. As the number of tasks increases, the LDLS algorithm
reduces the download time more evidently. This is because
more and more layers need to be downloaded, which leads
to an increase in download time, and it accounts for an
increasing proportion of the total time. Therefore, the LDLS
algorithm chooses to sacrifice the computation time to

Fig. 5. Performance with different task number in heterogeneous MEC (Uniform distribution).

Fig. 6. Performance with different task number in heterogeneous MEC
(Zipf distribution).
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reduce the download time and obtain better long-term
performance.

Furthermore, the download time can be divided into two
parts: the time of layers that are being downloaded (down-
loading time) and the time of layers waiting to be down-
loaded (pending download time). Since the downloading
time is generally less than the pending download time (only
if there are no pending download layers, the downloading
time is more significant), only the pending download time
is illustrated in Fig. 5d. It can be seen that the LDLS algo-
rithm is more inclined to choose nodes with a shorter pend-
ing download time. However, the Kube algorithm cannot
make a good decision, which leads to a much longer down-
load time as the number of tasks increases. In addition, com-
paring Figs. 5d and 5e, it can be found that the pending
download time is much smaller than the waiting time of the
node, which is an advantage for layer-based algorithms.

Finally, the total download size of each algorithm is
shown in Fig. 5f. The algorithm with a smaller download
size does not always perform better. This is because the
download time on heterogeneous edge nodes is not only
related to download size but also related to bandwidth,
which is analyzed in the following experimental results in
non-heterogeneous MEC.

The results of the task generated with Zipf are shown in
Fig. 6. As the number of tasks increases, the advantage of
the total task completion time of the LDLS algorithm
becomes more prominent. Compared with the baseline
algorithms, LDLS reduces the total task time by up to 36%.

Node Number. As shown in Figs. 7a and 7b, the LDLS
algorithm has an advantage regardless of the task genera-
tion method. Besides, the performance of the Kube algo-
rithm is unstable with different node numbers. This is
because the Kube algorithm is an image-based scheduling
algorithm. It cannot judge the distribution of layers, leading
to terrible decisions, thereby repeatedly downloading many

layers. Further experiments show that the performance of
these baseline algorithms has a great relationship with the
random seed.

Random Seed. Fig. 8 shows the performance of algorithms
with the random seed from 1 to 10 when all other parameter
settings remain unchanged. The performance of the Kube
algorithm is very different, even if the random seed changes
very little. This is because the traversal order in this algo-
rithm is determined according to the random seed. Thus,
different traversal orders cause the image-based scheduling
algorithm to make different choices, which may cause a lot
of repeated layer downloads on different nodes.

In summary, the LDLS algorithm reduces the total time
than the Dep, Dep-Soft, Kube, Monkey, Dep-Down, Dep-
Wait, Dep-Comp, GA, DE, PSO, and DQL algorithms in het-
erogeneous MEC by 17%, 16%, 54%, 13%, 33%, 9%, 26%,
17%, 22%, 26%, and 10% on average, respectively.

Non-heterogeneous MEC. To further compare the impact of
some key parameters in MEC, experiments are conducted in
non-heterogeneous MEC as shown in Figs. 9, 10, 11, and 12.

Fig. 7. Performance with different node number in heterogeneous MEC.

Fig. 8. Performance with different random seed in heterogeneous MEC
(Uniform distribution).

Fig. 9. Performance with different task number in non-heterogeneous
MEC.
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Task Number. The performance with different task num-
bers in non-heterogeneous MEC with uniform and Zipf task
distribution is shown in Figs. 9a and 9b, respectively. It can
be concluded that the LDLS algorithm’s performance is bet-
ter than baseline algorithms no matter what kind of distri-
bution. Also, the advantage of the LDLS algorithm on tasks
generated based on the Zipf distribution is more evident.

Since it is a non-heterogeneous MEC, the total task comple-
tion time increases almost linearly as the number of tasks
increases.

Node Number. The results are shown in Fig. 10. In most
cases, the LDLS algorithm performs better regardless of the
task generation method. As the number of nodes increases,
the gap between the LDLS algorithm and the baseline algo-
rithm has narrowed. The reason is that the computation
resources increase with larger node numbers; even random
algorithms can achieve better results.

It can be concluded that the performance of tasks gener-
ated by Zipf is better than uniform. Therefore, in the follow-
ing experiments, only the performance of tasks with
uniform distribution is compared in non-heterogeneous
MEC.

Bandwidth. The performance with different bandwidth
is shown in Fig. 11. From Fig. 11a, it can be concluded
that the LDLS algorithm performs much better than
other algorithms when the bandwidth is small. As shown
in Figs. 11b and 11c, both the download time and com-
putation time of the LDLS algorithm are less than other
algorithms when the bandwidth is small. The LDLS algo-
rithm has learned a better strategy for scheduling the
tasks to the cloud when bandwidth is insufficient since
the download time is relatively long with small band-
width. Besides, as the bandwidth increases, the LDLS
algorithm’s performance always remains better than
baseline algorithms.

Container Number. The container number determines the
maximum number of containers that each node can run
simultaneously, which can be regarded as a limitation of
computation resources. The larger the container number,
the more computation resources. As shown in Fig. 12a,

Fig. 10. Performance with different node number in non-heterogeneous
MEC.

Fig. 11. Performance with different bandwidth in non-heterogeneous MEC (Uniform distribution).

Fig. 12. Performance with different container number, CPU frequency, and storage space in non-heterogeneous MEC (Uniform distribution).
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when the container number becomes more extensive, the
Kube algorithm’s performance gets worse, while the LDLS
algorithm remains stable.

CPUFrequency. TheCPU frequency determines the process-
ing speed of the node, thereby affecting the task completion
time. As shown in Fig. 12b, the total task completion time
becomes less when the CPU frequency increases. This is
because when the CPU frequency becomes larger, the process-
ing speed becomes faster, and the computation time decreases.

Storage Space. Finally, the performance of different stor-
age spaces is shown in Fig. 12c. When the storage space is
relatively limited, the LDLS algorithm chooses to offload
tasks to the cloud to reduce the computation time greatly.

LDLS. To further illustrate the performance of the LDLS
algorithm, more experiments are conducted. First, the Cumu-
lative Distribution Function (CDF) of task completion time is
shown in Fig. 13. It can be seen that the proportion of tasks
with a shorter task completion time of the LDLS algorithm is
more than baseline algorithms. Thus the average task comple-
tion time of the LDLS algorithm is shorter than baseline algo-
rithms. This proves that the LDLS algorithm can optimize the
scheduling decisions from a long-termperspective.

Fig. 14 shows the reward, the loss of the policy network, the
loss of the value function, and the probability of action selec-
tion of the LDLS algorithm. It can be seen from Fig. 14a that
the LDLS algorithm converges after several hundred rounds
of training, which shows that the algorithm has good conver-
gence. The loss curves in Figs. 14b and 14c further show the
convergence. Fig. 14d shows the sum of the probabilities
according to the actions selected by the policy network in
each epoch. The greater the sum of the probabilities, the more
good actions selected by the policy network, i.e., the better the
performance of the policy network. It can be seen from
Fig. 14d that although the loss is no longer reduced after sev-
eral rounds of the epoch, the probability of selecting a good
action becomes greater, i.e., the performance of the policy net-
work is getting better and better over time.

6 DISCUSSION

From the experimental results, we can see the effectiveness
of our algorithms. The following issues deserved further
investigation.

Task Transmission Cost. In our MEC scenario, the user
tasks are first transmitted to the base stations, then sched-
uled to different edge nodes for processing. The task trans-
mission time mainly includes the time for the user to
transmit task data to the base station and the time to trans-
mit the data from the base station to the node. The selection
of the user base station is made according to the underlying
protocol, which is not within the scope of this paper. Then
the time to transmit task data to the base station is consid-
ered a constant value for each user task. Besides, edge nodes
are generally connected through an intranet with a stable
bandwidth [42], [43], so the transmission time between the
base station and different nodes can also be considered a
small constant value. As a result, the task transmission time
is equivalent to a constant value for each user task.

Compared with the download time of the images and the
computation time of the tasks, the task transmission time is
very short. For example, as shown in Table 4, the average
size of layers is 414Mb. In comparison, the photo size that
needs to be transferred after preprocessing is only about 4 -
8Mb [45], [65]. Assuming that the bandwidth from the task
to the base station is only 10Mbps, the transmission time is
then about 0.4 - 0.8 seconds. As shown in Fig. 5, in the case
of 2000 tasks, the average download time of image-based
scheduling (Kube algorithm) is about 70 seconds, while the
average download time of the LDLS algorithm is about 16
seconds. Based on these observations, we do not consider
the transmission time in the system model and focus on
optimizing the download time and computation time [7].

Furthermore, in this paper, we focus on optimizing the
task completion time on the node from the granularity of
the layer. Considering the task transmission time, then the
location of the wireless base station, the wireless channel
condition between the user and the base station, the mobil-
ity of users, and the handover of user tasks need to be con-
sidered. This will make the system model very complex,
which is left for our future work.

Layer Sequence. From the perspective of task scheduling,
the layers form a set instead of a sequence when extracting
layer dependencies. The set of layers can be downloaded in
an arbitrary order when downloading an image. In this
paper, on each edge node, layers are downloaded in the
order requested by the task, and good experimental results
have been obtained. However, we can further optimize the

Fig. 13. CDF of the task completion time.

Fig. 14. Reward, loss of the policy network, loss of the value function, and probability of action selections of the LDLS algorithm.

TANG ETAL.: LAYER DEPENDENCY-AWARE LEARNING SCHEDULING ALGORITHMS FOR CONTAINERS IN MOBILE EDGE COMPUTING 3457

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2023 at 14:41:54 UTC from IEEE Xplore.  Restrictions apply. 



layer download sequence. For example, when determining
the layer download sequence of multiple images on a single
edge node, the layer download sequencing problem is equal
to a classic precedence-constrained single machine job
scheduling problem 1jprecjP ti [66], where 1 means the sin-
gle machine, prec means jobs have precedence constraints,
and

P
ti denotes that the objective is to minimize the total

completion time of all jobs. Jointly optimizing the task
scheduling and the layer download sequencing problem in
an online manner is challenging and interesting, and we
will leave it as future work.

7 CONCLUSION

We have formulated the layer dependency-aware schedul-
ing problem in heterogeneous MEC. A policy gradient-
based algorithm with well-extracted layer dependency
information and improved action selection effectively
reduces the task completion time with limited resources.
Compared with the state-of-the-art baseline algorithms, the
proposed LDLS algorithm outperforms the image-based
and layer-based algorithms by 54% and 19%, respectively.

This is our first attempt at layer dependency-aware
scheduling. We have obtained inspiring experimental
results, proving that scheduling at the granularity of the
layer can effectively reduce the task completion time in het-
erogeneous MEC. On this basis, much work can be done.
For example, tasks can be grouped and scheduled together
to use the layer dependency information further. Moreover,
the download sequence of the layers can be further consid-
ered to optimize the waiting time of layer download for
tasks. Besides, the registry’s deployment on the edge nodes
or layer caching with some selected edge nodes is also up-
and-coming to further reduce the task completion time.
These will be considered in our future work.
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