
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023 961

Energy-Efficient Joint Task Assignment and
Migration in Data Centers: A Deep
Reinforcement Learning Approach

Jiong Lou , Zhiqing Tang , and Weijia Jia , Fellow, IEEE

Abstract—Energy-efficient task scheduling in data centers is a
critical issue and has drawn wide attention. However, the task
execution times are mixed and hard to estimate in a real-world
data center. It has been conspicuously neglected by existing work
that scheduling decisions made at tasks’ arrival times are likely
to cause energy waste or idle resources over time. To fill in
such gaps, in this paper, we jointly consider assignment and
migration for mixed duration tasks and devise a novel energy-
efficient task scheduling algorithm. Task assignment can improve
resource utilization, and migration is required when long-running
tasks run in low-load servers. Specifically: 1) We formulate
mixed duration task scheduling as a large-scale Markov Decision
Process (MDP) problem; 2) To solve such a large-scale MDP
problem, we design an efficient Deep Reinforcement Learning
(DRL) algorithm to make assignment and migration decisions.
To make the DRL algorithm more practical in real scenarios,
multiple optimizations are proposed to achieve online training;
3) Experiments with real-world data have shown that our algo-
rithm outperforms the existing baselines 14% on average in terms
of energy consumption while keeping the same level of Quality of
Service (QoS).

Index Terms—Energy-efficient task scheduling, deep reinforce-
ment learning, data center.

Manuscript received 1 April 2022; revised 2 August 2022; accepted 24
September 2022. Date of publication 27 September 2022; date of current
version 6 July 2023. This work was supported in part by the Guangdong
Key Lab of AI and Multi-modal Data Processing, United International
College (UIC), Zhuhai under Grant 2020KSYS007 sponsored by Guangdong
Provincial Department of Education; in part by the Chinese National Research
Fund (NSFC) under Grants 62272050, 61872239; in part by Institute of
Artificial Intelligence and Future Networks (BNU-Zhuhai) and Engineering
Center of AI and Future Education, Guangdong Provincial Department of
Science and Technology, China; Zhuhai Science-Tech Innovation Bureau
under Grants ZH22017001210119PWC and 28712217900001, and in part by
the Interdisciplinary Intelligence SuperComputer Center of Beijing Normal
University (Zhuhai). The associate editor coordinating the review of this arti-
cle and approving it for publication was T. Inoue. (Corresponding authors:
Zhiqing Tang; Weijia Jia.)

Jiong Lou is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China, and also with
the Institute of Artificial Intelligence and Future Networks, Beijing
Normal University (Zhuhai Campus), Zhuhai 519087, Guangdong, China
(e-mail: lj1994@sjtu.edu.cn).

Zhiqing Tang is with the Institute of Artificial Intelligence and Future
Networks, Beijing Normal University (Zhuhai Campus), Zhuhai 519087,
China (e-mail: domain@sjtu.edu.cn).

Weijia Jia is with the Institute of Artificial Intelligence and Future
Networks, Beijing Normal University (Zhuhai Campus), Zhuhai 519087,
China, and also with the Guangdong Key Laboratory of AI and Multi-
Modal Data Processing, BNU-HKBU United International College Zhuhai,
Zhuhai 519087, Guangdong, China (e-mail: jiawj@bnu.edu.cn).

Digital Object Identifier 10.1109/TNSM.2022.3210204

I. INTRODUCTION

W ITH the rapid development of cloud computing, more
and more tasks can be submitted to data centers to be

processed. One of the severe problems in data centers is the
tremendous amount of energy consumption, which causes high
operating costs and substantial carbon dioxide (CO2) emis-
sions. A three percent reduction in energy cost for a large
company like Google can translate into over a million dollars
in cost savings [1]. Statistic results show that much energy is
wasted when servers run at a very low load [2]. Consequently,
it is indispensable to devise energy-efficient task scheduling
algorithms to reduce the energy consumption of data centers.

In the area of energy-efficient task scheduling, researchers
focus on the task assignment at the arrival time. When a new
task is submitted, the task is assigned to a proper server, and
then the server initiates a virtual machine (VM) or a container
for it. Task assignment can be considered a kind of classi-
cal bin-packing problem [3] with several heuristic algorithms
being devised for wide usages, such as Round-Robin [4] and
Best Fit [5]. In [6], [7], [8], Deep Reinforcement Learning
(DRL) based algorithms are designed to assign tasks to achieve
high performance. Some previous work [3], [9] studies energy-
efficient task migration. During the runtime, tasks running
in VMs or containers can be dynamically migrated to other
servers for consolidation. In this way, more servers can be
freed and switched to sleep mode [10].

However, few studies on joint task assignment and migration
can achieve better energy efficiency during the entire lifecy-
cle of tasks. On the one hand, since the task duration in data
centers often follows a long-tail distribution [11], long-running
tasks form a small fraction of the total number of tasks but con-
sume a large number of resources. Only performing the task
assignment cannot ensure these long-running tasks’ energy
efficiency since it can hardly distinguish long-running tasks at
their arrival times [12] or assign them to a few servers for con-
solidation. When the task workload decreases, short-running
tasks are finished earlier and leave long-running tasks running
on the server in low load, which results in energy wastage. On
the other hand, a large number of short-running tasks are run-
ning in the data center, and migrating numerous short-running
tasks costs from a few seconds to some minutes [13], which
significantly affects the performance of these short-running
tasks. Due to the significant estimation errors of task run-
time [14], it is inherently hard to distinguish long-running
tasks from short-running tasks at the arrival time, which makes

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9245-2626
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0002-0231-3196

962 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

mixed duration task scheduling more challenging. In short,
previous work does not pay enough attention to scheduling
tasks with mixed duration during the entire lifecycle.

To fulfill this gap, the mixed duration task scheduling
problem is formulated by jointly considering task assignment
and migration. The task assignment and migration process is a
sequence of correlated scheduling decisions. To reflect the cor-
relations between scheduling decisions at different times, the
scheduling problem is modeled as a Markov Decision Process
(MDP) problem. The MDP problem has a huge state space
considering many simultaneous running tasks in data centers.
To deal with such a large-scale MDP problem, we choose
DRL, which can handle the huge state space of complicated
control problems as the underlying technology. Previous work
based on DRL technologies for resource allocation in the data
center mainly needs heavy offline training of Deep Neural
Network (DNN) [6], [15], [16], [17], which has the following
shortcomings: (1) It requires a large amount of workload traces
and elaborately generated state transition profiles to model
the mixed duration tasks. (2) The transition probability of
container resource demand is quasi-static for a relatively short-
term (e.g., one day) [9]. Historical data collected several days
ago can hardly reflect the current scenarios’ characteristics, so
online training is critical.

To satisfy the time-varying resource demand and avoid
DNN’s heavy offline training, we propose an Online DRL-
based Task Scheduling algorithm (ODTS), consisting of the
task assignment policy and the task migration policy. The
task assignment policy assigns tasks to proper servers at their
arrival time. Various optimizations are proposed to make DNN
train in an online manner. First, to better evaluate each assign-
ment decision, the reward is formulated as the difference
between average power before and after the assignment. Then,
to achieve the online training, a weight-sharing structure is
used to reduce the number of DNN parameters, and a sort
module is applied to recognize different permutations of server
state. Besides, efficient exploration is applied to accelerate
the convergence speed and generate training data to alleviate
the sparse reward problem. Furthermore, ODTS heuristically
selects a few tasks already executing for a long time to reduce
the action space of simultaneously migrating all tasks. The
proposed task migration policy is then applied to choose the
proper server for migrating each selected task. Finally, to elim-
inate the impact of the varied task workload, the reward is
reformulated as the integral of CPU utilization divided by the
average power consumption, instead of the linear combination
of energy consumption and QoS, etc. [6], [17]. Experiments
with real-world data have shown that the proposed algo-
rithm outperforms the existing baselines by 14% on average
in terms of energy consumption while keeping the same
level of Quality of Service (QoS) and achieving online
training.

In short, our contributions can be summarized as follows:
1) To energy-efficiently schedule the mixed duration tasks

in data centers, we jointly consider task assignment and
migration during the entire lifetime of tasks. We formu-
late the task scheduling problem and further model it as
an MDP problem.

2) A DRL-based algorithm is devised to solve the
MDP problem. Furthermore, to satisfy the time-varying
resource demand, we optimize the DNN structure, refor-
mulate the reward, adopt efficient action selection, and
generate training data to achieve online training.

3) We implement ODTS and evaluate the performance.
Experiments show that, with nearly the same Quality
of Service (QoS) and the same migration times, the
proposed algorithm outperforms the existing baseline
algorithms by 14% on average in terms of energy con-
sumption.

The remainder of this paper is organized as follows. The
related work is reviewed in Section II. Section III describes
the DRL, defines the system model, and formulates the task
scheduling problem. The proposed DRL-based algorithm for
energy-efficient task scheduling is discussed in Section IV.
The performance of ODTS is evaluated in Section V. Finally,
the paper is concluded in Section VI.

II. RELATED WORK

In this section, we introduce studies on energy-efficient
task scheduling and reinforcement learning applications in the
computer network.

Energy-efficient task assignment and migration: Studies
on energy-efficient task scheduling can be divided into task
assignment and task migration. When a new task is sub-
mitted, task assignment dispatches it to a proper server
to reduce energy consumption and guarantee the desired
resource [18], [19]. Task assignment can be considered a kind
of classical bin-packing problem [3]. Many heuristics like First
Fit (FF), First Fit Decreasing (FFD) [20], Best Fit (BF) [5], and
Best Fit Decreasing (BFD) [21], have been proposed to solve
it as a bin-packing scheduling problem [22]. Huang et al. [23]
design two heuristic schemes to allocate arriving VMs to
appropriate physical servers and migrate the VM when the
deployment of VMs is far from optimal.

On the other hand, task migration implemented by migrat-
ing VMs or containers is a resource-intensive operation in
the data center. Jin et al. [24] model the resource demands
of VMs as normal distribution and proposed a stochastic
bin-packing algorithm. Han et al. [9] formulate dynamic
VM management as a large-scale MDP problem and pro-
pose an approximate MDP-based dynamic VM management
method. Some other researchers predict the resource demands
of VMs with historical data [25] or assume prior distribution
of resource requirements [26]. In [27], the researchers design
a benders decomposition-based task migration algorithm to
shift intensive workloads to locations sufficient in renewable
energy sources at a coarse scale and adjust the execution time
of the workload in response to real-time renewable energy
source fluctuations at a fine scale. Moreover, most dynamic
approaches are heuristic-based [28], hence lacking sufficient
theoretical performance guarantee.

Reinforcement learning: Reinforcement learning (RL) [29]
is an essential branch of machine learning to solve the
problem of making decisions. Encouraged by these suc-
cesses in applying the DRL to solve complex online control

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: ENERGY-EFFICIENT JOINT TASK ASSIGNMENT AND MIGRATION IN DATA CENTERS 963

Fig. 1. Reinforcement learning with policy represented via DNN.

problems [30], [31], many researchers use DRL to solve
the scheduling problem in computer networks [32], [33].
Mao et al. [15] first use policy gradient DRL in network
resource scheduling, and the proposed algorithm achieves the
best result in simulated experiments. Ye et al. [16] make
further improvements on [15] by using the imitation learn-
ing [34] that has been widely applied in robotics [35] and
Self-Driving [36]. There has also been some related work on
task scheduling in data centers [6], [7], [8], [17]. Liu et al. [6]
propose a novel hierarchical framework in the data cen-
ter, which weighs the overall resource allocation and power
management issues. The best tradeoff between power con-
sumption and processing delay can be effectively achieved
with the DRL.

Moreover, RL can also be applied to make task migration
decisions. Tang et al. [17] first model the container migra-
tion as a multi-dimensional MDP, which is solved by the
deep Q-learning (DQL). They perform various optimizations
to improve the efficiency and stability of the system. An
adaptive DRL-based framework is proposed to tackle energy
consumption issues in cloud task scheduling [7]. In [37], a
decentralized reinforcement learning management policy is
proposed to optimize the VM migration. Peng et al. [38]
propose a novel dynamic service migration scheme based on
DRL, aiming to achieve the QoS and migration cost tradeoff.
However, these previous studies for RL applications in the
computer network require heavy offline DNN training. They
need massive workload traces and significant training time, so
they cannot be applied to a highly dynamic environment.

III. BACKGROUND AND SYSTEM MODEL

In this section, the DRL mentioned above is first reviewed.
Next, the system model is described, and the task scheduling
problem is formulated. Then, the characteristics of the task
scheduling problem are analyzed.

A. Background

As shown in Fig. 1, we consider a general RL setup con-
sisting of an agent interacting with an environment in discrete
epochs. Specifically, at each epoch t, the agent observes some
state s(t) of the environment, and chooses an action a(t).
Following the action, the state of the environment transitions to
s(t + 1) and the agent receives reward r(t). The state transitions
and rewards are stochastic and assumed to have the Markov
property. The objective is to find a policy π(s) mapping a

state to an action (deterministic) or a probability distribution
over actions (stochastic) to maximize the expected discounted
cumulative reward E[

∑∞
t=t0

γtr(t)], where t0 is the current
time, r(·) is the reward and γ ∈ [0, 1] is the discount factor.

Among all kinds of RL algorithms, Q-learning algo-
rithm [39] has an advantage in fast computation, which is
consistent with the requirement of rapid decision-making in
data centers. In such an algorithm, the quality of each state-
action pair is indicated by Q-value Q(s(t), a(t)), which is stored
in Q-matrix. Q(s(t), a(t)) is equal to the expected discounted
cumulative reward defined before. The Q-matrix is initialized
to a zero matrix. For discrete-time Markov Decision Process,
each Q(s(t), a(t)) can be updated online with the learning-rule:

Q(s(t), a(t))← (1− α)Q(s(t), a(t))

+ α
[
r(t) + γ · arg maxa(t+1)Q(s(t + 1), a(t + 1))

]
, (1)

where α is the learning rate.
For most practical problems, it is infeasible to learn all pos-

sible combinations of state-action pairs. Thus function approx-
imation technique is commonly used to learn the policy [40].
A function approximator πθ(s(t), a(t)) is parameterized by
θ, whose size is much smaller than the number of all possi-
ble state-action pairs, where θ represents all parameters of the
neural network. Many forms of function approximators can be
used to represent the policy. For instance, linear combinations
of state/action space features are a popular choice. DeepMind
introduced DRL [31] that extends Q-learning to enable end-to-
end system control based on high-dimensional sensory inputs.
The DRL adopts a DNN called Deep Q-Network (DQN) to
derive the correlation between each state-action pair (s(t), a(t))
of the system under control and calculate its value function
Q(s(t), a(t)). A common-used off-policy algorithm takes the
ε-greedy policy [41] to derive the action with the highest Q:
π(s(t)) = arg maxa(t)Q(s(t), a(t)) with probability 1−ε and
choose the other actions randomly with total probability ε. In
deep Q-learning, the DQN can be trained by minimizing the
loss:

L
(
θQ

)
= E

[(
y(t)−Q

(
s(t), a(t)|θQ

))2
]

, (2)

where θQ is the weight vector of the DQN and y(t) is the
target value, which can be estimated by:

y(t) = r(t) + γQ
(
s(t + 1), π(s(t + 1)|θπ)|θQ

)
. (3)

However, using a DNN as a function approximator in
RL suffers from instability or even divergence. Two prac-
tical techniques have been introduced in [31] to improve
stability: experience replay and the target network. Unlike tra-
ditional RL, a DRL agent updates the DNN with a mini-batch
from an experience replay buffer, which stores state transi-
tion samples collected during learning. Experience replay can
smooth out learning and avoid oscillations or divergence. In
order to solve the overestimation problem from max operator
arg maxa(t)Q(s(t), a(t)), Google DeepMind [31] uses a sep-
arate target network that has the same structure as the DQN, to
estimate target values y(t) for training the DQN, whose param-
eters, however, are slowly updated with the DQN weights

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

964 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

TABLE I
NOTATIONS

every k > 1 epochs and are held fixed between individual
updates.

B. System Model

In this paper, a large-scale data center with M physical
servers that offer computing resources is considered. The
data center adopts containerization as virtualization technol-
ogy. The set of physical servers is defined as {p1, . . . , pM }.
The CPU utilization of server pi at time t is defined as ui (t). A
server can be in active mode for task execution or sleep mode
for energy saving. For ease of reference, the key notations
used in the paper are summarized in Table I.

Task Model: Tasks with mixed duration stochastically arrive
over time. Different tasks have diverse requirements for
multiple resources, like CPU and memory. When each task
arrives, a new container is created to comply with its require-
ments and run on a physical server. The set of containers is
denoted as {c1, . . . , cN }. For container cj , we set Cj ·r (t),
Cj ·a(t) and Cj ·l (t) as the resource requirement, the resource
allocation and the container allocation server at time t, respec-
tively. With little information about tasks, obtaining accurate
task duration estimates at the arrival time is not trivial. Both
the predictor based on the mean task execution time [42] and
based on machine learning [43] exhibit significant estimation
errors. Therefore, it is assumed that the duration of a task is
unknown at its arrival time. Besides, during the running time
of a task, the resource requirements of its container are varied.

Task Scheduler: Fig. 2 illustrates the task scheduling
system. Similar to Google Borg [44], there is a centralized
task scheduler to collect the information from each server and
schedule tasks in the data center. As soon as a new task is sub-
mitted, the task scheduler assigns it to one server with enough
available resources and creates a container for it. During the
runtime of the task, the task scheduler monitors the running
status of the data center and periodically sends commands to

Fig. 2. System architecture. At the arrival time of a new task, the task
scheduler assigns it to the target server according to the state of the servers. For
the duration of tasks, the task scheduler performs periodical task migration.

migrate some containers for energy-efficient allocation. Task
migration is used to refer to container migration in the fol-
lowing, usually it is considered as hot migration [17], i.e., the
shutdown time is not considered. Once a task is completed,
it releases the resources, and the corresponding container is
stopped.

For convenience, there is assumed to be sufficient disk and
network capacity for all tasks on each server. The scheduling
of computational power (CPU time) is considered the main
factor determining the energy consumption of the servers,
and memory is the constraint. Without loss of generality, the
servers in the data center are homogeneous, and the resource
capacity of each server is normalized to 1.

Different task scheduling decisions will lead to different
CPU utilization and energy consumption, so the centralized
task scheduler should be carefully designed for energy conser-
vation. This paper aims to design a task scheduling algorithm
to reduce the energy consumed during the entire lifecycle
of tasks while maintaining an acceptable QoS. The task
scheduling problem is formulated as follows.

C. Problem Formulation and Analysis

The resource utilization and the QoS can benefit from
task assignment and migration. Plenty of idle servers can
be switched off, and much energy consumption can be
reduced through container consolidation. However, an unsuit-
able migration strategy performed on short-running tasks may
be useless, waste network bandwidth, or even increase execu-
tion times. Besides, if too many containers are merged into
a server, the risk of resource over-allocation will be risen
dramatically, leading to performance degradation. Therefore,
there exists a trade-off between QoS and energy consumption.
Considering QoS and energy consumption, the task scheduling
problem can be formulated, as shown below.

QoS: Achieving desirable QoS requirements is extremely
important for a data center. The QoS requirements are com-
monly defined by Service Level Agreement (SLA), which
describes such characteristics as throughput or response time.
The average SLA violation (SLAV) percentage represents the
percentage of average CPU performance that has not been allo-
cated to a container when requested, resulting in performance
degradation, e.g., more latency or lower reliability [17], [25],

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: ENERGY-EFFICIENT JOINT TASK ASSIGNMENT AND MIGRATION IN DATA CENTERS 965

defined as:

CSLAV =

∑n
j=1

∫ (
Cj ·r (t)− Cj ·a(t)

)
dt

∑n
j=1

∫ (
Cj ·r (t)

)
dt

, (4)

Energy Consumption: In general, the total energy consump-
tion Etotal is equivalent to the addition of each server’s energy
consumption Ei :

Etotal =

M∑

i=1

Ei . (5)

The linear approximation model, widely adopted in the litera-
ture, is used to evaluate the power consumption of servers. If
server pi is switched off or set in sleep mode, its consumption
is approximately equal to 0 [6]. Otherwise, its power con-
sumption is proportional to its resource utilization, which was
indicated by [45]. For each server, the energy consumption is
equal to the integral of power consumption over time:

Ei =

∫

(pidle + (pmax − pidle)× ui (t))dt , (6)

where pidle and pmax represent the power consumption of 0%
and 100% CPU utilization of server pi , respectively. Besides,
ui (t) is the CPU utilization of pi at t, defined as:

ui (t) = min
{
1,
∑

1
[
Cj ·l (t) = pi

]
Cj ·r (t)

}
, (7)

where 1[·] is the indicator function, which is equal to 1 when
the condition holds, and 0 otherwise. Specially, we set Cj ·r (t)
and Cj ·a(t) as the CPU requirement and the CPU allocation
at t, respectively. Recall that the resource capacity of server
pi is normalized to 1. When ui (t) > 0, it means that server
pi is in the active mode at t. In the system model, the CPU
allocation of a task is proportional to its CPU requirement,
which is defined as:

Cj ·a(t) =
Cj ·r (t)

∑
1
[
Cj ·l (t) = pi

]
Cj ·r (t)

× ui (t), (8)

However, too many task migrations result in much data
transmission, which consumes a large amount of network
bandwidth and increases the task execution time. The max-
imum number of migrated tasks in one time slot as Tm is set
according to [9], i.e.,

|C |∑

i=1

1
[
C ′
j ·l (t) �= Cj ·l (t)

]
≤ Tm , (9)

where C ′
i ·l (t) is defined as the allocation for task ci after

migration at time t.
Problem Definition: The target is to reduce the total cost

for the long-term:
Problem 1:

min C = ω1 · Etotal + ω2 · C (SLAV) (10)

s. t. 0 ≤
∑

Cj ·l (t)=pi
Cj ·a(t) ≤ 1, i = 1, . . . ,M , ∀t , (11)

where ω1 and ω2 are two positive parameters to control the
weights of Etotal and CSLAV , respectively. The constraints

are the maximum number of task migrations defined in Eq. (9)
and the resource capacity constraints.

Furthermore, the total energy consumption is analyzed:

Etotal =

M∑
i=1

Ei =

∫ (M∑
i=1

pidle × 1[ui (t) > 0]

)
dt

+

∫ (M∑
i=1

(pmax − pidle)× ui (t)× 1[ui (t) > 0]

)
dt

=

∫ (M∑
i=1

pidle × 1[ui (t) > 0]

)
dt

+ (pmax − pidle)× (1− CSLAV)

∫ (n∑
i=1

Cj ·r (t)

)
dt .

(12)

From Eq. (12), it can be observed that the Etotal consists of
two terms. The first term

∫
(
∑M

i=1 pidle × 1[ui (t) > 0])dt
is related to the scheduling algorithm and the second term
(pmax−pidle)×(1−CSLAV)

∫
(
∑n

i=1 Cj ·r (t))dt is a constant
for a certain set of tasks and the same CSLAV . In order to
consume less energy, we must reduce the accumulated active
server number

∫
(
∑M

i=1 1[ui (t) > 0])dt in the premise of the
same CSLAV . From this perspective, it is reasonable to use
SLAV as a constraint in the case of the linear approximation
power model.

Problem Analysis: We explain the necessity of jointly con-
sidering task assignment and migration, and the reason why
DRL is chosen to solve the task scheduling problem.

Analyzing real-world data from Google cluster [46], we find
that only 8% of tasks run for more than 2 hours but use 92.9%
resources, which is much more than short-running tasks. More
detailed analysis from multiple workloads also shows similar
results [11], [47], which means the long-tail distribution of
task duration is typical.

Energy-efficient mixed duration task scheduling requires
both judicious task assignment and migration. On the one
hand, frequent task migration may affect performance for a
massive number of short-running tasks. Besides, many times
of task migration will produce much migration cost, e.g., band-
width. As a result, the task assignment at the arrival time
should be well designed. On the other hand, only task assign-
ment cannot guarantee their energy efficiency during the entire
lifecycle for long-running tasks without prior information on
task duration. For example, if Best Fit is performed to assign
tasks. When the workload decreases rapidly, the resource uti-
lization of long-running tasks is 58.1%, much lower than
short-running tasks’ resource utilization, 81.8%.

The problem mentioned before is an advanced bin-packing
problem that is NP-hard. It can be solved optimally, but it
would require a long time. Moreover, most of the existing
heuristic algorithms are unstable for dynamically arrived tasks
in a real data center, which cannot handle large-scale prob-
lems that largely slow down decision-making. In this problem,
assume that C (τ) is the total cost until Tτ . Based on Eq. (4)
and Eq. (10), C (τ) obeys first-order Markov Process as:

C (τ) = 1[τ > 0]× C (τ − 1) + ω1

M∑
i=1

pi (τ) + ω2CSLAV (τ). (13)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

966 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Therefore, it can be formulated as an MDP problem and is
suitable to adopt RL algorithms in solving this problem.

However, in data centers with massive physical servers, task
scheduling often exhibits high dimensions in state and action
spaces, prohibiting the use of traditional RL techniques. This is
because the convergence speed of traditional RL techniques is
in general proportional to the number of state-action pairs [29].
Therefore, we adopt the emerging DRL technique, which has
the potential to handle large state space of complicated control
problems, to solve the task scheduling problem, as presented
in the next section.

IV. ODTS: DRL-BASED JOINT TASK ASSIGNMENT

AND MIGRATION ALGORITHM

In this section, the proposed DRL-based task scheduling
algorithm ODTS is introduced, as shown in Algorithm 1.
ODTS consists of two parts, the task assignment and the
task migration. For task assignment, the replay memory, the
Q-network, and the target Q-network are D, Q, and Q̂ , respec-
tively. For task migration, the replay memory, the Q-network,
and the target Q-network are Dm , Qm and Q̂m , respectively.
There are two types of events in ODTS: task assignment event
and task migration event. The task assignment event and the
task migration event are denoted as 0 and 1, respectively. For
task assignment, the decision epoch is defined as the arrival
time of each task. At each decision epoch, the task sched-
uler allocates a newly arriving task to one of the physical
servers according to the DRL-based task assignment policy.
Then, the task is loaded into a new container, which shares
the physical resources with other containers. For task migra-
tion, the decision-making is periodical. A slotted scheduling
framework is adopted for task migration, where time is divided
into a sequence of time slots of the same duration. Each time
slot is the epoch of task migration. The task scheduler makes
the task migration decision according to the state information
at the beginning of each epoch. The epoch count is separate
for task assignment and migration.

A. DRL-Based Task Assignment

In this section, we present how the task scheduler assigns
tasks to suitable servers at the arrival time. Function 2 illus-
trates task assignment for one epoch. The reinforcement
learning settings are introduced in Section IV-A1. Multiple
optimizations to improve the efficiency and robustness of
action selection are described in Section IV-A2.

1) Reinforcement Learning Settings: The environment of
the DRL-based task assignment is a set of servers in the data
center. The state space, action space, and reward are defined
as follows:

State Space: The system state sa(tj) at task j ’s arrival time
tj is defined as the union of the server cluster state sc(tj) and
the task j’s state saj , i.e., sa(tj) = [sc(tj), s

a
j]. The state of

a single server pi at time t is defined as si (t). In this paper,
since the duration of a task is unavailable at the arrival time,
the longest runtime of the tasks still running on the server pi

Algorithm 1 ODTS

1: Initialize D, Q, Q̂ for task assignment.
2: Initialize Dm, Qm, Q̂m for task migration.
3: j = 0
4: k = 0
5: for event = e0 to eN do
6: if event = 0 then
7: /* DRL-based Task Assignment */
8: j = j + 1
9: else

10: /* DRL-based Task Migration */
11: k = k + 1
12: end if
13: end for
14: end

is used to represent the state better and denoted as d i (t):

d i (t) = max
Cj ′·l (t)=pi

(
j ′ − tj

)
. (14)

si (t) is the combination of resource utilization ui (t) and the
longest runtime d i (t):

si (t) =
[
ui (t), d

i (t)
]
. (15)

The longest runtime d i (t) of the tasks on the server pi
gives the basic information of the tasks on the server, for
long-running tasks remaining on servers often result in low
resource utilization. Therefore, the system state sa(tj) can be
represented by combining resource utilization ui (tj), longest
runtime d i (t) and resource requirement Cj ·r , as follows:

sa
(
tj
)
=

[
sc
(
tj
)
, saj

]
=

[
s1
(
tj
)
, . . . , sM

(
tj
)
, saj

]

=
[
u1

(
tj
)
, d1

(
tj
)
, . . . , uM

(
tj
)
, dM

(
tj
)
,Cj ·r

]
. (16)

The state space consists of all possible states and thus has a
high dimension.

Action Space: In order to reduce the action space, the
continuous-time and event-driven decision framework [6] is
adopted, in which each decision epoch coincides with the
arrival time of a new container request. In this way, the action
at each decision epoch is simply the index of the target server
for task assignment, which ensures that the available actions
are enumerable at each epoch. As a result, the action space of
the DRL-based task assignment is defined as follows:

A = {1, 2, . . . ,M }. (17)

It can be observed that the action space has the same size as
the total number of servers.

Reward: In previous work, researchers primarily used a
linear combination of energy consumption and QoS to rep-
resent the reward rj to balance efficiency and performance.
However, the training process can be unstable with such a
form of reward. It is hard to trade off energy consumption
and QoS by DQL, a model-free technique. Besides, accord-
ing to Eq. (12), SLAV has a linear relationship with energy

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: ENERGY-EFFICIENT JOINT TASK ASSIGNMENT AND MIGRATION IN DATA CENTERS 967

Algorithm 2 DRL-Based Task Assignment
1: Generate random number ϑ.
2: A = ∅
3: for a = 1 to M do
4: if a complies with Eq. (19) and Eq. (20) then
5: A = A ∪ {a}
6: end if
7: end for
8: if ϑ > ε then
9: Select a(tj) = arg maxa(tj)Q

(
sa(tj), a(tj)|θ

)
from A.

10: else
11: Select an efficient action a(tj) from A with least

estimated instantaneous power in Eq. (21).
12: end if
13: Calculate r(tj) by Eq. (18).
14: Store transition (sa (tj), a(tj), r(tj), sa (tj+1)) into D.
15: Generate random number ϑ.
16: if ϑ > εg then
17: Set a(g) as a server in sleep mode.
18: Store transition (sa (tj), a(g), rg , sa (tj+1)) into D.
19: end if
20: Perform action a(t).
21: Select random samples c(sa(tk), a(tk), r(tk), sa (tk+1))

from D.
22: The weights of Q then are optimized.
23: if j%P = 0 then
24: Reset Q̂ = Q
25: end if
26: end

consumption. Therefore, we use the SLAV as a constraint and
focus on reducing the total energy consumption.

The reward function r(tj) is defined as:

r
(
tj
)
=

Etotal

(
tj+1

)

tj+1 − tj
− Etotal

(
tj
)

tj − tj−1
, (18)

where tj and tj+1 are the arrival time of the task j and task
j + 1, respectively. Etotal (tj) is the energy consumption dur-

ing the epoch between tj and tj−1. Specially, Etotal (t1)
t1−t0

is
set to 0. The reward is measured by reducing the average
energy consumption at the current epoch by the average energy
consumption of the last epoch. The arrival time of each task
is dynamic, which means the varied length of each epoch.
Compared with the total energy consumption, the energy con-
sumption averaged by epoch length can lead to lower variance.
Besides, the difference between average energy consumption
better represents the effect of scheduling the arrival tasks on
this epoch. Such a reward helps Q-network train in an online
manner. Next, we introduce how the task scheduler selects a
proper action according to the current state.

2) Action Selection: Each action needs to satisfy two con-
straints in lines 3 - 7 of Function 2. The first is the resource
constraint defined as follows:

ui
(
tj
)
+ Cj ·a(ti) ≤ 1 j = 1, 2, . . . ,m, (19)

where task cj is tried to be executed on the server pi . Resource
constraint means the resource utilization in a server cannot

exceed the resource capacity. The second one is the SLAV
constraint for CPU utilization:⎧
⎪⎨
⎪⎩

∑j
i=1(Ci·r (t)−Ci·a(t))

∑j
i=1 Ci·r (t)

≤ υ,
∑j−1

i=1 (Ci·r (t)−Ci·a(t))
∑j−1

i=1 Ci·r (t)
≤ υ,

uj
(
tj
)
+ Cj ·a

(
tj
) ≤ 1,

∑j−1
i=1 (Ci·r (t)−Ci·a(t))

∑j−1
i=1 Ci·r (t)

> υ,
(20)

where υ ∈ [0, 1] is the SLAV constraint parameter that con-
trols the instantaneous SLAV after each task assignment. If the
former instantaneous SLAV is higher than υ, then the CPU uti-
lization of the selected server cannot exceed the CPU capacity
after the task assignment, so the SLAV will decrease gradu-
ally. Otherwise, the new instantaneous SLAV should still be
less than υ.

In lines 8 - 12 of Function 2, the action is selected based
on ε-greedy policy, including exploration and exploitation. A
threshold ε is set in advance, and a random number ϑ is gen-
erated for each action selection. The details of action selection
are described below:

• When ϑ ≤ ε, the action is selected by exploration.
• Otherwise, the best action a(t) = arg maxa(t)

Q(s(t), a(t), θ) is selected by exploitation according to
the Q-values calculated by the Q-network.

Exploration: In exploration, the agent of the general deep
Q-learning algorithm randomly selects an action. However,
random assignment for tasks may result in higher energy con-
sumption. For example, assigning tasks to servers in sleep
mode will make more servers run in low load, causing energy
waste. Besides, the task scheduler cannot learn efficient actions
from such random exploration, which slows down the DQN’s
training process. Therefore, to speed up the training and
achieve online training, more efficient exploration is adopted:
the task scheduler assigns each task to the server with the
least estimated instantaneous power consumption P ′

e after the
assignment, which is defined as:

P ′
e =

M∑

i=1

(
pidle + (pmax − pidle)× u ′i (t)

)
, (21)

where u ′i (t) is the estimated CPU utilization of pi at time t:

u ′
i (t) =

⎧
⎨
⎩

min
{
1,
∑

1[Ck ·l (t) = pi]Ck ·a (t) + Cj ·r (t)
}
,

Cj ·l (t) = pi ,∑
1[Ck ·l (t) = pi]Ck ·a (t), Cj ·l (t) �= pi .

(22)

Exploitation: In exploitation, for system state s(t), action
with the highest Q-value, a(t) = arg maxa(t)Q(s(t), a(t), θ),
is selected by the task scheduler, where Q(s(t), a(t), θ) is pro-
duced by the DQN. Most studies on DRL-based algorithms
in the communication network include offline DNN construc-
tion, which needs massive workload traces for a long time
and elaborately generated state transition profiles. Besides,
offline DNN training often costs a lot of time. Unlike previous
studies, the DQN designed in this paper is fully trained
online. With high-dimensional state space, a conventional
feed-forward neural network consists of too many parameters,
making it hard to initialize the parameters properly. Such a
neural network is unstable at the beginning and needs much
training data unavailable for online learning. As a result, it is
infeasible to directly use a conventional feed-forward neural
network to output Q.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

968 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 3. The structure of the DQN for task assignment.

To address this issue, we harness the power of weight shar-
ing for DQN construction, with the basic procedure shown in
Fig. 3. The neural network can be divided into two parts. The
first part is to extract a lower-dimensional high-level represen-
tation of the global state of the system. In this part, sc(tj) is
sorted based on CPU utilization at first. Therefore, the DQN
can recognize different permutations of each server’s state.
Then Global State Encoder is designed to extract the global
information from the union of sorted system state and task
resource requests. The extracted global information is the same
for each action. For the second part, the output network takes
each server’s state and the global information as input features
to estimate each action’s Q value. The shared weight among
all M output networks with the same structure is adopted
to reduce the number of required parameters and training
samples.

Online Training: The DRL-based task assignment is
updated online. Updating on the DQN with online transi-
tion suffers reward sparse in the scenario of task scheduling.
Selecting a sleep server that essentially increases instanta-
neous power consumption is not energy-efficient scheduling,
which is avoided by the proposed efficient exploration. Most
of the scheduling decisions are scheduling tasks to servers
in active mode. In this case, the reward for such energy-
inefficient action will be sparse, and there is an insufficient
number of such transitions to train the DQN. Thus, the train-
ing process will become unstable, and the task scheduler may
not properly estimate Q(s, a) value. The Q-value of select-
ing sleep servers can be even more significant than others. To
solve this issue, the transition generation is performed in lines
15 - 19. Specifically, as the system runs, transitions that ran-
domly select servers in the sleep mode with low reward rg
are generated and stored in the replay memory. Then, the task
scheduler performs value updating on the DQN by minimizing
the loss in Eq. (2). In lines 23 - 25, it updates the target DQN
finally.

B. DRL-Based Task Migration

In this section, the DRL-based task migration is presented.
The task scheduler collates state information of the data center
at the beginning of each epoch and selects suitable servers for
task migration.

1) Task Selection: In previous DRL-based algorithms for
resource allocation like [17] and [48], the agent selects actions
that comprise the aggregation of all tasks’ locations at each
epoch. However, such action selection has some issues. Firstly,

the action space is too large for the task scheduler to find the
optimal action. For each task, the action number is the num-
ber of servers M, which means that for N tasks, it has MN

actions in total. Moreover, DRL framework typically requires
a relatively low-dimensional action space [30] because, in
each decision epoch, the DRL agent needs to enumerate all
possible actions for the current state and perform inference
using DQN to derive the optimal Q(s, a) value estimate.
Secondly, task migration must satisfy the resource and SLAV
constraints, which is difficult for all actions simultaneously.
Finally, based on the long-tail distribution of the task duration
in the data center, the migration of a massive number of short-
running tasks is a waste of bandwidth and leads to longer task
delays.

To address these issues, ODTS selects migration actions for
a subset of tasks sequentially in lines 3 - 24 of Function 3.
The majority of the tasks in general has a short duration. The
task scheduler selects a small set of tasks before selecting
migration actions. At the beginning of each epoch, the task
scheduler selects the task with the longest runtime from each
physical server and sorts them in decreasing order based on
the runtime (lines 3 - 4). Then, the task scheduler sequen-
tially selects a reallocation action for each selected task and
updates the estimated system state. After making reallocation
actions for at most Tm tasks, the task scheduler performs all
the actions in order (line 30).

2) Reinforcement Learning Settings: The state space,
action space, and reward are defined as follows:

State Space: In the DRL-based task migration, the state at
each epoch of task migration tk is defined as sm(tk), similar
with the state defined in Section IV-A. The estimated state of
the former server, which contains the selected task, should be
reduced by the resource allocation of the task:

sout
(
tj
)
= uout

(
tj
)− Cj ·r , (23)

where sout (tj) is the estimated server state after migrating the
container cj out. Besides, the task state includes the resource
requirements and the task runtime in epoch k:

dj (tk) = tk − tj , (24)

which is useful state information for task migration. Therefore,
the system state sm(tk) of the DRL-based task migration can
be represented as follows:

sm (tk) =
[
s(tk), s

m
j

]
=
[
s1(tk), . . . , sM (tk), s

m
j

]

=
[
u1(tk), d

1(tk), . . . , uM (tj), d
M (tk),Cj ·r , dj (tk)

]
. (25)

After each action selection, the estimated state of the server
that container cj is migrated into should be updated:

sin
(
tj
)
= uin

(
tj
)
+ Cj ·r . (26)

Action Space: The action space is also defined as the index
of the server, which is the same as Eq. (17). It can be observed
that for each selected task, the action space is reduced to M.

Reward: In the data center, the number of tasks varies with
time. With no information about the task duration and future
tasks’ arrival times, the number and workload of tasks have
high variability. It is biased to use the differential value of

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: ENERGY-EFFICIENT JOINT TASK ASSIGNMENT AND MIGRATION IN DATA CENTERS 969

average power consumption as the reward, since the power
consumption of all servers tightly relates to the total resource
requirement. The target is to finish a set of tasks with less
energy consumption. The reward r(tk) is formulated as the
integral of CPU utilization divided by the energy consumption,
which is defined as below:

r(tk) =

∫ (∑
Cj ·r

)
dt

Etotal (tk)
, (27)

where Etotal (tk) is also the energy consumption during the
epoch k after the migration. The proposed reward means
that ODTS aims to minimize the energy consumption per
workload, which means more energy-efficient. Since the
performance of the system is decided by all actions selected
in the same epoch, the same reward is set for them.

3) Action Selection: As mentioned above, in the DRL-
based task migration function, the task scheduler firstly sorts
running tasks by their runtime decreasingly. Then, the task
scheduler selects the migration action for each selected task
according to ε-greedy policy.

Threshold εm is defined, and the task scheduler gen-
erates ϑm for ε-greedy policy, which is described in
Section IV-A. In exploration, instead of random action selec-
tion, the task scheduler selects the server with the least
estimated instantaneous power consumption as defined in
Eq. (21). In exploitation, the task scheduler selects action
a(t) = arg maxa(t)Qm(s(t), a(t), θ) for system state s(t).
Qm(s(t), a(t), θ) is calculated by the DQN, which has the
same structure with Fig. 3.

Online Training: The training of the DRL-based task migra-
tion algorithm is performed online. At each migration epoch k,
for each selected container ordered decreasingly, the task
scheduler uses ε-greedy policy for action selection and per-
forms inference to derive the Q(sm (tk), a) value of each
state-action pair (sm (tk), a). Then, for each action selection,
the task scheduler stores all transitions in line 21. After that,
the task scheduler also performs value updating by minimiz-
ing the loss in lines 25 - 26 and updates the target DQN after
every Pm epochs in lines 27 - 29.

C. Convergence and Computational Complexity Analysis

Watkins and Dayan [39] proved that the Q-learning tech-
nique would gradually converge to the optimal policy under
a stationary MDP environment and sufficiently small learn-
ing rate. Hence, the proposed DRL-based task scheduling
algorithm will converge to the optimal policy when (1) the
environment evolves as a stationary, memoryless MDP, (2) the
learning rate is sufficiently small, and (3) the DNN is suffi-
ciently accurate to return the action associated with the optimal
Q(s, a) estimate. In this paper, the MDP characteristics have
been analyzed in Section III-C. Besides, the learning rate is
sufficiently small (0 ≤ α ≤ 1) in our problem, and the
convergence of deep Q-learning has been illustrated in [30].
Simulation results demonstrate the effectiveness of ODTS in
realistic data center environments.

ODTS exhibits low online computational complexity. The
computational complexity of the DRL-based task assignment
function is proportional to M at each decision epoch. As

Algorithm 3 DRL-Based Task Migration

1: Observe sm(tk).
2: A(tk) = ∅.
3: Set C as the list of each physical server’s longest running

containers.
4: Sort C in decreasing order based on runtime.
5: for m = 1 to Tm do
6: Select the mth container in the sorted list.
7: Update sm(tk) by Eq. (23).
8: Generate random number ϑm .
9: A = ∅

10: for a = 1 to M do
11: if a complies with Eq. (19) and Eq. (20) then
12: A = A ∪ {a}
13: end if
14: end for
15: if ϑm > εm then
16: Select a(tk) = argmax

a(tk)
Qm(sm(tk), a(tk)|θ) from

A.
17: else
18: Select an efficient action a(tk) from A with least

estimated instantaneous power in Eq. (21).
19: end if
20: Calculate r(tk) by Eq. (18).
21: Store transition (sm (tk), a(tk), r(tk), sm (tk+1)) into

Dm.
22: A(tk) = A(tk) ∪ {a(tk)}
23: Update sm(tk) by Eq. (26).
24: end for
25: Select random samples c(s(tl), a(tl), r(tl), s(tl+1)) from

Dm.
26: The weights of Qm then are optimized.
27: if k%Pm = 0 then
28: Reset Q̂m = Qm

29: end if
30: Perform action set A(tk).
31: end

illustrated in Section III-B, there are M servers, Tm maximum
migration number for one migration epoch. The DRL-based
task migration function selects target servers for Tm con-
tainers, so the computational complexity is proportional to
M ×Tm at each migration epoch. The computation overhead
of scheduling decisions is relatively insignificant for the data
center.

V. PERFORMANCE EVALUATION

In this section, multiple experiments are conducted to
evaluate ODTS. Firstly, the experimental setup is described
in Section V-A. Then, from perspectives of energy consump-
tion and QoS, ODTS is compared with multiple baselines in
Section V-B. Next, ODTS is compared with the non-optimized
DRL-based task scheduling algorithm to prove the effec-
tiveness of our optimization in Section V-C. Finally, ODTS
is evaluated by investigating the optimal between energy
consumption and QoS in Section V-D.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

970 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

A. Experimental Setups

In the following experiments, for simplicity and without loss
of generality, physical servers in a data center are homoge-
neous. The peak power of each server is Pmax = 117W , and
the idle power consumption is Pidle = 86W [48]. Moreover,
the power model of each server is shown in Table II. To sim-
plify the simulation, the task migration time and the transition
time of server mode are set to 0. The number of machines in
the data center M is set to 600. The epoch for migration is set
to 30 minutes, and the maximum number of task migrations
in one epoch is set to 2% of the current number of tasks. It is
noted that the proposed algorithm can be easily applied to the
case with more servers as well. Moreover, the task schedul-
ing problem in the heterogeneous server data centers can be
solved by adding available resources to the system state.

In this section, the real data center workload traces are col-
lected from Google cluster-usage [46], which provides the
server cluster usage data over a month-long period in May
2011. Since the CPU and memory-related information of tasks
are extracted in the cluster trace, and the types of tasks in the
cluster in recent years are basically two types of computation-
intensive tasks and delay-sensitive tasks. So the cluster trace is
very representative. Even data from 2011 is still widely used in
recent years [49], [50]. The extracted task traces include task
arrival time (absolute time value), task duration, and resource
requirements of each task, which include CPU and memory
(normalized by the resource of one server). All the extracted
tasks are with a duration from a few seconds to a few days,
ordered increasingly based on their arrival time. In order to
simulate the workload on a data center with 600 servers, the
traces are split into 10 segments, and each segment contains
about 2700000 tasks, corresponding to the workload for a
600-machine data center in three weeks.

We set the parameters according to the settings in [6], [17]
and [15], but without much tuning, which also shows the effec-
tiveness of the proposed optimizations. In DQN construction,
a fully-connected hidden layer with 500 hyperbolic tangent
function (Tanh) neurons is used to build Global State Encoder.
The output network contains two fully-connected layers with
30 and 10 Tanhs and a fully-connected linear layer with a
single output for each valid action in the server index. The
Q-learning discount factor γ is set to 0.9 in simulations. In
DQN updating, the widely-used optimizer RMSprop [51] is
applied to increase the training process. For the learning rate
and exploration threshold, α, ε and εm are set to 0.01, 0.05
and 0.05, respectively. Update intervals P and pm are 600
and 9.

In this work, different from previous DRL-based resource
allocation methods [6], [17], ODTS does not perform offline
training, which means it is more feasible in a practical data
center.

B. Comparison With Baselines

In this section, the performance of ODTS is compared
against the following baselines.

1) DRL-based Task Assignment only (DTA). It is an
independent component of ODTS.

TABLE II
THE POWER CONSUMPTION AT DIFFERENT CPU UTILIZATION IN WATTS

2) DRL-based Task Migration only (DTM). It is also an
independent component of ODTS.

3) Best Fit (BF). For task scheduling, the runtime of
tasks that is required by sophisticated task scheduling
approaches is unavailable in advance. BF assigns a task
to a server with the least available resource among the
servers which can accommodate the task.

4) Median Absolute Deviation (MAD) [52]. MAD is the
baseline for task migration. MAD is a heuristic VM
migration algorithm based on the detection and resource
allocation of under-utilization and over-utilization of the
servers. In the MAD algorithm, there are two thresholds:
thover and thover . Some of the containers on over-
utilized servers, whose utilization is higher than thover ,
are migrated to other servers to decrease the number
of over-utilized servers. All the containers on under-
utilized servers, whose utilization is lower than thunder ,
are migrated to other servers to increase the number of
empty servers. The MAD algorithm predicted the thover
and thunder by measuring the statistical dispersion of
each task.

5) Round-Robin (RR). RR is a baseline for choosing all
servers equally in some rational order.

Fig. 4 shows the experimental results when the CPU
demand of tasks is set to 1, 2, and 3 times the original in
the traces. Fig. 4(a) and Fig. 4(b) demonstrate the average
SLAV and the energy usage, respectively. Firstly, all algo-
rithms except for RR have similar SLAV, which means they
nearly achieve the same QoS. RR schedules tasks evenly to
each server, so it activates more servers and has the highest
QoS, which results in the highest energy consumption and low-
est SLAV. Compared with BF, DTA saves 7% of energy. The
improvement shows that, even with limited information about
tasks (i.e., without task duration), better task allocation still
achieves higher long-term resource utilization. Similarly, with
the same baseline assignment algorithm and the same maxi-
mum number of task migrations, DTM consumes 6% energy
less than MAD, which proves the effectiveness of task migra-
tion based on DRL. ODTS has the best energy efficiency and
saves 14% of energy compared with the BF baseline. Besides,
with DTA, DTM saves 3% energy, whose improvement is less
than with the BF. It may be because that DTA already achieves
a good allocation of the tasks.

The number of active servers varies over time, as shown in
Fig. 5. To make Fig. 5(a) clearer, we select two representa-
tive baselines for comparison. According to Eq. (12), with the
same SLAV, the data center should activate fewer servers to
reduce energy consumption. ODTS activates the fewest servers
during all simulation time, which shows the robustness of our
task scheduling algorithm. Moreover, without migration, DTA
still leaves a part of servers in low resource utilization, which

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: ENERGY-EFFICIENT JOINT TASK ASSIGNMENT AND MIGRATION IN DATA CENTERS 971

Fig. 4. Comparison among ODTS, DTA, DTM, MAD, RR and BF with different CPU demand and task number = 2700000.

Fig. 5. The number of active servers varies during the experiment.

can be avoided by applying DTM. In Fig. 5(b), scheduled by
ODTS, the number of active servers is tightly close to the
total CPU requirement. It means that ODTS almost achieves
the optimal allocation over all simulation time. Besides, due
to the definition of the SLAV in Eq. (4), the sum of the con-
tainers’ CPU requirements in one server at some time points
can exceed the CPU capacity of the server.

We also record the running time of ODTS. Given the simple
and shared neural network structure, we execute ODTS on the
CPU, which saves the data communication time between the
CPU and the GPU. The average running time of making an
assignment decision of ODTS is shorter than 3 ms. It takes
about 40 ms to make a migration decision while the migration
is infrequent (i.e., the epoch is set to 30 minutes). Compared
with the task duration, the running time of ODTS is affordable.

C. Evaluation of Algorithm Optimization

In this section, to evaluate the improvements applied in
the proposed algorithm, four task assignment algorithms

TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT TASK

ASSIGNMENT ALGORITHMS

are compared: RR, BF, Basic DRL-based task assignment
algorithm (BDTA), and DTA. The difference between BDTA
and DTA is that the multiple optimizations are removed from
the proposed DRL algorithm, including sort module, transi-
tion generation, and efficient exploration. The experiments are
repeated ten times to calculate the average performance of
each algorithm.

The CPU demand of tasks is set to the original in the
traces, and the experimental results are shown in Table III.
RR still has the lowest SLAV for its even allocation of tasks,
and the other three algorithms have similar SLAV. From the
perspective of energy consumption, the usage of BDTA is
more than BF and DTA. More specifically, the energy usage
of BDTA among experiments has a significant variance, which
means that the training process is not stable without our
improvements. The reason for the unstable training is that
without sufficient offline training, the DQN largely depends
on the quality of training samples and the structure of DQN.
However, inefficient exploration and sparse reward for select-
ing servers in sleep mode make the low quality of training
samples. Additionally, without the sort module, the DQN can-
not recognize different permutations of each server’s state,
which means that it needs more training data to achieve similar
performance.

D. Trade-Off Between Energy Consumption and QoS

In this section, an experiment is designed to explore
the SLAV and energy consumption trade-off curve for the
proposed algorithm and two baselines, as shown in Fig. 6.

Different SLAV constraint parameter υ is set to control
the energy consumption. For ODTS and two baselines, the
curve is nearly linear, which indicates that these algorithms are

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

972 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 6. Trade-off curves between SLAV and energy consumption of baselines
and the proposed task scheduling algorithm with original CPU demand and
task number = 2700000.

stable under different SLAV constraint parameters. Moreover,
it shows that the training of ODTS is stable and controllable.

Furthermore, compared with the two baselines, ODTS
achieves substantial improvement for all average SLAV. It
can be observed that the three curves have close slopes.
According to Eq. (12), it proves that the proposed algorithm
better schedules tasks to reduce the number of active servers.

VI. CONCLUSION

In this paper, an online DRL-based algorithm for energy-
efficient task scheduling is proposed. We first introduce the
DRL technique and model the task scheduling system, whose
optimization target consists of energy consumption and QoS.
Then, to cope with the challenge of saving energy during the
entire lifecycle of tasks, the DRL-based task scheduling algo-
rithm consists of both task assignment and task migration.
To achieve efficient online training, we optimize the DNN
structure, reformulate the reward, adopt efficient action selec-
tion, and generate training data. Experiments with real-world
data trace have shown that our algorithm substantially reduces
energy consumption as compared with the existing baselines.

REFERENCES

[1] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for Internet-scale systems,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, pp. 123–134, 2009.

[2] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Harmony:
Dynamic heterogeneity-aware resource provisioning in the cloud,” in
Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst., 2013, pp. 510–519.

[3] T. C. Ferreto, M. A. Netto, R. N. Calheiros, and C. A. De Rose, “Server
consolidation with migration control for virtualized data centers,” Future
Gener. Comput. Syst., vol. 27, no. 8, pp. 1027–1034, 2011.

[4] C.-C. Lin, P. Liu, and J.-J. Wu, “Energy-aware virtual machine dynamic
provision and scheduling for cloud computing,” in Proc. IEEE 4th Int.
Conf. Cloud Comput., 2011, pp. 736–737.

[5] D. G. D. Lago, E. R. Madeira, and L. F. Bittencourt, “Power-aware
virtual machine scheduling on clouds using active cooling control and
DVFS,” in Proc. 9th Int. Workshop Middleware Grids Clouds e-Sci.,
2011, p. 2.

[6] N. Liu et al., “A hierarchical framework of cloud resource allocation and
power management using deep reinforcement learning,” in Proc. IEEE
37th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2017, pp. 372–382.

[7] K. X. Kang, D. Ding, H. M. Xie, Q. Yin, and J. Zeng, “Adaptive
DRL-based task scheduling for energy-efficient cloud computing,”
IEEE Trans. Netw. Service Manag., early access, Dec. 23, 2021,
doi: 10.1109/TNSM.2021.3137926.

[8] Y. Jiang, M. Kodialam, T. V. Lakshman, S. Mukherjee, and L. Tassiulas,
“Resource allocation in data Centers using fast reinforcement learn-
ing algorithms,” IEEE Trans. Netw. Service Manag., vol. 18, no. 4,
pp. 4576–4588, Dec. 2021.

[9] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. Lau, “Dynamic
virtual machine management via approximate Markov decision process,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[10] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application performance
management in virtualized server environments,” in Proc. IEEE/IFIP
Netw. Oper. Manage. Symp., 2006, pp. 373–381.

[11] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in Proc. USENIX Annu. Tech. Conf.,
2015, pp. 499–510.

[12] J. Liu et al., “Online multi-workflow scheduling under uncertain task
execution time in IaaS clouds,” IEEE Trans. Cloud Comput., vol. 9,
no. 3, pp. 1180–1194, Jul.–Sep. 2021.

[13] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput., 2017, p. 11.

[14] Z. Han, H. Tan, S. H.-C. Jiang, X. Fu, W. Cao, and F. C. Lau,
“Scheduling placement-sensitive BSP jobs with inaccurate execution
time estimation,” in Proc. IEEE Conf. Comput. Commun., 2020,
pp. 1053–1062.

[15] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. 15th ACM Workshop
Hot Topics Netw., 2016, pp. 50–56.

[16] Y. Ye et al., “A new approach for resource scheduling with deep
reinforcement learning,” 2018, arXiv:1806.08122.

[17] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling
and learning algorithms for containers in fog computing,” IEEE Trans.
Services Comput., vol. 12, no. 5, pp. 712–725, Sep./Oct. 2019.

[18] L. Abualigah and M. Alkhrabsheh, “Amended hybrid multi-verse opti-
mizer with genetic algorithm for solving task scheduling problem in
cloud computing,” J. Supercomput., vol. 78, no. 1, pp. 740–765, 2022.

[19] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “AdPSO: Adaptive
PSO-based task scheduling approach for cloud computing,” Sensors,
vol. 22, no. 3, p. 920, 2022.

[20] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing SLA violations,” in Proc. 10th IFIP/IEEE Int.
Symp. Integr. Netw. Manage., 2007, pp. 119–128.

[21] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Release-
time aware VM placement,” in Proc. IEEE Globecom Workshops (GC
Wkshps), 2014, pp. 122–126.

[22] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and
F. Xia, “A survey on virtual machine migration and server consolidation
frameworks for cloud data centers,” J. Netw. Comput. Appl., vol. 52,
pp. 11–25, Jun. 2015.

[23] Y. Huang, H. Xu, H. Gao, X. Ma, and W. Hussain, “SSUR: An approach
to Optimizing virtual machine allocation strategy based on user require-
ments for cloud data Center,” IEEE Trans. Green Commun. Netw., vol. 5,
no. 2, pp. 670–681, Jun. 2021.

[24] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient VM placement with
multiple deterministic and stochastic resources in data centers,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), 2012, pp. 2505–2510.

[25] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement learn-
ing,” in Proc. 22nd Euromicro Int. Conf. Parallel, Distrib., Netw.-Based
Process., 2014, pp. 500–507.

[26] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros, “Scalable
traffic-aware virtual machine management for cloud data centers,” in
Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst., 2014, pp. 238–247.

[27] T. Yang, H. Jiang, Y. Hou, and Y. Geng, “Carbon management of multi-
datacenter based on Spatio-temporal task migration,” IEEE Trans. Cloud
Comput., early access, Nov. 25, 2021, doi: 10.1109/TCC.2021.3130644.

[28] M. Zakarya, “Energy, performance and cost efficient datacenters: A
survey,” Renew. Sustain. Energy Rev., vol. 94, pp. 363–385, Oct. 2018.

[29] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

[30] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[31] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[32] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 197–210.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSM.2021.3137926
http://dx.doi.org/10.1109/TCC.2021.3130644

LOU et al.: ENERGY-EFFICIENT JOINT TASK ASSIGNMENT AND MIGRATION IN DATA CENTERS 973

[33] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proc. Conf. ACM Special Interest Group Data Commun., 2018,
pp. 191–205.

[34] J. Ho, J. Gupta, and S. Ermon, “Model-free imitation learning
with policy optimization,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2760–2769.

[35] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[36] M. Bojarski et al., “End to end learning for self-driving cars,” 2016,
arXiv:1604.07316.

[37] A. R. Hummaida, N. W. Paton, and R. Sakellariou, “Scalable vir-
tual machine migration using reinforcement learning,” J. Grid Comput.,
vol. 20, no. 2, pp. 1–26, 2022.

[38] Y. Peng, L. Liu, Y. Zhou, J. Shi, and J. Li, “Deep reinforcement learning-
based dynamic service migration in vehicular networks,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), 2019, pp. 1–6.

[39] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 279–292, 1992.

[40] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[41] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Proc. Adv. Neural Inf. Process.
Syst., 1996, pp. 1038–1044.

[42] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and
S. Rao, “Efficient queue management for cluster scheduling,” in Proc.
11th Eur. Conf. Comput. Syst., 2016, p. 36.

[43] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger,
“3sigma: Distribution-based cluster scheduling for runtime uncertainty,”
in Proc. 13th EuroSys Conf., 2018, p. 2.

[44] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with borg,” in
Proc. 10th Eur. Conf. Comput. Syst., 2015, p. 18.

[45] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management
of data center resources for cloud computing: A vision, architectural
elements, and open challenges,” 2010, arXiv:1006.0308.

[46] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format+ schema,” Google, Inc., Mountain View, CA, USA, White
Paper, 2011.

[47] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. 5th Eur. Conf. Comput. Syst.,
2010, pp. 265–278.

[48] X. Zhou, K. Wang, W. Jia, and M. Guo, “Reinforcement learning-
based adaptive resource management of differentiated services in geo-
distributed data centers,” in Proc. IEEE/ACM 25th Int. Symp. Qual.
Service (IWQoS), 2017, pp. 1–6.

[49] L. Versluis et al., “The workflow trace archive: Open-access data from
public and private computing infrastructures,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 9, pp. 2170–2184, Sep. 2020.

[50] Z. Tang, F. Zhang, X. Zhou, W. Jia, and W. Zhao, “Pricing model for
dynamic resource overbooking in edge computing,” IEEE Trans. Cloud
Comput., early access, May 20, 2022, doi: 10.1109/TCC.2022.3175610.

[51] A. Graves, “Generating sequences with recurrent neural networks,”
2013, arXiv:1308.0850.

[52] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers,”
Concurrency Comput. Pract. Exp., vol. 24, no. 13, pp. 1397–1420,
2012.

Jiong Lou received the B.S. degree from the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China, in 2016,
where he is currently pursuing the Ph.D. degree.
He has been visiting the Institute of Artificial
Intelligence and Future Networks, Beijing Normal
University, since 2020. His current research interests
include edge computing, resource allocation, and
reinforcement learning.

Zhiqing Tang received the B.S. degree from
the School of Communication and Information
Engineering, University of Electronic Science and
Technology of China, China, in 2015, and the Ph.D.
degree from the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
China, in 2022. He has been visiting the Institute of
Artificial Intelligence and Future Networks, Beijing
Normal University, since 2020. His current research
interests include edge computing, resource alloca-
tion, and reinforcement learning.

Weijia Jia (Fellow, IEEE) received the B.Sc. and
M.Sc. degrees in computer science from Center
South University, China, in 1982 and 1984, respec-
tively, and the Master of Applied Science and Ph.D.
degrees in computer science from the Polytechnic
Faculty of Mons, Belgium, in 1992 and 1993,
respectively. He is currently a Chair Professor,
the Director of BNU-UIC Institute of Artificial
Intelligence and Future Networks, Beijing Normal
University (Zhuhai Campus), the VP for Research of
BNU-HKBU United International College, and has

been the Zhiyuan Chair Professor of Shanghai Jiao Tong University, China.
He was the Chair Professor and the Deputy Director of State Key Laboratory
of Internet of Things for Smart City, University of Macau. From 1993 to
1995, he joined German National Research Center for Information Science,
Bonn (St. Augustine) as a Research Fellow. From 1995 to 2013, he worked
with the City University of Hong Kong as a Professor. His contributions
have been recognized as optimal network routing and deployment, anycast
and QoS routing, sensors networking, AI (knowledge relation extractions and
NLP), and edge computing. He has over 600 publications in the prestige inter-
national journals/conferences and research books and book chapters. He has
received the best product awards from the International Science and Tech.
Expo (Shenzhen) in 2011 and 2012 and the 1st Prize of Scientific Research
Awards from the Ministry of Education of China in 2017 (list 2). He has
served as an area editor for various prestige international journals, the chair
and a PC member/skeynote speaker for many top international conferences.
He is the Distinguished Member of CCF.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 30,2023 at 00:17:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2022.3175610

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

