
Pricing Model for Dynamic Resource
Overbooking in Edge Computing

Zhiqing Tang , Fuming Zhang , Xiaojie Zhou , Weijia Jia , Fellow, IEEE, and Wei Zhao , Fellow, IEEE

Abstract—EdgeComputing (EC) with cloud-like Quality of Service (QoS) can find its wide applications in various resource-constrained

smart citieswhere the resource requirements can be different during peak and off-peak periods. During off-peak periods, there are

oftenmany resources that have been requested but not used, which can be reused to obtain higher profit. However, to the best of our

knowledge, there is no effective pricingmodel or overbookingmechanism in EC. To fill in this gap, a novel pricingmodel for dynamic

resource overbooking is proposed in this paper, specifically: 1) Tomeet the needs of different users in EC, methods of on-demand, daily,

auction, and the new spot billing are designed, in which resources can be overbooked. 2) An auction approach with pricing rule and

winner determination rule is designed for auction billing, which is proved to guarantee individual rationality, computational efficiency,

and truthfulness. 3) Tomakemore use of the auction approach to utilize idle resources, a dynamic resource overbookingmechanism is

introduced, including a cancellation policy and a resource predictionmethod. Themechanism is validated with real-world data-trace.

Experimental results show that the dynamic resource overbookingmechanismmaximizes the profit of edge nodeswith a high QoS

Satisfaction ratio of on-demand and daily billing.

Index Terms—Auction, edge computing, pricing model, resource overbooking

Ç

1 INTRODUCTION

IN recent years, due to the rapidly increasing number of
mobile devices, cloud computing, which is relatively far

from these devices, cannot meet applications that have strict
requirements for delay or mobility, such as vehicle networks
and wireless access networks [1], [2]. To compensate for
these weaknesses in cloud computing, the Edge Computing
(EC) [3] paradigm can play an important role. In EC, the com-
putation resources of cloud data centers are partially off-
loaded to the decentralized edge nodes by deploying the
edge nodes at the edge of the network [2]. Compared with
cloud computing, decentralized edge nodes can not only

support themobility of tasks [4], but also significantly reduce
delay and transmission cost while meeting the resource
requirements of mobile tasks [5]. Besides, fulfilling delay
requirements, EC can effectively support domain-specific
large-scale distributed decision-making systems [6], such as
the intelligent transportation system in cities [7], etc.

However, the delay requirements of resource-consuming
applications may vary significantly in EC. Take the intelli-
gent transportation system as an example: real-time traffic
information processing, which has a distinct peak period,
requires a strict guarantee of low delay. On the other hand,
the emergency only takes a short time to be processed with
the exact delay requirement. Both of the above delay-sensi-
tive tasks are ideal scenarios for applying EC [7]. Therefore,
how to efficiently allocate limited resources among multiple
types of tasks is a critical issue in EC [8]. The dynamic over-
booking mechanism and pricing model are proposed in this
paper to solve the above problem. The practice of renting
idle resources again is called overbooking [9], [10], which
aims to minimize resource waste during off-peak periods.
Moreover, the pricing model provides proper billing meth-
ods for regular rental and overbooking.

Existing research on the pricingmodel in ECmainly focuses
on homogeneous tasks and single billing model. Bittencourt
et al. [11] describe the pricing model in EC and propose a gen-
eral architecture. They discuss its components, interfaces, and
interactions but do not give a practical algorithm. Zhang et al.
[12] propose a hierarchical Stackelberg game based pricing
strategy to achieve high utility with a 3-layer model in EC.
However, the task request submitted by each user is the same.
To fill in these gaps, a pricing model including on-demand,
daily, auction, and spot billing methods is proposed. The first
two billing methods are designed for regular rental, while the
latter two are designed for overbooking. Compared with our
previous work [13], a new spot billing method is proposed.

� Zhiqing Tang is with the Institute of Artificial Intelligence and Future
Networks, Beijing Normal University, Zhuhai 519087, China.
E-mail: domain@sjtu.edu.cn.

� Fuming Zhang and Xiaojie Zhou are with the Department of Computer
Science and Engineering, Shanghai Jiao Tong University, Shanghai
200240, China. E-mail: {zhangfuming-alex, szxjzhou}@sjtu.edu.cn.

� Weijia Jia is with the Institute of Artificial Intelligence and Future Net-
works, Beijing Normal University, Zhuhai 519087, China, and also with
Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-
HKBU United International College, Zhuhai 519087, China.
E-mail: jiawj@bnu.edu.cn.

� Wei Zhao is with the CAS Shenzhen Institute of Advanced Technology,
Shenzhen 518055, China. E-mail: zhao8686@gmail.com.

Manuscript received 15 July 2020; revised 19 Mar. 2022; accepted 12 May 2022.
Date of publication 20 May 2022; date of current version 7 June 2023.
This work was supported in part by Guangdong Key Lab of AI andMulti-modal
Data Processing, United International College (UIC), Zhuhai under Grant
2020KSYS007, and in part by Chinese National Research Fund (NSFC) under
Grant 61872239, in part by the Engineering & Tech Center of Artificial Intelli-
gence and Future Educations of Beijing Normal University, Zhuhai, Guang-
dong, China; Science and Technology Development Fund of Macau SAR under
Grant 0060/2019/A1, and in part by Zhuhai Science-Tech Innovation Bureau
under Grants ZH22017001210119PWC and 28712217900001.
(Corresponding author: Weijia Jia.)
Recommended for acceptance by J. Wang.
Digital Object Identifier no. 10.1109/TCC.2022.3175610

1970 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

2168-7161 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-8025-4411
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0001-9855-8229
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-0231-3196
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
https://orcid.org/0000-0002-6268-2559
mailto:domain@sjtu.edu.cn
mailto:zhangfuming-alex@sjtu.edu.cn
mailto:szxjzhou@sjtu.edu.cn
mailto:jiawj@bnu.edu.cn
mailto:zhao8686@gmail.com

Unlike the auction billingmethod, it has nomaximum runtime
limit. As long as the bid is higher than the current server’s
adjusted fee, users’ tasks will be executed continuously, com-
plementing the auction billingmethod.

Among these four billing methods, the auction theory has
been extensively studied [14]. Jin et al. [15], [16] design two
auction approaches in EC. However, both of them are based
on homogeneous tasks. Wang et al. [17] consider heteroge-
neous tasks, but they aim to minimize the expenditure of
users without considering the profit. Compared with the cur-
rent work, the proposed auction approach mainly has the fol-
lowing improvements: 1) The heterogeneity of tasks (buyers)
and servers (sellers) is considered. 2) The servers of one edge
node are grouped to receive the bids from tasks, and each
server can acceptmultiplewinning tasks. 3)Multiple resource
requirements of tasks are taken into consideration.

For overbooking, unlike in cloud computing, which has
been widely used to improve resource utilization [9], [10],
in EC, due to the heterogeneity of edge nodes and task
types, an overbooking mechanism that can meet multiple
needs is still in its infancy. Barbarossa et al. [18] propose a
strategy to overbook the computation and communication
resource based on the statistics of blocking events in mmW-
mobile edge computing. Slim et al. [19] propose a costless
service offloading strategy for distributed edge cloud con-
sidering resource overbooking. To efficiently overbook idle
resources while ensuring high Quality of Service (QoS) for
normal rental resource, the available resource needs to be
dynamically determined as accurately as possible. Moreno
et al. [9] and Imam et al. [20] predict the resource utilization
through a neural network and overbook the resource based
on predicted results. However, they do not regard Service
Level Agreement Violations (SLAV). To solve this problem,
Long Short-Term Memory (LSTM) [21] and residual net-
work [22] based predictors are used to predict resource utili-
zation supplemented by dynamic resource adjustment
mechanisms similar to TCP congestion control [23]. To fur-
ther improve the QoS satisfaction ratio, adaptive padding is
added to the resource predictors, and a cancellation policy
is introduced. Our experimental results show that the aver-
age QoS satisfaction ratio with the enhanced method can
reach over 99.95%, and the total profit is increased by 7.82%.

Notably, this paper is an extended version of [13]. The
following changes have been made in this extended version:
1) A new billing method, spot billing method, has been
designed. The pricing model is further improved, and the
system can provide users with more flexible services, as
introduced in Section 2.2.2) Algorithm 1 Pricing Rule has
been revised. Besides, Algorithm 1 is divided into two parts
as shown in Section 3.1, in which the candidate assignment
determination is divided into Algorithm 2.3) A new
resource utilization predictor based on the residual network
has been adopted, which can solve the degradation prob-
lem, making it easier for deep networks to train higher accu-
racy. 4) An adaptive padding mechanism has been added,
further improving the prediction accuracy as shown in Sec-
tion 4.1.5) A new algorithm, Algorithm 4 Cancellation Pol-
icy, has been added as described in Section 4.2 to restore the
QoS satisfaction ratio from the next moment by canceling
some auction tasks, releasing and recycling the resource
they occupy. 6) A larger-scale simulation experiment has

been conducted to help us better select hyperparameters
while verifying the algorithm’s effectiveness and redrew all
the experimental results. 7) More detailed data processing
and experimental settings have been added. And the main
notations have been listed in Table 1 for better readability.

To summarize, an efficient pricing model for dynamic
resource overbooking is proposed. The contributions are as
follows:

1) A pricing model including on-demand, daily, auc-
tion, and spot billing methods is proposed, in which
the resource can be overbooked according to differ-
ent QoS requirements. A novel auction approach is
designed for auction billing by applying pricing and
winner determination rules and proving that the
approach guarantees individual rationality, compu-
tational efficiency, and truthfulness.

2) Novel resource prediction methods based on LSTM
and residual network are adopted, where an adaptive
paddingmethod and a threshold are used to improve
the prediction accuracy. Furthermore, the dynamic
resource overbooking mechanism, including a can-
cellation policy and QoS satisfaction ratio feedback
based on the resource prediction, is introduced.

TABLE 1
Notations

n Edge node (n 2 N)
sn;j jth server of edge node n
scxn;j Resource capacity of sn;j
t Time slot
BðtÞ Mobile task set at time t
biðtÞ ith task at time t (bi 2 BðtÞ)
tsi ðtÞ; tei ðtÞ Estimated start and end time of biðtÞ
riðtÞ Resource request of biðtÞ
vci;nðtÞ; vmi;nðtÞ CPU and memory valuation for node n of biðtÞ
eiðtÞ Expected billing method of biðtÞ
Ln;jðtÞ QoS satisfaction level of sn;j
sbn;jðtÞ; ssn;jðtÞ Resource overbooked by auction and spot billing

son;jðtÞ; sdn;jðtÞ Resource rented by on-demand and daily billing
siðtÞ Task assignment of biðtÞ
Tb Time limit for tasks using auction billing
san;jðtÞ;AðtÞ (Adjusted) Asking price of sn;j

wn;j
totalðtÞ Total revenue of sn;j

dn;jL ðtÞ Discount rate of sn;j
Cn;jðtÞ Cost of sn;j
sun;jðtÞ;UðtÞ Unused resource of sn;j

spn;jðtÞ Predicted resource usage (on-demand, daily)
R Total profit of the system
CbðtÞ;CsðtÞ Candidate task set and server set at time t
scðtÞ Candidate assignment at time t

Pb
cðtÞ;Ps

cðtÞ Payment of candidate task set and server set

WbðtÞ;WsðtÞ Winning task set and server set at time t
swðtÞ Winning assignment at time t

Pb
wðtÞ;Ps

wðtÞ Payment of winning task set and server set
thex Extra threshold of available resource
BaðtÞ Assigned auction tasks with end time after tþ 1

sfn;jðtÞ Resource will be freed before tþ 1 of sn;j

srn;jðtÞ Resource need to be recycled before tþ 1 of sn;j

BcðtÞ Auction tasks to be cancelled at time t

su
0

n;jðtÞ Adjusted unused resource of sn;j at time t

thup; thlo Upper and lower thresholds of available resource

s
a0
n;j Base asking price of sn;j

TANG ETAL.: PRICING MODEL FOR DYNAMIC RESOURCE OVERBOOKING IN EDGE COMPUTING 1971

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

3) The algorithms are validated with real-world data-
trace, and the experiment is scaled five times com-
pared with [13]. The experimental results show that
the auction approach can achieve desirable proper-
ties. In the meantime, the dynamic overbooking
mechanism improves the profit by 51.58% under the
premise of high QoS satisfaction ratio.

The remainder of this paper is organized as shown in
Fig. 1. First, in Section 2, the system model is introduced,
which primarily includes edge nodes and user tasks. Differ-
ent user tasks are categorized into four billing methods, i.e.,
the on-demand, daily, auction, and spot billing methods.
Second, for the auction billing in the pricing model, an
online auction approach is proposed and analyzed in Sec-
tion 3, which includes a pricing rule and a winner determi-
nation rule. Third, based on the four billing methods, the
dynamic resource overbooking mechanism is illustrated in
Section 4 to overbook resources as much as possible, where
the resource utilization prediction method and the cancella-
tion policy are used to improve prediction accuracy. Finally,
the experimental settings and results are described in Sec-
tion 5 and the paper is concluded in Section 6.

2 MODELING AND PROBLEM FORMULATION

In this section, the system model for EC is illustrated in 2.1,
which includes mobile tasks and edge nodes. Then, the pric-
ing model consisting of on-demand, daily, auction, and spot
billing methods is introduced in 2.2. Finally, the problem is
formulated in 2.3.

2.1 System Model

A three-layer Mobile-Edge-Cloud architecture is consid-
ered [2], [24]. Edge service providers gain revenue by
leveraging the computation resources of edge nodes to tasks
from mobile users [25]. Agencies with various requirements
of delay and computation resources can rent these resour-
ces. Take the edge-assisted intelligent transportation system
as an example [26], re-planning of traffic routes is a delay-
sensitive task that requires long-term computation resour-
ces. Unexpected traffic accident information processing is
also delay-sensitive but requires short-term computation
resources. Moreover, road surveillance video processing is
not delay-sensitive but needs more computation resources.

The main notations have been listed in Table 1 for better
readability compared with our previous work [13].

It is assumed that there is a set of heterogeneous and dis-
tributed edge nodesN. For each edge node n 2 N, it consists
of a set of physical servers Sn, and S ¼ fS1;S2; . . .;SjNjg is
used to denote all servers. The number of servers per edge
node and the resource capacity of each server can be differ-
ent. The resource capacity of server sn;j 2 Sn is denoted as
scxn;j ¼ fsccn;j; scmn;jg, where x 2 fc;mg refers to the capacity of a
certain resource. When x ¼ c, it indicates the CPU resource.
Otherwise when x ¼ m, it indicates the memory resource.

In EC, mobile users generate tasks and offload them to
the edge nodes. The set of tasks generated at time t is
denoted as BðtÞ. These tasks are divided into delay-sensitive
and computation-oriented tasks. The former needs to be
processed in time, while the latter requires a lot of computa-
tion resources. Specifically, the ith task is denoted as biðtÞ ¼
ftsi ðtÞ; tei ðtÞ; riðtÞ; viðtÞ; eiðtÞg, where tsi ðtÞ is the estimated
start time, tei ðtÞ is the estimated end time, riðtÞ is the resource
request, viðtÞ is the valuation, and eiðtÞ is the expected billing
method. For each riðtÞ ¼ friðtÞ:c; riðtÞ:mg, riðtÞ:c and riðtÞ:m
are the requests of CPU and memory resource, respectively.
viðtÞ ¼ fvci;nðtÞ; vmi;nðtÞjn 2 Ng contains the valuation of CPU
and memory resource for each edge node. The valuation of
each task is different due to the heterogeneity of the edge
nodes [27]. Besides, the task will choose not to bid on too dis-
tant edge nodes by setting the valuation of the corresponding
edge nodes to -1. The details of the expected billing method
eiðtÞ are explained in the next subsection.

2.2 Pricing Model

As mentioned in the previous subsection, the edge nodes
could profit by renting out computation resources. Gener-
ally, the edge nodes can rent out as many resources as the
servers own. However, as shown in Fig. 2 from the data
set [28], [29], the actual resource utilization is lower than the
resource allocated and far lower than the resource capacity.
To make more use of the resource, the allocated but unused
resource is submitted for a second sale, called resource over-
booking [9]. As the intelligent transportation system in cities
mentioned above, most of the resources allocated to traffic
information processing tasks are unused during off-peak
periods, which can be used for a second sale through the
auction. Many cloud service providers currently provide
different billing methods, including Amazon AWS [30],
Microsoft Azure [31], etc., but flexible billing methods are
only adopted in cloud computing. In EC, most service pro-
viders currently provide billing by the number of requests.
Therefore, applying the pricing model proposed in this
paper to EC can effectively solve the problem of resource
utilization of edge nodes and improve revenue.

Fig. 1. Overview of the pricing model.

Fig. 2. Data set overview.

1972 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

The pricing model is designed for users to offload tasks to
the edge nodes, which includes four billingmethods, defined
as eiðtÞ 2 fon-demand, daily, auction, spotg. The details are
described as follows.

� On-Demand(OD): This billing method is primarily for
those delay-sensitive tasks with uncertain start time or
processing time, e.g., the unexpected traffic accident
information processing in EC. It charges a consider-
able fee while providing a fairly high QoS satisfaction
ratio.

� Daily: This billing is designed for tasks that are
delay-sensitive but with determined and relatively
long processing time, e.g., the re-planning of traffic
routes in EC. In such a billing method, computation
resources are reserved, and bills are paid daily. Like
the above billing method, it provides a high QoS sat-
isfaction ratio for high fees.

� Auction: This billing serves to delay insensitive tasks
which require many computation resources, e.g.,
road surveillance video processing in EC. The advan-
tage is that it can provide the tasks’ resources at a
lower price. However, tasks billed in this way have
runtime limits and will be evicted when the resource
is depleted.

� Spot: It has some similarities with the auction billing
method. The main difference is that tasks can be exe-
cuted as long as the price does not surpass its bid.
Under the dynamic price adjustment based on QoS
satisfaction ratio feedback, this is a proper comple-
ment to the auction billing.

Compared with our previous work [13], the new billing
method, spot billing, has been designed to further improve
the pricing model and the system can provide users with
more flexible services. Users can flexibly choose the billing
methods according to different preferences of tasks’ require-
ments. As mentioned in the above billing methods, a high
QoS satisfaction ratio is provided for tasks which adopt on-
demand or daily billing method. Since tasks in EC have an
expected computation time or are expected to be completed
as soon as possible, the QoS of tasks is closely related to the
computation time. Besides, the computation time is propor-
tional to SLAV [4], [32]. Then, the QoS satisfaction ratio
LðtÞ ¼ fLn;jðtÞjsn;j 2 Ng of each server can be defined as [4],
[32], [33]:

Ln;jðtÞ ¼ min
scxn;j � sobxn;j ðtÞ

snrxn;j ðtÞ
; 1jx 2 fc;mg

()
; (1)

where scxn;j is the resource capacity, sobxn;j ðtÞ is the total over-
booked resource and snrxn;j ðtÞ is the normally rented resource,
i.e., sobxn;j ðtÞ ¼ sbxn;jðtÞ þ ssxn;jðtÞ and snrxn;j ðtÞ ¼ soxn;jðtÞ þ sdxn;jðtÞ,
where sbxn;jðtÞ and ssxn;jðtÞ denote the resource overbooked by
auction and spot billing of sn;j, respectively. s

ox
n;jðtÞ and sdxn;jðtÞ

are the resources rented by on-demand and daily billing with
QoS satisfaction of sn;j, respectively. s

bx
n;jðtÞ is obtained as:

sbxn;jðtÞ ¼
X

t02ft0 jðbiðt0Þjtsi ðt0Þ�t�te
i
ðt0Þ;siðt0Þ¼fn;jgÞg

rxi ðt0Þ;

where siðtÞ denote the assignment of the task biðtÞ at
time t, e.g., siðtÞ ¼ fn; jg means task biðtÞ is assigned to sn;j.

Therefore, the above formula indicates that at time t, the
resource of server sn;j overbooked by auction is obtained by
summing the resource requests of those tasks assigned to the
server sn;j and whose start time is less than or equal to t and
end time is greater than or equal to t. As mentioned in the
auction billing method, if eiðtÞ is auction, the task can last at
most Tb time slots, which is defined as:

tei ðtÞ ¼
tsi þ Tb; tie(t) - tis(t) > Tb

tei ðtÞ; tie(t) - tis(t) �Tb

�
:

2.3 Problem Formulation

Our goal is to maximize the profit of the edge nodes through
overbooking with a high QoS satisfaction ratio for those on-
demand and daily tasks in EC. Moreover, the profit is
defined as the revenueminus the cost intuitively.

The revenue of edge nodes is the sum of the payments of
all tasks. For task biðtÞ, if the conventional billing method
eiðtÞ is on-demand billing, its payment depends on its CPU
and memory demands, which is defined as:

wo
i ðtÞ ¼

X
x2fc;mg

rxi ðtÞ � wo
x

0
@

1
A� jtei ðtÞ � tsi ðtÞj;

where wo
x; x 2 fc;mg is the on-demand price of correspond-

ing resource. tsi ðtÞ and tei ðtÞ are the start time and the end
time of biðtÞ, respectively.

In addition, if biðtÞ is a daily task, the payment is defined
as:

wd
i ðtÞ ¼

X
x2fc;mg

rxi ðtÞ � wd
x

0
@

1
A� td;

where wd
x; x 2 fc;mg is the price of daily billing of the corre-

sponding resource, and td is the amount of days. Gener-
ally, the prices of on-demand and daily tasks are fixed as
constants [30].

Furthermore, if biðtÞ is an auction task, the payment is
defined as:

wa
i ðtÞ ¼

Z te
i
ðtÞ

ts
i
ðtÞ

X
x2fc;mg

rxi ðtÞ � pxi ðtÞ
0
@

1
Adt;

where pxi ðtÞ; x 2 fc;mg is the price of corresponding
resource which is determined through the auction approach
described in Section 3.

Otherwise, if biðtÞ is a spot task, the payment is defined
as:

ws
i ðtÞ ¼

Z te
i
ðtÞ

ts
i
ðtÞ

X
x2fc;mg

0
@ rxi ðtÞ � ws

x�1½ws
x > saxn;jðtÞ�

�
dt; (2)

where ws
x; x 2 fc;mg is the price of corresponding resource

in the spot billing method. The ratio of user’s bid to the ask-
ing price of the server is fixed. Besides, 1½�� is Iverson
bracket, whose value is equal to 1 when the condition in the
bracket is satisfied. Otherwise it is 0. saxn;jðtÞ is the asking

price of corresponding resource. AðtÞ ¼ fsan;jðtÞjsn;j 2 Sg is

TANG ETAL.: PRICING MODEL FOR DYNAMIC RESOURCE OVERBOOKING IN EDGE COMPUTING 1973

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

used to represent the set of asking price for all servers,
where san;jðtÞ ¼ fsaxn;jðtÞjx 2 fc;mgg is the asking price of sn;j
at t. Eq (2) states that the user will be billed only if the user’s

bid is higher than the asking price of the server.
Therefore, the total revenue of sn;j is defined as:

wn;j
totalðtÞ ¼ dn;jL ðtÞ �

X
t2ftjeiðtÞ¼ODg

wo
i ðtÞ

0
@

þ
X

t2ftjeiðtÞ¼dailyg
wd

i ðtÞ
1
Aþ

X
t2ftjeiðtÞ¼auctiong

wa
i ðtÞ

þ
X

t2ftjeiðtÞ¼spotg
ws

i ðtÞ; siðtÞ ¼ fn; jg (3)

where dn;jL is a discount rate. While aiming to maximize the
profit with overbooking, the edge nodes may violate the
QoS of on-demand and daily tasks. To ensure the high QoS
satisfaction ratio of on-demand and daily billing, the reve-
nue has to be reduced to punish such violation with a dis-
count, which is defined as the SLA [34]:

dn;jL ðtÞ ¼

1; Ln;jðtÞ � 99:95%

0:9; 99% � Ln;jðtÞ < 99:95%

0:75; 95% � Ln;jðtÞ < 99%

0; Ln;jðtÞ < 95%

8>>><
>>>:

:

Besides, the cost of the servers mainly consists of the
energy consumption of CPU and memory utilization [35],
which is defined as:

Cn;jðtÞ ¼ pe �
X

x2fc;mg
ðscxn;j � suxn;jðtÞÞ � hx

0
@

1
A;

where pe is the unit price of electricity, hx; x 2 fc;mg is the
amount of power consumed per unit. Unused resources are
denoted by suxn;jðtÞ, and UðtÞ ¼ fsun;jðtÞjsn;j 2 Sg is used to
represent the set of unused resources for all servers, where
sun;jðtÞ ¼ fsuxn;jðtÞjx 2 fc;mgg is the unused resource for the
server sn;j at t, which is obtained as:

suxn;jðtÞ ¼ scxn;j � spxn;jðtÞ � ðsbxn;jðtÞ � ssxn;jðtÞÞ; (4)

where spxn;jðtÞ is the predicted resource utilization of the tasks
billed in on-demand and daily methods. The details of the
resource utilization prediction methods are explained in
Section 4.1.

To summarize, the problem is formulated as:

Problem 1.

maxR ¼
X
sn;j2S

XT
t¼0

wn;j
totalðtÞ � Cn;jðtÞ

� �
;

s:t: soxn;jðtÞ � suxn;jðtÞ 8sn;j 2 S; 8x 2 fc;mg: (5)

In Problem 1, the prices of on-demand and daily billing
are fixed. The bid price of spot billing is related to the asking
price of the server. However, the price of an auction is
dynamically adjusted, and the overbooking ratio is also
determined online. To solve Problem 1, an online auction

approach and a dynamic overbookingmechanism are needed
to overbook the resource asmuch as possible with a high QoS
satisfaction ratio of on-demand and daily billing. Details of
the online auction approach and dynamic overbookingmech-
anism are described in Section 3 and 4, respectively.

3 ONLINE AUCTION APPROACH

In this section, the online auction approach is introduced in
3.1, which includes the pricing rule and the winner determi-
nation rule. Then, the approach is theoretically analyzed in
3.2. The overview of the auction is shown in Fig. 3. When
the auction tasks arrive, the auctioneer first collects the tasks
and servers’ bids and then calls Algorithm 1 to get the pric-
ing and candidate sets. Algorithm 1 first obtains the candi-
date sets of the tasks and the servers by calling Algorithm 2
according to the task bids and the remaining resources of
servers. Then, Algorithm 1 further determines the auction
price. After that, Algorithm 3 obtains the final winner sets
of tasks and servers according to the candidate sets and
pricing.

Compared with our previous work [13], Algorithm 1
Pricing Rule has been revised. After determining the candi-
date assignments among the servers and the tasks with the
corresponding prices, the resource occupied by the pre-allo-
cated auction tasks should be restored, which is not well
considered in the previous version. Besides, Algorithm 1 is
divided into two parts, in which the candidate assignment
determination is divided into Algorithm 2.

3.1 Pricing Rule and Winner Determination Rule

A trusted third party, referred to as the auctioneer, must
administer the auction between mobile tasks and servers in
EC. The auctioneer first collects bids and the asking prices
from the tasks and servers, respectively. Then it uses the
pricing rule to determine the candidate assignments among
the servers and the tasks with the corresponding prices.
After that, the winner determination rule determines the
winning bids for each server from the candidate assign-
ments with the corresponding prices.

The auction approach should satisfy the following three
properties [15], [17]:

� Individual rationality: No winning buyer is charged
more than its bid, and no winning seller is rewarded
less than its asking price.

� Computational efficiency: The auction outcome is trac-
table within polynomial time complexity.

� Truthfulness: The bid submitted by each mobile
device should be truthful, i.e., no buyer can improve
its utility by submitting a bid different from its true
valuation.

Fig. 3. Overview of the auction.

1974 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. Pricing Rule

Input:AðtÞ;BðtÞ;UðtÞ
Output:CbðtÞ;CsðtÞ;Pb

cðtÞ;Ps
cðtÞ

1: Set CbðtÞ;CsðtÞ; scðtÞ;Pb
cðtÞ;Ps

cðtÞ;Cp
bðtÞ ¼ ;

2: for n 2 N do
3: Set Vn ¼ fbiðtÞjvxi;nðtÞ 6¼ �1g;Wn ¼ fsn;jg;
4: for x 2 fc;mg do
5: Call Algorithm 2 to get candidate assignment
6: if jCbx

n ðtÞj < jVij and jCsx
n ðtÞj < jWij then

7: Calculate PxðtÞ by Eq. (7)
8: end if
9: if Sax

n;jCsx
n ðtÞjðtÞ < PxðtÞ < vxjCbx

n ðtÞj;n then

10: Pbx
n ðtÞ ¼ Psx

n ðtÞ ¼ PxðtÞ
11: else
12: for biðtÞ 2 Cbx

n ðtÞ do
13: if si

cðtÞ ¼ fn; jCsx
n ðtÞjg then

14: Cbx
n ðtÞ ¼ Cbx

n ðtÞ=fbiðtÞg and Cpx
b ðtÞ ¼ Cpx

b ðtÞ S fbiðtÞg
15: end if
16: end for
17: Csx

n ðtÞ ¼ Csx
n ðtÞ=fsn;jCsx

n ðtÞjg
18: Pbx

n ðtÞ ¼ maxfvxi;nðtÞjbiðtÞ 2 Cpx
b ðtÞg and Psx

n ðtÞ ¼ Pbx
n ðtÞ

19: end if
20: end for
21: Cb

nðtÞ ¼ Cbc
n ðtÞ

T
Cbm

n ðtÞ and Cs
nðtÞ ¼ Csc

n ðtÞ
T
Csm

n ðtÞ
22: for sn;j 2 Sn do
23: Reset sucn;jðtÞ and sumn;j ðtÞ
24: end for
25: end for
26: CbðtÞ ¼ Cb

1ðtÞ
S

Cb
2ðtÞ. . .

S
Cb

jNjðtÞ and
CsðtÞ ¼ Cs

1ðtÞ
S

Cs
2ðtÞ. . .

S
Cs

jNjðtÞ
27: Pb

cðtÞ ¼ fPb
nðtÞjn 2 Ng and Ps

cðtÞ ¼ fPs
nðtÞjn 2 Ng

28: end

To satisfy these properties, the online auction approach
is designed based on McAfee’s mechanism [36], which
achieves individual rationality and truthfulness. InMcAfee’s
mechanism, one seller can only accept one buyer, which is
not suitable in the EC scenario, while our auction approach,
consisting of a pricing rule and a winner determination rule,
can support one seller trading with multiple buyers. Similar
to McAfee’s mechanism, our auction approach is individu-
ally rational and truthful, and the theoretical analysis is
shown in Section 3.2. In addition, the pseudocode of the pric-
ing rule andwinner determination rule can be found inAlgo-
rithms 1 and 3, respectively.

In Algorithm 1, the auctioneer first sorts the bids and the
asking prices. Then the auctioneer determines the candidate
assignments according to the sorted results and the remain-
ing capacity of each server. After that, the price of each task
and server is determined. Some notations used in Algorithm
1 are introduced as follows.UðtÞ is the unused resource, and
AðtÞ is the set of asking prices for all servers. CbðtÞ and CsðtÞ
are the sets of candidate tasks and servers, respectively. scðtÞ
is the candidate assignment. Pb

cðtÞ is the set of payments of
the buyer, and Ps

cðtÞ is the set of income of the seller. Cp
bðtÞ is

the set of prices for candidate tasks.
As shown in Algorithm 1, servers of each edge node are

grouped to receive bids. Vn and Wn are the sets of received
bids and servers for edge node n, respectively. As shown in
line 5, Algorithm 2 is called to determine candidate assign-
ments. In Algorithm 2, first, the received bids and asking

prices of each resource type are sorted in descending and
ascending orders with results Vn and Wn, respectively. For
each task biðtÞ, the bfn;jgi ðtÞ is defined as

b
fn;jg
i ðtÞ ¼

Y
x2fc;mg

1½vxi;nðtÞ � saxn;jðtÞ� � 1½rxkðtÞ � suxn;jðtÞ�:

(6)

As shown in lines 5 - 9, if b
fn;jg
i ðtÞ ¼ 1, it means that the bid

of task biðtÞ is larger than the asking price of server sn;j, and
the remaining capacity of sn;j is also larger than the request
resource of biðtÞ for both CPU and memory resource, then
biðtÞ can be assigned to sn;j. The task biðtÞ and server sn;j are
added to the candidate assignment sets Cbx

n ðtÞ and Csx
n ðtÞ of

n with resource type x, respectively. Then the assignment
scðtÞ is updated, task biðtÞ is removed from the set of sorted
tasks Vn, and the available resource sun;jðtÞ is updated.

Algorithm 2. Candidate Assignment Determination

Input:Vn;Wn;C
b
nðtÞ;Cs

nðtÞ; scðtÞ
Output:Cb

nðtÞ;Cs
nðtÞ; scðtÞ

1: Sort Vn to Vn in descending order of vxi;nðtÞ, and sortWn to
Wn in ascending order of saxn;jðtÞ

2: for sn;j 2 Wn do
3: for biðtÞ 2 Vn do

4: Calculate b
fn;jg
i ðtÞ by Eq. (6)

5: if b
fn;jg
i ðtÞ ¼ 1 then

6: Cbx
n ðtÞ ¼ Cbx

n ðtÞ S fbiðtÞg and Csx
n ðtÞ ¼ Csx

n ðtÞ S fsn;jg
7: si

cðtÞ ¼ fn; jg
8: Vn ¼ Vn=fbiðtÞg
9: suxn;jðtÞ ¼ suxn;jðtÞ � rxi ðtÞ
10: else
11: break
12: end if
13: end for
14: end for
15: end

After this step, the price PðtÞ is determined in lines 7 -
20 in Algorithm 1. If there are unassigned bids and servers,
the pricing of each resource type PðtÞ ¼ fPxðtÞjx 2 fc;mgg
is calculated based on McAfee’s mechanism as [36]

PxðtÞ ¼
vxjCbx

n ðtÞjþ1;n
ðtÞ þ sax

n;jCsx
n ðtÞjþ1

ðtÞ
2

: (7)

If PxðtÞ is between Sax
n;jCsx

n ðtÞjðtÞ and vxjCbx
n ðtÞj;n, the price

charged for bid Pbx
n ðtÞ and the price rewarded to the server

Psx
n ðtÞ are set to PxðtÞ [36]. Otherwise, all the assigned bids of

the jCi
sðtÞjth server are cancelled, and the price is set as the

highest bid of the jCn
s ðtÞjth server. As shown in line 12, if task

biðtÞ is in the candidate assignment sets of n, it means that
biðtÞ meets both the requirements of CPU and memory
resource, and then biðtÞ is added to the assignment set Cb

nðtÞ.
After restoring the resource occupied by the pre-allocated
auction tasks, the output is obtained as shown in lines 27–28.

Based on the pricing rule, the candidate bids with the
corresponding prices Pbx

n and Psx
n are determined. Then the

winner determination is introduced in Algorithm 3. In
Algorithm 3, WbðtÞ, WsðtÞ are the sets of winning tasks and

TANG ETAL.: PRICING MODEL FOR DYNAMIC RESOURCE OVERBOOKING IN EDGE COMPUTING 1975

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

servers, respectively. swðtÞ is the winning match between
tasks and servers. In the winner determination, as shown in
line 2 and line 5, the auctioneer first sorts servers and bids
by a weighted sum of prices as follows:

wn;j
p ðtÞ ¼ ap � sacn;jðtÞ þ bp � samn;jðtÞ; (8)

wi
pðtÞ ¼ ap � vkcn ðtÞ þ bp � vkmn ðtÞ; (9)

where ap and bp control the weights. Then, the winning bid
is determined from the candidate sets as shown in lines 7–
14. If the server sn;j still has enough resource capacity, then
task biðtÞ is assigned to it. Besides, when the winning match
swðtÞ is updated, the sets of winning tasksWbðtÞ and servers
WsðtÞ are updated with the corresponding prices. After that,
as shown in line 12, the sun;jðtÞ is updated.

Algorithm 3.Winner Determination Rule

Input:AðtÞ;BðtÞ;UðtÞ;CbðtÞ;CsðtÞ;Pb
cðtÞ;Ps

cðtÞ
Output:WbðtÞ;WsðtÞ; swðtÞ;Pb

wðtÞ;Ps
wðtÞ

1: SetWbðtÞ;WsðtÞ; swðtÞ;Pb
wðtÞ;Ps

wðtÞ ¼ ;, and calculate
wn;j

p ðtÞ by Eq. (8)
2: Sort CsðtÞ to S in ascending order of wn;j

p

3: for sn;j 2 S do
4: Calculate wi

pðtÞ by Eq. (9)
5: Sort Cb

nðtÞ to Cnb in descending order of wi
pðtÞ

6: Set Cnb ¼ Cnb �WbðtÞ
7: for biðtÞ 2 Cnb do
8: if sucn;jðtÞ � rciðtÞ and sumn;j ðtÞ � rmi ðtÞ then
9: si

wðtÞ ¼ fn; jg and swðtÞ ¼ swðtÞ
Tfsi

wðtÞg
10: WbðtÞ ¼ WbðtÞ

TfbiðtÞg andWsðtÞ ¼ WsðtÞ
Tfsn;jg

11: Pb
wðtÞ ¼ Pb

wðtÞ
TfPb

i ðtÞjPb
i ðtÞ 2 Pb

cðtÞg and
Ps
wðtÞ ¼ Ps

wðtÞ
TfPs

nðtÞjPs
nðtÞ 2 Ps

cðtÞg
12: sucn;jðtÞ ¼ sucn;jðtÞ � rci and sumn;j ðtÞ ¼ sumn;j ðtÞ � rmi
13: end if
14: end for
15: end for
16: end

3.2 Theoretical Analysis

In this subsection, the auction approach is proved to hold
the properties of computational efficiency, individual ratio-
nality, and truthfulness.

Theorem 1. The proposed auction approach achieves the individ-
ual rationality for each bid.

Proof. In Algorithm 1, there are two cases for task biðtÞ to be
assigned as a buyer candidate and for server sn;j to
become a seller candidate.

� Sax
n;jCsx

n ðtÞjðtÞ < PxðtÞ < vxjCbx
n ðtÞj;nðtÞ: In this case,

task biðtÞ must have an actual bid price viðtÞ that
vxi;nðtÞ � vxjCbx

n ðtÞj;nðtÞ: due to the descending order

in the set of sorted tasks Vn. So that vxi;nðtÞ �
vxjCbx

n ðtÞj;nðtÞ > PxðtÞ. Moreover, the server must

have an asking price saxn;jðtÞ � sax
n;jCsx

n ðtÞjðtÞ due to

the ascending order in the set of sorted servers
Wi, so each asking price of servers satisfies that
saxn;jðtÞ � sax

n;jCsx
n ðtÞjðtÞ < PxðtÞ.

� Otherwise, PxðtÞ =2 ½sax
i;jCsx

n ðtÞjðtÞ; vxjCbx
n ðtÞj;nðtÞ�. In

this case, the price is set to maxfvxi;nðtÞjbiðtÞ 2
Cp

bg. For each task biðtÞ, it can be easily
obtained that vxi;nðtÞ � vxjCbx

n ðtÞj;nðtÞ > PxðtÞ. And
for each server sn;j, it can be obtained that
saxn;jðtÞ � sax

n;jCsx
n ðtÞjðtÞ. In addition, it is obvious that

sax
n;jCsx

n ðtÞjðtÞ � maxfvxi;nðtÞjbiðtÞ 2 Cp
bg. So saxn;jðtÞ �

maxfvxi;nðtÞjbiðtÞ 2 Cp
bg.

Therefore, each buyer assigned in Algorithm 1 is
never charged a price higher than its bid. In contrast,
each seller assigned is rewarded a payment no less than
its asking price, ensuring individual rationality for buyers
and sellers. tu

Theorem 2. The proposed auction approach is computationally
efficient.

Proof. To analyze the time complexity, jSj, jBðtÞj, and jNj are
used to denote the total number of servers, the number of
tasks, and the number of edge nodes, respectively. To
implement Algorithm 1, for each edge node and each
resource type, first, the tasks and the servers are sorted
with a time complexityOðjBðtÞjlog jBðtÞjÞ and OðjSjlog jSjÞ,
respectively. Then, the time complexity for Algorithm 2 is
OðjSjjBðtÞjÞ. The time complexities of obtaining P:x and
pricing are Oð1Þ and OðjBðtÞjÞ, respectively. In total, the
time complexity of Algorithm 1 is OðjNjjBðtÞjlog jBðtÞjÞþ
OðjNjjSjlog jSjÞ þOðjNjjSjjBðtÞjÞ.

In Algorithm 3, the servers are sorted with time com-
plexity OðjSjlog jSjÞ. Then, within the first for-loop, the
bids are sorted with time complexity OðjBðtÞjlog jBðtÞjÞ,
and the time complexity of winning assignment is
OðjNjjBðtÞjÞ. In total, Algorithm 3 has a time complexity
of OðjSjðjSjlog jSj þ jBðtÞjlog jBðtÞj þ jNjjBðtÞjÞÞ. There-
fore, the overall time complexity is polynomial. tu

Theorem 3. The proposed auction approach is truthful.

We should prove that each mobile task will honestly sub-
mit all of its actual costs to demonstrate the truthfulness.
The proposed mechanism is truthful if and only if the fol-
lowing two conditions are satisfied [17], [37]: 1) the winner
determination algorithm is monotonic, and 2) each winning
bid pays the critical value. The definitions of monotonicity
and critical value are described as follows:

Definition 1. Monotonicity: For each task bi1ðtÞ, if bi1ðtÞ wins,
then bi2ðtÞ also wins, where the corresponding bids of bi1ðtÞ and
bi2ðtÞ are vi1ðtÞ and vi2ðtÞ ¼ vi1ðtÞ þ �ð� > 0Þ, respectively.

Definition 2. Critical Value: For each task biðtÞ, there is a criti-
cal value Pb

i ðtÞ. If the bid of biðtÞ declares a cost that is not
larger than Pb

i ðtÞ, it must win. Otherwise, it will lose.

Lemma 1. The winner determination process in Algorithm 3 is
monotonic.

Proof. Assume that bikðtÞ is one of the winning tasks deter-
mined in the kth step of Algorithm 3, which means k� 1
tasks have won in the previous k� 1 steps. Let ðbi1ðtÞ;
bi2ðtÞ; . . .; bikðtÞÞ be the list of the winning tasks that have
been determined in the first k steps. If bikðtÞ was replaced
by another task, e.g., bijðtÞ, where the corresponding bids of

1976 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

bikðtÞ and bijðtÞ are vikðtÞ and vijðtÞ ¼ vikðtÞ þ sðs > 0Þ,
respectively. According to Algorithm 3, bijðtÞ must win in
the kth step or even earlier step. As a result, the auction
approach ismonotonic. tu

Lemma 2. The winning bid in Algorithm 3 pays the critical value.

Proof. It is assumed that task bilðtÞ wins its bid for server
sn;j in the lth step of Algorithm 3. In this case, the pay-
ment of bilðtÞ is set to Pb

nðtÞ. For g > 0, another bid with
submitted price vilðtÞ ¼ Pb

nðtÞ þ g would win, because its
cost per unit resource must be higher than the valuation
of bilðtÞ. But the bid vilðtÞ ¼ Pb

nðtÞ � g will not win, as its
valuation must be lower than the valuation of task bilðtÞ.
Hence, the above lemma is proved. tu
According to the above analysis, the following theorem

can be easily obtained through Lemmas 1, and 2 [17], [37].
Hence, the theorem is proved.

The auction approach solves the pricing of the resource
of auction billing while guaranteeing the individual ratio-
nality, computational efficiency, and truthfulness. Further-
more, based on the pricing model consisting of the auction
and three other billing methods, the unused resource can be
overbooked to achieve more profit. The dynamic overbook-
ing mechanism is described in the next section.

4 DYNAMIC OVERBOOKING MECHANISM

In this section, the dynamic overbooking mechanism based
on resource utilization prediction and QoS satisfaction ratio
feedback is presented. The resource utilization prediction
with deep neural networks, cancellation policy, and the
dynamic overbooking mechanism is presented in 4.1, 4.2
and 4.3, respectively.

4.1 Resource Utilization Prediction

The neural network is used to make resource utilization pre-
dictions, including the RNN and CNN. The motivation
behind the RNN is to make full use of the sequentiality of
the information, i.e., the time-sequential resource utiliza-
tion. An LSTM [21] based resource utilization predictor is
proposed whose architecture is shown in Fig. 4a. The net-
work is composed of two LSTM layers and one output layer.

Furthermore, inspired by the residual network frame-
work [22], another predictor is implemented [22], containing
14 convolution layers, as shown in Fig. 4b. Each convolution
layer is followed by batch normalization and a non-linear acti-
vation layer. There are three residual blocks in this network
architecture, marked in blue, green, and red from top to bot-
tom. A dropout layer follows each of these three residual
blocks. The network ends with a 2-way fully-connected layer.
As Fig. 4b shows, shortcut connections are inserted in the net-
work. The identity shortcuts can be directly used when the
input and output are of the same dimensions (solid line short-
cuts in the figure). An additional convolution is performed
when the dimensions increase or decrease (dotted line short-
cuts in the figure), followed by a batch normalization. Com-
pared with the previous LSTM based network [13], the
shortcut connections introduced by the residual network can
solve the degradation problem, making it easier for deep net-
works to train higher accuracy.

However, when calculating the number of unused resour-
ces based on the predicted resource utilization and then
overbooking this part of the resource, some inaccurate pre-
diction result will cause overbooking of too much resource,
which will lead to the decline of the QoS satisfaction ratio for
those on-demand and daily tasks. To solve this problem, the
following two solutions are proposed. On the one hand, the
adaptive padding method is used to calculate the deviation
between the predicted value and the actual value in the past
few time slots [38]. We add these deviations together and
compensate for the current prediction result. Since the goal
is to avoid excessive overbooking as much as possible, when
accumulating deviations, only those cases where the pre-
dicted value is less than the actual value are counted. On the
other hand, an extra hyper-parameter thex is set, which is
used to adequately reduce the predicted unused resource for
each server at each time slot. The new adaptive padding
mechanism can further improve the prediction accuracy.
Since the neural network predictor is pre-trained, it cannot
correct thewrong predictions. The introduction of thismech-
anism can appropriately correct the prediction error com-
paredwith our previouswork [13].

With the adaptive padding method and the hyper-
parameter thex, we still cannot ensure there is no excessive
overbooking. To restore the declined QoS Satisfaction ratio
of on-demand and daily tasks caused by the inaccurate pre-
diction of resource utilization, the cancellation policy for
auction tasks is designed in Algorithm 4 based on our previ-
ous work [13]. The details are described in the next section.

4.2 Cancellation Policy

In the preliminary version of this paper [13], without cancel-
lation policy, the decline in QoS satisfaction ratio due to the

Fig. 4. Architecture of different predictors.

TANG ETAL.: PRICING MODEL FOR DYNAMIC RESOURCE OVERBOOKING IN EDGE COMPUTING 1977

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

excessive overbooking will not be restored in a short period
of time. Therefore, the cancellation policy is proposed to
restore the QoS satisfaction ratio from the next moment by
canceling some auction tasks, releasing and recycling the
resource they occupy. Some notations used in Algorithm 4
are introduced as follows. BaðtÞ is the set of assigned auc-
tion tasks of sn;j with end time after tþ 1 and BcðtÞ is the set
of auction tasks that will be canceled at the next time slot.
sfn;jðtÞ denotes the resource used by auction tasks that will
be released before the next time slot, while srn;jðtÞ denotes
the resource that needs to be recycled.

Algorithm 4. Cancellation Policy

Input:BðtÞ
Output:BcðtÞ
1: Set BcðtÞ ¼ ;
2: for sn;j 2 N do
3: Calculate sfn;jðtÞ and srn;jðtÞ by Eqs. (10) and (11),

respectively
4: Set BaðtÞ ¼ fbiðt0Þjtei ðt0Þ > tþ 1; st0 fig ¼ fn; jgg
5: Calculate wi

rðtÞ by Eq. (12), and sort BaðtÞ to Ba in
ascending order of wi

rðtÞ
6: for biðt0Þ 2 Ba do
7: if srcn;jðtÞ < 0 and srmn;jðtÞ < 0 then

8: srcn;jðtÞ ¼ srcn;jðtÞ þ rciðt0Þ and srmn;jðtÞ ¼ srmn;jðtÞ þ rciðt0Þ
9: Ba ¼ Ba=fbIðt0Þg and BcðtÞ ¼ BcðtÞ

S fbiðt0Þg
10: else
11: break
12: end if
13: end for
14: for x 2 fc;mg do
15: Sort BaðtÞ to Ba in ascending order of rxi ðtÞ
16: for biðt0Þ 2 Ba do
17: if srxn;jðtÞ < 0 then
18: srxn;jðtÞ ¼ srxn;jðtÞ þ rxi ðt0Þ
19: Ba ¼ Ba=fbiðt0Þg and BcðtÞ ¼ BcðtÞ

S fbiðt0Þg
20: else
21: break
22: end if
23: end for
24: end for
25: end for
26: end

In Algorithm 4, as shown in lines 3 - 5, sfn;jðtÞ, srn;jðtÞ,
BaðtÞ, and wi

rðtÞ are calculated according to Eqs. (10) - (12).
sfn;jðtÞ ¼ fsfxn;jðtÞjx 2 fc;mgg is used to denote the resource
need to be released, which counts the resource occupied by
those auction tasks whose estimated end time is less than or
equal to the next time slot, and is defined as follows:

sfxn;jðtÞ ¼
X

t02ft0 jðbiðt0Þjtei ðt0Þ�tþ1;st0 fig¼fn;jgÞg
rxi ðt0Þ: (10)

srn;jðtÞ ¼ fsrxn;jðtÞjx 2 fc;mgg is used to indicate the
resource need to be recycled and it is defined as:

srxn;jðtÞ ¼ scxn;j � soxn;jðtÞ � sdxn;jðtÞ
� sbxn;jðtÞ � ssxn;jðtÞ þ sfxn;jðtÞ: (11)

As shown in Eq. (11), if srn;jðtÞ is negative, it means that
the current resource usage does not exceed the server capac-
ity. Therefore, no auction tasks need to be canceled.

The weighted sum of auction tasks’ CPU and memory
usage is defined as:

wi
rðtÞ ¼ ar � riðtÞ:cþ br � riðtÞ:m: (12)

wi
rðtÞ is taken as a sorting criterion to sort Ba in ascending

order. Here Ba denotes those auction tasks whose estimated
end time is larger than the next time slot. After that, from
lines 6 to 13, if both CPU and memory have resource need
to be recycled, then the resource of the current task will be
reclaimed, and this task is removed from the candidate task
set and added to BcðtÞ, which is the set of tasks to be can-
celed. Finally, the operations performed within the loop
from lines 14 to 24 are similar to the above, except for a spe-
cific type of resource.

4.3 Dynamic Overbooking Mechanism

To maximize the profit of the edge nodes through overbook-
ing with a high QoS satisfaction ratio for the on-demand
and daily tasks, the dynamic overbooking mechanism is
described as follows.

Algorithm 5. Dynamic Overbooking

Input:AðtÞ;BðtÞ;UðtÞ;Lð0Þ ¼ f1g
Output:R
1: for t 2 ½1; T � do
2: for sn;j 2 N do
3: Get spn;jðtÞ from neural network
4: Calculate sun;jðtÞ by Eq. (4)
5: if Ln;jðt� 1Þ < 1 then

6: su
0

n;jðtÞ ¼ 0
7: else
8: Calculate su

0
n;jðtÞ by Eq. (13)

9: end if
10: Calculate san;jðtÞ by Eq. (14)
11: end for
12: Call Algorithm 1 Pricing Rule and Algorithm 3 Winner

Determination Rule
13: Calculate LðtÞ ¼ fLn;jðtÞjsn;j 2 Ng by Eq. (1)
14: Call Algorithm 4 Cancellation Policy
15: end for
16: Calculate R by Eq. (5)
17: end

The procedure of the dynamic overbooking mechanism
is shown in Algorithm 5. For each time slot t, the servers
first get the predicted resource utilization from the neural
network and calculate the available resource for overbook-
ing. Then, the servers adjust the available resource accord-
ing to the QoS satisfaction ratio feedback and update the
asking price. After that, the auctioneer collects the necessary
information and calls Algorithms 1 and 2. Finally, the QoS
satisfaction ratio is updated, Algorithm 4 is called, and the
profit is calculated.

As shown in Algorithm 5, the predicted resource utiliza-
tion of each server spxn;jðtÞ is obtained from the neural net-
work in lines 3–4. Then, the available CPU and memory
resources are obtained according to Eq. (4).

1978 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

Then, as shown in lines 5–10, the available resource for
overbooking is adjusted and the asking price is updated. To
improve the QoS satisfaction ratio, a TCP congestion control
like dynamic available resource adjustment is adopted [23].
When the QoS satisfaction ratio Ln;jðt� 1Þ < 1, the avail-
able resource for auction billing su

0
n;jðtÞ of server sn;j is set to

0. Otherwise, su
0

n;jðtÞ ¼ fsu0xn;j ðtÞjx 2 fc;mgg is obtained as:

su
0
x

n;j ðtÞ ¼

minfsu0xn;j ðt� 1Þ þ �Þ � au; s
ux
n;jðtÞg;

suxn;jðtÞ > thup

minfsu0xn;j ðt� 1Þ þ bu; s
ux
n;jðtÞg;

thlo < suxn;jðtÞ < thup

minfsu0xn;j ðt� 1Þ; suxn;jðtÞg;
suxn;jðtÞ < thlo;

8>>>>>>>><
>>>>>>>>:

(13)

where � is a small positive constant that ensures su
0

n;jðtÞ 6¼ 0,
au and bu are the parameters controlling the increment
speed of available resource. Moreover, thup and thlo are the
over and under threshold of available resource, respec-
tively. When the QoS satisfaction ratio is less than 1, the
available resource for auction is set to 0. Then the available
resource is updated according to Eq. (13). After that, the
asking price san;jðtÞ is calculated by Eq. (14), which should
be larger than the base asking price s

a0
n;j of each server.

san;jðtÞ ¼ fsaxn;jðtÞjx 2 fc;mgg is obtained as:

saxn;jðtÞ ¼
1

Ln;jðt�1Þ �
1�sux

n;j
t

1�thup:x
� s

a0x
n;j ; suxn;jt > thxup

1
Ln;jðt�1Þ �

1�sux
n;j

t

1�thlo:x
� s

a0x
n;j ; suxn;jt < thxlo

1
Ln;jðt�1Þ � s

a0x
n;j ; Otherwise:

8>>><
>>>:

(14)

After the update of the available resource and the asking
price, as shown in line 12, the auctioneer performs the auc-
tion by calling Algorithms 1 and 2. Next, in line 13, the QoS
satisfaction ratio LðtÞ is updated and used for the next time
slot. Then the cancellation policy is called, and those
assigned auction tasks in BcðtÞ will be canceled. Finally, the
total profit is calculated.

5 PERFORMANCE EVALUATION

In this section, the experimental data set and the data pre-
processing method are first described in 5.1. Then, the
parameter settings are introduced in 5.2. Finally, the perfor-
mance of the online auction approach and the dynamic
overbooking mechanism is illustrated in 5.3 and 5.4,
respectively.

A larger-scale simulation experiment has been conducted
to help us better select hyperparameters while verifying the
effectiveness of the algorithm compared with the previous
work [13]. To select the appropriate hyperparameters,
trade-offs from the two perspectives of QoS satisfaction and
profit are made. In the experiment, three hyperparameters
are adjusted, and a total of six figures are added. The experi-
mental results show that with the above improvements, the
QoS satisfaction ratio has been increased to 99.95%, meeting
the SLA requirements and increasing the revenue by 7.82%.
The details are as follows.

5.1 Data Preprocessing

Overview. The data set used in the experiment is the Google
cluster trace [28], [29]. With proper preprocessing, this data
trace can be used in the cloud, EC, etc. [4], [39], [40]. The
raw data contained cluster statistics of about 12.5 k servers
for 29 days in May 2011, and the size is larger than 40 GB. In
the Google cluster, work arrives in the form of jobs, and a
job is comprised of one or several tasks. In total, six kinds of
data tables are provided in this cluster trace, which are job
events, task events, machine events, machine attributes,
task constraints, and task usage 1. Since the CPU and mem-
ory-related information of tasks are extracted in the cluster
trace, and the types of tasks in the cluster in recent years are
basically two types of computation-intensive tasks and
delay-sensitive tasks. So the cluster trace is very representa-
tive. Even data from 2011 is still widely used in recent
years [41], [42], [43].

Data for Different Billing Methods. The preprocessing of
task data mainly includes the normal rental tasks and over-
booking tasks. The former is used for daily and on-demand
billing and the latter for auction and spot billing. For normal
rental tasks, first, the data is loaded from the files. Then tra-
verse the data and check the consistency of each data,
including whether the start and end times of the tasks are
reasonable, whether there are contradictions between the
tasks, etc. After preprocessing, consecutive cluster tasks
with consistent time sequences are obtained. In addition,
for the data that does not meet the consistency require-
ments, its duration, number, etc., are extracted as auction
and spot tasks. Since the data-trace is enormous, it would
be challenging to analyze the whole data set at once. Thus,
the entire data set is sampled, and the approximate distribu-
tion of the data is observed. One thousand sampling time
slots are randomly generated from which the statistics are
collected.

Data for Resource Utilization Prediction. As introduced in
Section 4.1, LSTM and residual network-based neural net-
works are used to predict resource utilization in the
dynamic overbooking mechanism. Extensive training data
with useful features need to be prepared to train these neu-
ral networks. First, the tables of task usage, task events,
machine events, and machine attributes are joined together
from the original data set. Then, the useless attributes (such
as user name) are removed, and the items containing null or
illegal values are deleted.

After these steps, a data set containing millions of data
with 15 features is obtained, which are machine type,
machine platform, CPU capacity, memory capacity, task
count, CPU request, memory request, mean CPU usage,
sampled CPU usage, maximum CPU usage, canonical mem-
ory usage, assigned memory usage, maximum memory
usage, scheduling class, and priority. Finally, the records
for five consecutive periods are combined as the network’s
input. Besides, the mean CPU usage and canonical memory
usage in the next period are taken as training targets.

5.2 Parameter Settings

The parameter settings are introduced as follows.

1. The word machine is the term in the data set. In this paper, the
term server is used.

TANG ETAL.: PRICING MODEL FOR DYNAMIC RESOURCE OVERBOOKING IN EDGE COMPUTING 1979

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

Edge Nodes and Servers. It is assumed that 100 servers are
randomly assigned to 5 edge nodes. These servers can be
divided into six types according to their resource capacity,
and each type is configured according to the machine attrib-
utes described in the data set. The number of servers with
the different resources is listed in Table 2. The experiment
duration is set to 100-time slots with a total of 500 minutes.
The scale of the experiment is expanded by five times com-
pared with [13].

Price. In the experiment, the resource usage from the data
set is distinguished according to the priority of the task and
regarded as the resource usage of on-demand and daily
tasks, respectively. The prices of different billing methods
are set as follows:

1) On-Demand: The unit prices of on-demand billing
are set to $0.0182 and $0.0060 for CPU and memory,
respectively.

2) Daily: The unit price of daily billing is 80% of the on-
demand billing.

3) Spot: As for spot billing, up to 20% of the resource
capacity of the server is sold to them, and their bid
price ws

x is set as 120% of s
a0x
n;j , where s

a0x
n;j is the base

asking price of server Sj
i and is set to $0.0068 and

$0.0023 for CPU and memory, respectively [30]. Fur-
thermore, the power consumed per unit CPU hc and
memory hm are set as 0.008 and 0.00014, respectively,
and the unit power fare pe is $0.2 [35].

4) Auction: The price of auction billing is described
specifically as follows.

Auction. 1� 106 tasks are chosen from the data set as auc-
tion tasks. The time of each task that chooses to bid is ran-
domly generated. During each time slot of 5 minutes, there
are approximately 2000 tasks in each auction. For each task
bi, its start time tsi , end time tei , and resource request ri are
extracted from the data set. Considering the limitations on
the maximum duration of auction tasks, Tb is set to 20. In
other words, tei is at most tsi þ 20. The bid price vi of each
task is randomly generated as:

vxi ¼ max
1

6
� Sci þ 3

22
� Pri; 1

� �
þ 1

2
� rand

� �
� pxb ;

where Sci 2 f0; 1; 2; 3g and Pri 2 f0; 1; . . .; 11g are the sched-
uling class and priority of task bi derived from the data set,
respectively. rand is a random number generated from a
uniform distribution over ½ 0; 1Þ. And pxb is the base bid price,
which is set to $0.0068 and $0.0023 for CPU and memory,
respectively [30]. Furthermore, the values of the parameters

ap and bp used to control the weights of wn;j
p ðtÞ and wi

pðtÞ in
Algorithm 3 are set to 3 and 1, respectively.

Dynamic Overbooking. The values of au, bu, and � are set to
2, 0.05 and 0.005, respectively. The values of the thresholds
which control the available resource in the experiment are
set as thlo ¼ 0:25 and thup ¼ 0:75, respectively. The details of
choosing the values of these three parameters are discussed
in Section 5.4.

Resource Utilization Prediction. The structures of the pre-
diction networks are described in Section 4.1. The data set
has an input format of n� 5� 15 and an output format of
n� 2 (n denotes the number of samples). Besides, 2� 106

pieces of data are extracted from 1� 104 servers and used
as the training set. Moreover, 1� 104 pieces of data are used
as the testing set.

Adaptive Padding & Cancellation Policy. The default value
of the hyper-parameter thex is set to 0.8. In addition, the
values of the parameters ar and br used to control the
weights of wi

rðtÞ in Algorithm 5 Cancellation Policy are
both set to 1.

5.3 Auction

The proposed online auction approach is experimentally ver-
ified in this subsection to satisfy the following three proper-
ties: individual rationality, computational efficiency, and
truthfulness.

Individual Rationality. The bid price, asking price, and the
pricing of some winning tasks are shown in Fig. 5. In Fig. 5,
each winning task is charged a price no higher than its bid
price, while each winning server receives a payment no less
than its asking price. Therefore, the proposed online auction
approach achieves individual rationality.

Computational Efficiency. The algorithm is tested on a
Linux Server with 2.20 GHz Intel Xeon CPU E5-2630 v4 and
16 GB memory. The number of auction tasks and the num-
ber of servers are fixed to 2000 and 100, respectively, while
adjusting the other one to verify the computation time of
the algorithm. The results are shown in Fig. 6a and 6b,
respectively. From Fig. 6, it can be seen that the proposed
auction approach is subject to polynomial computation time
concerning the number of servers and bids.

Truthfulness. As for truthfulness, the verification results
are shown in Fig. 7. The value in the x-axis is defined as the
ratio of the submitted price v0i

x to the truthful valuation vxi .
When the ratio equals 1, the submitted price is the truth val-
uation. The value in the y-axis is the utility, which is defined
as the truthful valuation vxi minus the pricing pxi . From
Fig. 7, it can be concluded that the maximum utility is
achieved when the task submits the truthful information.
As a result, the task cannot improve its utility through other
bids, guaranteeing its truthfulness.

TABLE 2
Number of Servers With Different Resource

CPU Memory Number

0.5 0.2493 32
0.5 0.4995 50
0.5 0.1241 1
0.5 0.749 9
0.25 0.2498 1
1 1 7

Fig. 5. Individual rationality.

1980 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

5.4 Dynamic Overbooking

In this subsection, the performance of the dynamic over-
booking mechanism is demonstrated. First, the selection of
the threshold parameters is discussed, then the prediction
accuracy of the neural network predictors is presented.
Finally, the QoS satisfaction and profit of the dynamic over-
booking mechanism and the comparison with baseline
mechanisms are introduced.

Parameter Selection. Figs. 8, 9, and 10 show the results of
the parameter selection. First, thup and thex are fixed and the
value of thlo is adjusted. From Fig. 8, it can be seen that
when the value of thlo equals 0.25, the QoS Satisfaction ratio
is the highest, reaching a maximum value of 0.99954. At the
same time, the average profit reaches a maximum of
0.66583. As a result, the value of thlo is set to 0.25.

Next, thlo and thex are fixed and the value of thup is
adjusted. In Fig. 9, the QoS Satisfaction ratio increases with
the increase of thup and remains unchanged after 0.75. This
is because even if there is a certain error in the prediction
value, the predicted unused resource will not exceed the
threshold of 75% of the server’s resource capacity, and
increasing this threshold will not impact the experimental
results. Considering that when thup equals to 0.75, the aver-
age profit of the edge nodes also achieves a larger value of
0.66583, then the value of thup is set to 0.75.

Finally, Fig. 10 shows the results of adjusting the value of
thex. As thex increases, the QoS Satisfaction ratio gradually
decreases, while the average profit of edge nodes continues
to increase. The reason is that with excessive overbooking,

the profit of the normal rental mode gradually decreases
due to the SLA discount. However, the extra income from
overbooking offsets the loss of the previous part and
leads to an increase in total profit. So how to choose the
value of thex is a trade-off between QoS satisfaction and
profit. To ensure that the QoS Satisfaction ratio of the nor-
mal rental mode reaches above 0.9995, the value of thex is
set to 0.8.

From Figs. 8, 9, and 10, it can be seen that the QoS satisfac-
tion ratio and the profit are very correlated.When the resource
is idle, theQoS satisfaction ratio is 1, and the profit is relatively
small. When the resource is overbooked, the degree of
resource utilization increases. If the overbooking is controlled
within a reasonable range, then the QoS satisfaction ratio is
still 1, which is the most reasonable state and the goal of this
paper. When resources are overbooked too much, although
the profit may increase, the QoS satisfaction ratio drops rap-
idly, and the computation time of daily and on-demand tasks
is prolonged,which is not the goal of this paper.

Fig. 6. Computational efficiency.

Fig. 7. Truthfulness.

Fig. 8. Performance with different thlo.

Fig. 9. Performance with different thup.

Fig. 10. Performance with different thex.

TABLE 3
The Prediction Results

Prediction Method Accuracy Rate

Final State-based Method 0.674
Simple Moving Average Method (nw = 5) 0.753
Exponential Moving Average Method (ar ¼ 0:9) 0.645
Exponential Moving Average Method (ar ¼ 0:95) 0.657
Exponential Moving Average Method (ar ¼ 1) 0.680
Proposed LSTM based Predictor 0.824
Proposed Residual Network based Predictor 0.841

Fig. 11. Resource utilization prediction comparison.

TANG ETAL.: PRICING MODEL FOR DYNAMIC RESOURCE OVERBOOKING IN EDGE COMPUTING 1981

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

Resource Utilization Prediction. To effectively demonstrate
the accuracy rate of predicted resource utilization of the net-
work, the Final State-based (FS) method, Simple Moving
Average (SMA) method, and Exponential Moving Average
(EMA) method are used as the baselines [44]. In the FS
method, the information of tasks during the last time slot is
used to predict, while the information of tasks during nw

last time slot is used in the SMA method, where nw is the
size of the windows. In the EMA method, the prediction is
based on the weighted sum of the previous tasks, which is
obtained as:

PreðtÞ ¼ ar � J1 þ ð1� arÞ � Preðt� 1Þ;

where J1 is the value of the tasks during the last time slot, ar

is the decay parameter to optimize the accuracy and adjusted
by experience. The results of the predicted resource utiliza-
tion of different methods are shown in Table 3. It can be con-
cluded that the accuracy rate of the proposed LSTM and
residual network-based network is much higher than the
baselines.

Besides, Fig. 11 compares the resource utilization predic-
tion with or without adaptive padding methods, which are
denoted as Dynamic Overbooking with Adaptive padding
(DOA) and Dynamic Overbooking (DO), respectively. From
Fig. 11, it can be easily obtained that the DOA mechanism
further narrows the gap between the predicted value and
the actual value, which is very helpful for us to maintain
high QoS during dynamic overbooking.

Edge Node Performance. The performance of a randomly
selected edge node is shown in Fig. 12. As shown in
Fig. 12a, this edge node provides 100% QoS satisfaction for
most of the time, and the QoS Satisfaction ratio is reduced
due to excessive overbooking in a short period, with a mini-
mum value of 0.99290. The affected QoS was quickly recov-
ered with the adaptive padding, cancellation policy, and
appropriately selected threshold parameters. The average
price of the edge node is shown in Fig. 12b, where the price
is dynamically adjusted according to the QoS Satisfaction
ratio. The CPU and memory utilization are shown in
Fig. 12c and 12d, respectively. It is easy to conclude that pre-
dicted utilization matches well with real utilization, and
overall utilization is significantly improved.

The average profit of the former edge node is shown in
Fig. 13. The normal CPU and memory profits represent the
income obtained by renting resources according to on-
demand and daily billing methods, and overbooking CPU
and memory profits consist of the income from auction
and spot billing. From Fig. 13, it can be concluded that
through overbooking, the total profit of the edge node can be
significantly improved. To sum up, the dynamic resource
overbooking mechanism effectively overbooks the resource
with a highQoS Satisfaction ratio.

Overall Performance. Fig. 14 presents the comparison
among the Dynamic Overbooking with Adaptive padding
and Cancellation policy (DOAC) proposed in this paper, the
Dynamic Overbooking (DO) mechanism proposed in our
previous paper [13], and the Normal mechanism without
overbooking. Fig. 14a shows the performance of the QoS
Satisfaction ratio of these three mechanisms. The Normal
mechanism without overbooking achieves 100% QoS satis-
faction. Compared with the DO mechanism, the DOAC
mechanism has dramatically improved the performance
of QoS satisfaction, and the average QoS Satisfaction
ratio can reach above 0.9995, which satisfies the SLA
standard [34]. As for the average profit, compared with
the Normal mechanism, the DOAC mechanism only
reduces the profit on the normal rental mode by 0.47%,
while the total revenue increase by 51.58% in Fig. 14b.
Besides, compared with the DO mechanism, the profit of
the DOAC mechanism has increased by 5.25%, 13.10%,
and 7.82% on the normal rental, overbooking, and com-
bined mode, respectively. In short, the DOAC mecha-
nism can significantly increase revenue while achieving
a high QoS satisfaction ratio.

6 CONCLUSION

This paper proposes a pricing model for the dynamic
resource overbooking mechanism in EC. First, the system
model, pricing model, and problem formulation of the

Fig. 12. Performance of the overbooking mechanism of the edge node.

Fig. 13. Average profit of the edge node.

Fig. 14. Performance with different mechanisms.

1982 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

overbooking problem are described. Second, an online auc-
tion approach is proposed with individual rationality,
computational efficiency, and truthfulness properties. Third,
the dynamic overbooking mechanism is described based on
resource utilization prediction andQoS satisfaction ratio feed-
back. The experiments are conducted with real-world data-
trace, and the experimental results show that the auction
approach and dynamic overbooking mechanism are effi-
cient. Under the premise of 99.95% QoS satisfaction, it
can increase the profit by 51.58% compared with the
mechanism without overbooking. Future work will con-
sider resource overbooking across edge nodes and cloud
data centers.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the Internet of Things,” in Proc. 1st Ed. MCC Work-
shop Mobile Cloud Comput., 2012, pp. 13–16.

[2] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[4] Z. Tang, X. Zhou, F. Zhang,W. Jia, andW. Zhao, “Migration model-
ing and learning algorithms for containers in fog computing,” IEEE
Trans. Services Comput., vol. 12, no. 5, pp. 712–725, Sep./Oct. 2019.

[5] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrainedmobile computing,”
Trans.Mobile Comput., vol. 16, no. 11, pp. 3056–3069, 2017.

[6] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal work-
load allocation in fog-cloud computing toward balanced delay
and power consumption,” IEEE Internet Things J., vol. 3, no. 6,
pp. 1171–1181, Dec. 2016.

[7] O. C. A. W. Group et al., “Openfog reference architecture for fog
computing,”OPFRA001, vol. 20817, no. 1, pp. 1–162, 2017.

[8] M. Aazam and E.-N. Huh, “Fog computing micro datacenter
based dynamic resource estimation and pricing model for IoT,” in
Proc. IEEE 29th Int. Conf. Adv. Inf. Netw. Appl., 2015, pp. 687–694.

[9] I. S. Moreno and J. Xu, “Neural network-based overallocation for
improved energy-efficiency in real-time cloud environments,” in
Proc. IEEE Int. Symp. Object/Compon./Serv.-Oriented Real-Time Dis-
trib. Comput., 2012, pp. 119–126.

[10] I. S. Moreno and J. Xu, “Customer-aware resource overallocation
to improve energy efficiency in realtime cloud computing data
centers,” in Proc. IEEE Int. Conf. Serv.-Oriented Comput. Appl., 2011,
pp. 1–8.

[11] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards
virtual machine migration in fog computing,” in Proc. IEEE Int.
Conf. P2P Parallel Grid Cloud Internet Comput., 2015, pp. 1–8.

[12] H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, and Z. Han, “Fog com-
puting in multi-tier data center networks: A hierarchical game
approach,” in Proc. IEEE Int. Conf. Commun., 2016, pp. 1–6.

[13] F. Zhang, Z. Tang, M. Chen, X. Zhou, and W. Jia, “A dynamic
resource overbooking mechanism in fog computing,” in Proc. 15th
IEEE Int. Conf. Mobile Ad Hoc Sensor Syst., 2018, pp. 89–97.

[14] V. Krishna, Auction Theory, vol. 1. New York, NY, USA: Academic
Press, 2009.

[15] A.-L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju, “Auction mecha-
nisms toward efficient resource sharing for cloudlets inmobile cloud
computing,” Trans. Serv. Comput., vol. 9, no. 6, pp. 895–909, 2016.

[16] A.-L. Jin, W. Song, and W. Zhuang, “Auction-based resource allo-
cation for sharing cloudlets in mobile cloud computing,” IEEE
Trans. Emerg. Topics Comput., vol. 6, no. 1, pp. 45–57, Jan.–Mar.
2018.

[17] X. Wang, X. Chen, and W. Wu, “Towards truthful auction mecha-
nisms for task assignment in mobile device clouds,” in Proc. IEEE
Int. Conf. Comput. Commun., 2017, pp. 1–9.

[18] S. Barbarossa, E. Ceci, and M. Merluzzi, “Overbooking radio and
computation resources in mmW-mobile edge computing to
reduce vulnerability to channel intermittency,” in Proc. IEEE Eur.
Conf. Netw. Commun., 2017, pp. 1–5.

[19] F. Slim, F. Guillemin, and Y. Hadjadj-Aoul, “Close: A costless ser-
vice offloading strategy for distributed edge cloud,” in Proc. IEEE
Consum. Commun. Netw. Conf., 2018, pp. 1–6.

[20] M. T. Imam, S. F. Miskhat, R. M. Rahman, and M. A. Amin,
“Neural network and regression based processor load prediction
for efficient scaling of grid and cloud resources,” in Proc. IEEE Int.
Conf. Comput. Inf. Technol., 2011, pp. 333–338.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[23] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
RFC5681, Sep. 2009.

[24] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architec-
ture for mobile computing,” in Proc. IEEE 35th Annu. Int. Conf.
Comput. Commun., 2016, pp. 1–9.

[25] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1628–1656, Jul.–Sep. 2017.

[26] J. Zhang et al., “Data-driven intelligent transportation systems: A
survey,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1624–1639,
Dec. 2011.

[27] N. Raveendran, H. Zhang, Z. Zheng, L. Song, and Z. Han, “Large-
scale fog computing optimization using equilibrium problem
with equilibrium constraints,” in Proc. IEEE Glob. Commun. Conf.,
2017, pp. 1–6.

[28] J. Wilkes, “More Google cluster data,” Google Research Blog, 2011.
[Online]. Available: http://googleresearch.blogspot.com/2011/
11/more-google-cluster-data.html

[29] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: Format schema,” Google Inc., Mountain View, CA, USA,
Technical Report, Nov. 2011, revised 2014–11-17 for version 2.1.
Posted at https://github.com/google/cluster-data

[30] A. W. Services, “Aws cloud pricing principles,” 2022. [Online].
Available: https://aws.amazon.com/pricing/

[31] Microsoft, “Azure pricing,” 2022. [Online]. Available: https://
azure.microsoft.com/en-us/pricing/

[32] X. Zhou, K. Wang, W. Jia, and M. Guo, “Reinforcement learning-
based adaptive resource management of differentiated services in
geo-distributed data centers,” in Proc. IEEE/ACM 25th Int. Symp.
Qual. Serv., 2017, pp. 1–6.

[33] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient vir-
tual machines consolidation in cloud data centers using reinforce-
ment learning,” in Proc. IEEE 22nd Euromicro Int. Conf. Parallel
Distrib. Netw. Based Process., 2014, pp. 500–507.

[34] M. Azure, “Sla for virtual machines,” 2017. [Online]. Available:
https://azure.microsoft.com/en-us/support/legal/sla

[35] J. Li, Y. Zhu, J. Yu, C. Long, G. Xue, and S. Qian, “Online auction for
IaaS clouds: Towards elastic user demands and weighted heteroge-
neous VMs,” in Proc. IEEE Int. Conf. Comput. Commun., 2017, pp. 1–9.

[36] R. P. McAfee, “Mechanism design by competing sellers,” Econo-
metrica, J. Econometric Soc., vol. 1, no. 1, pp. 1281–1312, 1993.

[37] N.Nisan, T. Roughgarden, E. Tardos, andV. V. Vazirani,Algorithmic
Game Theory, vol. 1. Cambridge, UK: CambridgeUniv. Press, 2007.

[38] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proc. 2nd
ACM Symp. Cloud Comput., 2011, Art. no. 5.

[39] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, and X. Liu, “Real-time
tasks oriented energy-aware scheduling in virtualized clouds,” IEEE
Trans. Cloud Comput., vol. 2, no. 2, pp. 168–180, Apr.–Jun. 2014.

[40] Z. Tang, J. Lou, F. Zhang, and W. Jia, “Dependent task offloading
for multiple jobs in edge computing,” in Proc. IEEE 29th Int. Conf.
Comput. Commun. Netw., 2020, pp. 1–9.

[41] L. Versluis et al., “The workflow trace archive: Open-access data
from public and private computing infrastructures,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 9, pp. 2170–2184, Sep. 2020.

[42] D. Fern�andez-Cerero, �A. J. Varela-Vaca, A. Fern�andez-Montes, M.
T. G�omez-L�opez, and J. A. Alv�arez-bermejo, “measuring data-
centre workflows complexity through process mining: The google
cluster case,” J. Supercomput., vol. 76, no. 4, pp. 2449–2478, 2020.

[43] J. Gao, H. Wang, and H. Shen, “Machine learning based workload
prediction in cloud computing,” in Proc. IEEE 29th Int. Conf. Com-
put. Commun. Netw., 2020, pp. 1–9.

[44] S. Zhao, H. Chen, R. Zhao, Y. Zhao, and G. Chen, “A Big Data
processing-oriented prediction method of cloud computing ser-
vice request,” J. Appl. Sci. Eng., vol. 19, no. 4, pp. 497–504, 2016.

TANG ETAL.: PRICING MODEL FOR DYNAMIC RESOURCE OVERBOOKING IN EDGE COMPUTING 1983

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://github.com/google/cluster-data
https://aws.amazon.com/pricing/
https://azure.microsoft.com/en-us/pricing/
https://azure.microsoft.com/en-us/pricing/
https://azure.microsoft.com/en-us/support/legal/sla

Zhiqing Tang received the BS degree from the
School of Communication and Information Engi-
neering, University of Electronic Science and Tech-
nology of China, China, in 2015. He is currently
working toward the PhD degree in the Department
of Computer Science and Engineering, Shanghai
Jiao Tong University, China. His current research
interests include edge computing, resource alloca-
tion, and reinforcement learning.

Fuming Zhang received the BS degree from the
School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University,
China, in 2018, where he is currently working
toward the MS degree. His current research inter-
ests include edge computing, resource schedul-
ing, and machine learning.

Xiaojie Zhou received the BS degree from the
School of Data and Computer Science, Sun Yat-
sen University, China, in 2016. He is currently
working toward the master degree in the Depart-
ment of Computer Science and Engineering,
Shanghai Jiao Tong University, China. His current
research interests include edge computing,
resource scheduling, and reinforcement learning.

Weijia Jia (Fellow, IEEE) received the BSc/MSc
degrees from Center South University, China, in
1982/1984, and the master of applied science/PhD
degrees from the Polytechnic Faculty of Mons, Bel-
gium, in 1992/1993, respectively, all in computer
science. He is currently a chair professor, director
of the BNU-UIC Institute of Artificial Intelligence
and Future Networks, Beijing Normal University
(Zhuhai) and VP for Research of BNU-HKBU
United International College (UIC) and has been
the Zhiyuan chair professor of Shanghai Jiao Tong

University, China. He was the chair professor and the deputy director of the
State Kay Laboratory of Internet of Things for Smart City, University of
Macau. From 1993–1995, he joined German National Research Center for
Information Science (GMD) in Bonn (St. Augustine) as a research fellow.
From 1995–2013, he worked with the City University of Hong Kong as a
professor. His contributions have been recognized as optimal network rout-
ing and deployment, anycast and QoS routing, sensors networking, AI
(knowledge relation extractions; NLP, etc.), and edge computing. He has
more than 600 publications in the prestige international journals/conferen-
ces and research books, and book chapters. He has received the best
product awards from the International Science & Tech. Expo (Shenzhen) in
2011/2012 and the 1st Prize of Scientific Research Awards from the Minis-
try of Education of China in 2017 (list 2). He has served as area editor for
various prestige international journals, chair and PC member/skeynote
speaker for many top international conferences. He is the distinguished
member of theCCF.

Wei Zhao (Fellow, IEEE) received the undergrad-
uate degree in physics from Shaanxi Normal Uni-
versity, China, in 1977, and the MSc and PhD
degrees in computer and information sciences
from the University of Massachusetts at Amherst,
in 1983 and 1986, respectively. He has served
important leadership roles in academic including
the chief research officer with the American Uni-
versity of Sharjah, the chair of Academic Council
at CAS Shenzhen Institute of Advanced Technol-
ogy, the eighth Rector of the University of Macau,

the dean of science with Rensselaer Polytechnic Institute, the director
for the Division of Computer and Network Systems in the U.S. National
Science Foundation, and the senior associate vice president for
research with Texas A&M University. He has made significant contribu-
tions to cyber-physical systems, distributed computing, real-time sys-
tems, and computer networks. He led the effort to define the research
agenda of and to create the very first funding program for cyber-physical
systems, in 2006. His research results have been adopted in the stan-
dard of Survivable Adaptable Fiber Optic Embedded Network. He was
awarded the Lifelong Achievement Award by the Chinese Association of
Science and Technology in 2005.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1984 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 07,2023 at 04:32:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

