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Abstract—In Mobile Edge Computing (MEC), latency-sensitive mobile applications comprising dependent tasks can be scheduled to

edge or cloud servers to reduce latency and execution costs. However, existing algorithms based on deadline distribution can hardly

satisfy tight application deadlines in heterogeneous MEC due to lacking a global view of the future impacts on descendant tasks. To fill

in this gap, we formulate the deadline-constrained cost optimization problem for dependent task scheduling in MEC and propose a

low-complexity scheduling algorithm that considers a single task’s future impacts in two stages. Specifically: (1) In the edge scheduling

stage, each task is scheduled according to its successors’ latest start times instead of its sub-deadline to alleviate the lateness of its

successors. An edge-only schedule plan is generated by scheduling tasks only on edge servers to save execution costs. (2) In the

cloud offloading stage, in order to utilize the powerful cloud resources to satisfy the deadline, the edge-only schedule plan missing the

deadline is efficiently modified by properly offloading multiple successive tasks to the cloud. Simulation results show the substantial

advantage of the proposed algorithm over baselines in both online and offline scenarios.

Index Terms—Constrained optimization, dependent task, mobile edge computing, task scheduling, tight deadline

Ç

1 INTRODUCTION

MOBILE Edge Computing (MEC) [1] is a promising para-
digm that provides computation resources at the edge

of the Internet (e.g., wireless access points) in order that the
resource-limited devices can offload mobile applications to
nearby edge servers with low latency [2], [3]. Fast-growing

mobile applications (e.g., augmented reality [4], cognitive
assistance [5], and video processing [6]) are computation-
intensive and latency-sensitive [7], so directly offloading the
entire application to a proximate edge server can hardly sat-
isfy the Quality of Service requirements (e.g., tight deadline)
of these applications. To further improve the parallelism [8]
and achieve higher performance [9], a mobile application
can be divided into a set of inter-dependent tasks, and tasks
can be scheduled to different edge servers.

In MEC, it is critical to satisfy the tight deadlines of
mobile applications and reduce the total costs. For example,
an augmented reality application [10] consisting of multiple
dependent tasks (e.g., renderer, object recognizer, and
tracker) typically requires a rapid response in tens of milli-
seconds. Most of the previous work on deadline constrained
dependent tasks scheduling (e.g., scientific workflow [11]) is
designed for cloud computing and can be classified into two
categories: meta-heuristics [11], [12], [13] and deadline dis-
tribution based heuristics [14], [15], [16], [17]. Meta-heuris-
tics are designed to schedule large-scale dependent tasks in
the cloud since they are usually time-consuming and thus
can hardly satisfy the real-time requirements of MEC. Dead-
line distribution based heuristics are suited to schedule the
tight deadline constrained applications in MEC since the
low complexity. They mainly consist of two steps [15], [16]:
(1) Divide the application deadline into multiple sub-dead-
lines and distribute sub-deadlines to individual tasks. (2)
Sort tasks and greedily select the resource with the lowest
cost for each task to meet its sub-deadline.

However, these deadline distribution based heuristics
only focus on scheduling each task to satisfy its sub-dead-
line but ignore the future impact of each decision on
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scheduling the following tasks, which has been pointed out
as short-sighted [18], [19], [20]. Their short-sighted flaw is
more severe in MEC than cloud computing due to the
increasingly tight deadlines of mobile applications and the
highly heterogeneous MEC network, making them easy to
fall into local optima (i.e., unable to satisfy tight deadlines
and reduce execution costs simultaneously). Specifically,
the short-sighted flaw is mainly manifested in the following
two issues:

First, different transmission times of each task’s output
data incurred by heterogeneous bandwidths between edge
servers affect the scheduling of the following tasks. Blindly
scheduling a task with much output data to a server with
low bandwidth will generate a long transmission time in
the future, which squeezes the descendant tasks’ execution
time. Therefore, the short remaining time to execute the
descendant tasks results in more application lateness or
higher execution costs due to the tight deadlines.

Second, the highly heterogeneous processing and trans-
mission capabilities of edge nodes and the cloud affect the
scheduling of dependent tasks with tight deadlines. Off-
loading a single task to the cloud may suffer from a long
transmission time. These short-sighted algorithms simply
regard the cloud as powerful edge servers, making them
tend to schedule a single task to a nearby edge server for
the task’s earlier finish time and lower execution cost. How-
ever, in this way, they severely neglect that the finish time
of the entire application can benefit from executing multiple
successive tasks in the cloud. As a result, more mobile appli-
cations will miss their deadlines.

In this paper, we first formulate the deadline-constrained
cost optimization problem for dependent task scheduling in
heterogeneous MEC. The inapproximability and NP-hard-
ness of this problem are proved. Then, a novel low-complex-
ity heuristic, named Deadline-constrained Cost-effective
algorithm for Dependent task Scheduling (DCDS), is pro-
posed to solve this problem. DCDS consists of two stages
specifically designed to address the above two issues by con-
sidering the future impact of each task’s scheduling decision.
In the edge scheduling stage, an edge-only schedule plan is
generated by deciding which edge server and when to exe-
cute each task. First, the latest start time is assigned to each
task based on the longest path of its descendant tasks. Then,
the cheapest edge server is selected for each task to ensure
the estimated start times of its immediate successor tasks sat-
isfy the corresponding latest start times. In the cloud offload-
ing stage, the edge-only schedule plan that misses the overall
deadline is modified by particularly designed cloud offload-
ing. Multiple successive tasks are offloaded to the powerful
cloud, which offsets the long data transmission time of the
edge-cloud link. By utilizing computation resources in the
cloud, more applications’ tight deadlines will be met, and
more computation resources of edge servers will be reserved
for future applications. The time complexity of DCDS is
OðjVj2jSjÞ, where jVj and jSj are the number of tasks and
edge servers, respectively. Extensive simulation results
based on real-world applications show the substantial per-
formance advantage of DCDS over existing baselines under
various simulation settings in both online and offline
scenarios.

The main novelty of this paper is as follows. To the best
of our knowledge, we are the first team to consider the
dependent task scheduling problem with tight deadlines on
the heterogeneous MEC network. We clearly point out the
short-sighted flaw of deadline distribution based heuristics.
As mentioned before, these short-sighted algorithms only
schedule tasks to satisfy their sub-deadlines without consid-
ering the future impacts. When scheduling applications
with tight deadlines on the heterogeneous MEC network, it
results in more lateness, for these algorithms may schedule
tasks to nearby edge servers with low bandwidth and also
ignore the choice of utilizing the powerful computation
resources in the cloud. We particularly design DCDS to
solve these issues by (1) considering the transmission time
of each task’s output data and (2) offloading multiple suc-
cessive tasks to the powerful cloud. Besides, the time com-
plexity of DCDS is as low as the previous work.

The main contributions of this paper are summarized as
follows:

1) Considering the latency-sensitive applications and
the heterogeneous MEC network, we formulate the
deadline-constrained cost optimization problem for
dependent task scheduling in MEC. A novel low-
complexity heuristic algorithm with two stages is
proposed to schedule applications with tight dead-
lines in highly heterogeneous MEC.

2) In the edge scheduling stage, a single task’s schedul-
ing decision is made based on its successors’ latest
start times, which additionally considers its output
data size and the selected server’s bandwidth. In the
cloud offloading stage, each task and its descendant
tasks are scheduled as a whole to smartly leverage the
powerful cloud resources and thus satisfy the tight
deadlines of computation-intensive applications.

3) Extensive simulations based on representative real-
world applications demonstrate the substantial per-
formance advantage of DCDS compared to existing
baselines in both online and offline scenarios.

2 RELATED WORK

In this section, we classify the related work in two aspects:
(1) Deadline-constrained Workflow scheduling. (2) Depen-
dent task scheduling in MEC.

2.1 Deadline-Constrained Workflow Scheduling

The workflow is also described by a Directed Acyclic Graph
(DAG) in which each task is represented by a node, and
each dependency is represented by a directed edge [21].
Several scheduling algorithms are proposed to reduce the
total execution costs under the deadline constraint [22].
These algorithms are categorized into two classes: meta-
heuristics and deadline distribution based heuristics.

Several meta-heuristics are proposed to address the
workflow scheduling problem [11], [12], [13], [16], [23].
Rodriguez et al. [12] solve the optimization problem by
using particle swarm optimization. In [16], the authors pres-
ent an ant colony optimization based algorithm L-ACO,
where the ant constructs an ordered task list according to
the pheromone trail and probabilistic upward rank. In [23],
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Wu et al. propose a multiobjective evolutionary list schedul-
ing (MOELS) algorithm, where a genome is represented by
a scheduling sequence and a preference weight and is inter-
preted to a scheduling solution via a list scheduling heuris-
tic. Nevertheless, these meta-heuristics are time-consuming
and hardly meet the real-time requirements of MEC.

Deadline distribution based heuristics [14], [15], [16], [24]
first set sub-deadlines to tasks and then select the cheapest
resource for each task to meet its sub-deadline. Yu et al. [14]
partition tasks into different levels and divide the deadline
into partitions in proportion to their minimum execution
time. Abrishami [15] et al. propose two algorithms called IC-
PCP and IC-PCPD2 for scheduling workflows in the cloud
based on Partial Critical Path [21]. IC-PCP distributes the
sub-deadline to each PCP, and IC-PCPD2 further distributes
the sub-deadline to each task in proportion to its minimum
execution time. Then, the cheapest resource which can meet
the sub-deadline is selected. In [16], ProLiS is proposed to
distribute the sub-deadline to each task proportionally to the
probabilistic upward rank. The algorithm is designed to take
into account the zero transmission time when tasks are co-
located. In [24], Arabnejad et al. assign tasks to different lev-
els and distribute the sub-deadline to each level according to
both the task number and the total workload.

Compared with these algorithms, DCDS is designed for
scheduling applications with tight deadlines in heteroge-
neous MEC. Specifically: (1) In the edge scheduling stage,
DCDS selects an edge server for each task with considering
the transmission time of its output data. (2) In the cloud off-
loading stage, the cloud is efficiently utilized by offloading
multiple successive tasks.

2.2 Dependent Task Scheduling in MEC

Dependent task scheduling in MEC are divided into
(a) Scheduling tasks on a single local device and the cloud.
(b) Scheduling tasks on multiple edge servers and the cloud.

Some early work focused on scheduling dependent tasks
on a single local device and the cloud. MAUI [25] enables
fine-grained energy-aware offloading of mobile applications
to the cloud. CloneCloud [26] makes offloading decisions
flexible without modification to the application’s source
code and enables fine-grained partition on the thread level.
ThinkAir [8] enhances the power of mobile cloud comput-
ing by parallelizing method execution using multiple vir-
tual machine (VM) images. In [27], authors present an
online task offloading algorithm to minimize the makespan
of a single application. Mahmoodi et al. [28] first study joint
scheduling and cloud offloading for mobile applications
with arbitrary component dependencies and solve the prob-
lem by using IBM CPLEX optimizer [29].

Some recent work studied scheduling dependent tasks
on multiple edge servers and the cloud [9], [17], [30], [31].
Kao [9] design a polynomial-time approximation algorithm
(Hermes) to minimize the makespan under resource cost
constraints when assigning task graphs that can be
described as serial trees to multiple devices. GenDoc [30] is
proposed to optimize the latency of dependent tasks in
MEC, considering function configuration.

ITAGS [17] identifies each task’s scheduling decision that
minimizes the total cost of running an application under a

deadline in MEC. It uses a binary-relaxed version of the
original problem to set a sub-deadline for each task and
then greedily optimizes the cost of each task subject to its
sub-deadline. Compared with ITAGS, DCDS additionally
considers the following points: First, in the edge scheduling
stage, considering the transmission time of each task’s out-
put data, DCDS selects the cheapest edge server for each
task to ensure that the estimated start times of its immediate
successor tasks satisfy the corresponding latest start times.
Second, in the cloud offloading stage, the remote cloud with
infinite capacity is explicitly modeled. Third, DCDS is
designed for scheduling dynamically released applications
in online scenarios, which are common in MEC.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 MEC Network Model

In this paper, the heterogeneous MEC network is consid-
ered with multiple mobile devices, several edge nodes, and
a remote cloud. Fig. 1 depicts an illustrative example of an
MEC network including seven heterogeneous edge servers
(including mobile devices and edge nodes) and a remote
cloud. A more general MEC is considered, where depen-
dent tasks can be executed on mobile devices, edge servers,
and the cloud [17], [32]. Incentive mechanisms can make
mobile devices willing to offer processing capabilities for
some returns [33]. Therefore, mobile devices are regarded
as edge servers with fewer resources and lower costs. For
ease of description, both mobile devices and edge servers
are referred to as edge servers in the following.

As shown in Fig. 1, a centralized scheduler is deployed
by a third-party service provider on one edge server [34].
When a mobile application is released from a mobile device,
the application request, including the task graph informa-
tion and the deadline, is forwarded to the scheduler through
SDN [35]. Then, the scheduler collects the information of the
MEC network. For example, the network status is measured
by iperf tool, and the processing capability is measured by
perf-stat tool. Since mobile application typically has a rela-
tively short duration, we assume that the network status

Fig. 1. An example of the MEC network consists of four mobile devices,
three edge nodes, and a remote cloud. Servers in the MEC network are
fully connected and can communicate with each other. A scheduler is
deployed by a third-party service provider on one edge server. The
scheduling process includes (1) The mobile device s2 releases mobile
application a1 at the time of tr1. The scheduler collects the information of
both the task graph and the MEC network. (2) Based on the information,
the scheduler generates a schedule plan, returns it back to the mobile
device, and sends commands to edge servers to reserve the corre-
sponding execution time slots. (3) Dependent tasks are scheduled
according to the schedule plan.
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and processing capability is stable during each application’s
execution duration and can vary over a longer period (i.e.,
between multiple applications’ execution). By maintaining
the daemon process and a long-lived TCP connection with
each edge server, the scheduler can obtain this real-time
information before making the schedule plan. Based on the
information, the scheduler calls DCDS to generate a sched-
ule plan. If the deadline can be met, the scheduler returns
the schedule plan back to the mobile device and sends com-
mands to edge servers to reserve the corresponding execu-
tion time slots; otherwise, the scheduler rejects the mobile
application request. The transmission time of request and
scheduling decisions is typically much shorter than the
application’s makespan, so the latency caused by invoking
the centralized scheduler is ignored. Finally, dependent
tasks are executed on the selected servers during the
reserved time slots according to the schedule plan.

The key notations used in the paper are summarized in
Table 1.

Edge Server. Let the set of all edge servers be S ¼
½s1; . . . ; sjSj� and its size be jSj. pu and cu are denoted as
server su’s execution time per unit workload and execution
cost per unit workload, respectively. In general, faster serv-
ers are more expensive than slower ones [22]

pu � pu0 ; if cu � cu0 : (1)

The edge servers are assumed to be unary, i.e., each server
executes one task at a time [17].

Cloud Server. The remote cloud is denoted as sr. The exe-
cution time per unit workload of the cloud pr is lower than
edge servers, and the execution cost per unit workload cr is
higher than edge servers. The remote cloud can process an
infinite number of tasks simultaneously.

MEC Network. The MEC network is fully connected. Let
du;v be the delay per unit data transmission from server su to
server sv. The bandwidth of the edge-cloud link is limited,
so the corresponding delay per unit data transmission (i.e.,
dr;v and dv;r) is much higher than transmission time between
edge servers. Specially, dr;v and dv;r are equal to dr. The com-
munication delay between two tasks executed in the cloud
or on the same edge server is negligible, i.e., dr;r ¼ 0 and
du;u ¼ 0 [17].

3.2 Application Model

Application. The set of all applications is defined as A ¼
½a1; . . . ; ajAj�. The release time of application aj is denoted as
trj . The application deadline tdj is set by the mobile user. The
mobile device su that releases application aj is denoted as
aj’s release server hr

j , i.e., h
r
j ¼ u. The structure of applica-

tion aj is described by a DAG, named task graph,
Gj ¼ ðVj;EjÞ. Fig. 2 depicts a task graph example, which
consists of twelve dependent tasks. Vj is the set of nodes
that represent tasks, and Ej is the set of directed edges
which represent dependencies between tasks. In practice,
the task graph Gj, also named application profile, can be
obtained by applying a program profiler [8], [25]. In this
paper, we assume that the corresponding application profile
is given when the mobile user releases the application.

Task. A task of the application aj is denoted as vj;i 2 Vj.
Each task vj;i has a weight wj;i, which represents the task’s
computation workload, i.e., the number of CPU cycles
required to complete the task. The execution server of task
vj;i is denoted as hj;i. If task vj;i is scheduled on server su,
then hj;i ¼ u and the execution time and the execution cost
of task vj;i are calculated as wj;ipu and wj;icu, respectively.

The directed edge ði; i0Þ 2 Ej specifies that there is some
required data transmission ej

i;i0 from task vj;i to task vj;i0 . For
each edge ði; i0Þ 2 Ej, task vj;i is the predecessor of task vj;i0 ,
and task vj;i0 is the successor of task vj;i. If two tasks vj;i and
vj;i0 with dependency data ej

i;i0 are scheduled on servers su
and su0 , the transmission time is ej

i;i0du;u0 .

TABLE 1
Notations

Notation Description

S Set of edge servers
jSj Total number of edge servers
A Set of applications
jAj Total number of applications
Gj Task graph of application aj
Vj Set of tasks in application aj
Ej Set of dependencies in application aj
pu Execution time per unit workload on server su
cu Execution cost per unit workload on server su
pr Execution time per unit workload in the cloud
cr Execution cost per unit workload in the cloud
du;v Delay per unit data transmission from server

su to server sv
dr Delay per unit data transmission of the edge-

cloud link
trj Release time of application aj
tdj Deadline of application aj
hr
j Release server of application aj

wj;i computation workload of task vj;i
ej
i;i0 Dependency data from task vj;i to task vj;i0
nj Total number of tasks in application aj
vj;1 Source task of application aj
vj;nj Sink task of application aj
tsj;i Start time of task vj;i
hj;i Execution server of task vj;i
tfj;i Finish time of task vj;i
EST ðvj;i; suÞ Earliest start time of task vj;i on server su
EFT ðvj;i; suÞ Earliest finish time of task vj;i on server su
EEST ðvj;iÞ Estimated earliest start time of task vj;i
LT ðvj;iÞ Latest start time of task vj;i
RTCðvj;iÞ Remaining execution time of task vj;i in the

cloud

Fig. 2. An example of task graph Gj, where each node vj;i specifies a
task labeled with the amount of its workload wj;i, and each directed edge
implies data dependency labeled with the amount of required data trans-
mission eji;i0 . Two grey nodes represent the dummy tasks with zero
workloads.
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Two dummy nodes with zero computation workload (e.g.,
the grey nodes shown in Fig. 2) are inserted into the task
graph. One dummy task named source task is inserted at the
start to trigger the application, and another task named sink
task is inserted at the end to receive all the results back. Thus,
the total number of tasks in application aj is changed

nj ¼ jVjj þ 2: (2)

Then, task graph Gj are relabeled by topological sorting so
that for every directed edge ði; i0Þ, task vj;i comes before vj;i0
in the ordering. After insertion and sorting, Vj and Ej are
updated. The source task and the sink task are denoted as
vj;1 and vj;nj , respectively, and they are scheduled to appli-
cation aj’s release server hr

j by default. For a task vj;i, all
tasks that on the paths from vj;i to the sink task vj;nj are its
descendant tasks, and all tasks that on the paths from the
source task vj;1 to vj;i are its ancestor tasks.

Generally, the MEC scenario can be simplified as follows.
First, the edge server is modeled as unary [17], which exe-
cutes one task at a time. Each server has enough resources
and the initialized runtime environment to execute each
dependent task, only with different execution times. Second,
faster edge servers are assumed to be more expensive than
slower ones [22]. Third, since this paper focuses on schedul-
ing mobile applications, mobile devices are assumed to send
the initial input data and receive the final results [17]. Finally,
the status of servers (including the execution cost, the proc-
essing capability, the bandwidth, etc.) is stable during the
execution of each mobile application but can vary over a lon-
ger period [17], [30].

3.3 Problem Formulation

In this subsection, we introduce constraints and formulate
the dependent task scheduling problem.

The actual start time and actual finish time of a task vj;i
are denoted as tsj;i and tfj;i, respectively. Tasks cannot start
before the application is released:

tsj;i � trj ; 8vj;i 2 Vj; 8aj 2 A: (3)

To satisfy the real-time requirements of mobile applica-
tions, once a task starts to run, it cannot be stopped or
migrated until it completes. The constraints are represented
as:

tfj;i ¼ tsj;i þ wj;iphj;i ; 8vj;i 2 Vj; 8aj 2 A: (4)

Since edge servers in this paper are assumed to be unary,
the execution time of any two non-dummy tasks (e.g., tsj;i
and tsj0;i0 ) on the same edge server can not be overlapped:

maxftsj;i; tsj0;i0 g � minftfj;i; tfj0;i0 g;
8 vj;i 6¼ vj0;i0 ; hj;i ¼ hj0;i0 6¼ r: (5)

For dummy tasks, servers can execute them without consid-
ering overlap constraints in Eq. (5). An infinite number of
tasks can run simultaneously in the remote cloud, so there
is also no overlap constraint in sr.

The two dummy tasks are required to be executed on the
release server,

hj;1 ¼ hj;nj ¼ hr
j; 8aj 2 A: (6)

The start time tsj;1 of the source task vj;1 is equal to trj .
The start time of a task must be larger than the finish time

of its predecessors plus the required data transmission time.
Therefore, dependency constraints are formulated:

tsj;i0 � tfj;i þ ej
i;i0dhj;i;hj;i0 ; 8ði; i0Þ 2 Ej; 8aj 2 A: (7)

The completion time of the application aj is equal to the
finish time of the sink task tfj;nj .

max
vj;i2Vj

tfj;i ¼ tfj;nj ; 8aj 2 A: (8)

The scheduling problem has two coupled objectives. The
first objective is to maximize the number of accepted appli-
cations that can complete before their deadlines, and the
second objective is to minimize the total execution costs of
accepted applications:

Problem 1.

max
fhj;i;tsj;ig

X
aj2A

1ftfj;nj � tdjg (9)

min
fhj;i;tsj;ig

X
aj2A

Xnj
i¼1

1ftfj;nj � tdjgwj;ichj;i (10)

s.t. Eq. ð3Þ�ð7Þ;

1f�g is an indicator function that equals to 1 if the condi-
tion inside holds, and 0 otherwise. To optimize the two
objectives, a schedule plan is generated for each application.
The schedule plan of application aj is defined as
fhj;i; t

s
j;ijvj;i 2 Vjg, including each task’s execution server

hj;i and start time tsj;i. A schedule plan that satisfies all con-
straints in 3, 5, 4, 6, and 7 and meets the application dead-
line is denoted as a successful schedule plan.

3.4 Problem Analysis

Theorem 1. Problem 1 is NP-hard and its accepted application
maximization problem cannot be approximated within any fac-
tor unless NP = P.

Proof. To prove the NP-hardness of Problem 1, the famous
precedence-constrained job scheduling problem is consid-
ered. It has been proved to be NP-hard in [36]. Meanwhile,
the precedence-constrained job scheduling problem is also
a special case of Problem 1: Scheduling a single application
with zero size of dependent data and only on identical
edge servers. Thus, it can be reduced to Problem 1, and
Problem 1 is alsoNP-hard.

Then, we further prove that the accepted application
maximization problem of Problem 1 cannot be approxi-
mated within any factor unless NP=P. A special case of
Problem 1 is considered, wheremultiple identical applica-
tions described in the last paragraph are scheduled. The
release interval of any two consecutive applications is set
to be larger than the deadline so that any two applications
will not compete for computation resources on edge serv-
ers. Assuming that Problem 1 can be approximatedwithin
a factor larger than zero, there must exist successful
schedule plans for applications in Problem 1. These
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successful schedule plans can also be applied to answer
the precedence-constrained job scheduling problem,
which has been proved to be NP-hard. Therefore, the
accepted application maximization problem of Problem 1
cannot be approximatedwithin any factor unless NP=P.tu

Due to the hardness of this problem and the tight applica-
tion deadlines, low-complexity deadline distribution based
heuristics are more suitable than the meta-heuristics with
heavy computational overhead. However, these heuristics
that focus on local scheduling decisions for a single task’s
deadline often fail to minimize the execution costs under
tight deadlines.

Fig. 3 depicts an example where a representative dead-
line distribution based algorithm ProLis [16] is applied to
schedule the application of Fig. 2 in an MEC network con-
sisting of five edge servers configured in Table 2. pu, cu, and
du represent each server’s processing capability, execution
costs, and bandwidths, respectively. In this example, each
server has an identical transmission time with other servers.
The server configurations are generated according to
Table 3, and the detailed description is in Section 5. The
deadline is set to 360. In Fig. 3, ProLis [16] generates a
unsuccessful schedule plan. As shown in the Gantt chart on
the left and the table of scheduling results on the bottom
right, the task vj;9’s output data transmission finish time is
later than other predecessors of task vj;12, which causes the
lateness of the application. From the table of different execu-
tion servers for task vj;9 on the upper right, it can be
observed that when making the scheduling decision for
task vj;9, ProLis only considers the finish time of task vj;9 but

ignores the long transmission time produced by the consid-
erable output data of vj;9 and the limited bandwidth of s5.
Though task vj;9 finishes before its sub-deadline (i.e., 309)
on s5, the sink task vj;12 is eventually late due to the afore-
mentioned long transmission time. Whereas considering
the output data transmission and selecting s2 or s3 instead
of s5 can make the application complete before the deadline,
even though they do not satisfy the sub-deadline of task vj;9.
The simple example shows the importance of considering
the future impacts when scheduling dependent tasks in
MEC.

4 ALGORITHM

To address the issues of previous studies, we propose
DCDS based on the following two rationales: First, latency-
sensitive applications typically have tight deadlines, so the
algorithm design should carefully take the future impacts
into consideration to avoid improper scheduling. Taking
Fig. 4 as an example, when scheduling a single task vj;6, the
transmission time of its output data ej6;9 and ej6;10 inside the
orange circle should be considered at the same time. Sec-
ond, servers in the cloud have several unique characteris-
tics: nearly infinite capacity of computation resources,
negligible inner transmission time, and limited bandwidth
of the edge-cloud link. Therefore, offloading multiple suc-
cessive tasks should be particularly and explicitly consid-
ered in the cloud offloading stage instead of only modeling
the cloud as powerful edge servers like previous work.

Fig. 3. An example of scheduling the application in Fig. 2 on edge servers of Table 2. The deadline is set to 360. The time values are rounded. In this
example, the deadline distribution based heuristic, ProLis [16], generates an unsuccessful schedule plan since the transmission of vj;9’s output data
cannot be transferred before the deadline (shown in the table of scheduling results). When scheduling vj;9, ProLis ignores the long transmission time
of its output data but only focuses on its finish time. In the table of different execution servers for task vj;9 on the bottom right, despite task vj;9 finishing
before its sub-deadline (i.e., 309) on s5, the sink task vj;12 is eventually late due to the aforementioned long transmission time. Whereas considering
the output data transmission and selecting s2 or s3 instead of s5 can meet the deadline, even though they do not satisfy the sub-deadline of task vj;9.
The simple example shows the importance of considering the future impacts when scheduling dependent tasks in MEC.

TABLE 2
Configurations of Edge Servers

Server pu cu du Server pu cu du

s1 6 11.6 8.6 s4 7 9.3 19.6
s2 7 9.3 7.6 s5 5 15 17.0
s3 5 15 8.0

TABLE 3
Capabilities and Costs of Server Types

Server type p* c** Server type p* c**

Edge Server 1 10 5.0 Edge Server 5 6 11.6
Edge Server 2 9 6.1 Edge Server 6 5 15.0
Edge Server 3 8 7.5 CloudServer 2 50.0
Edge Server 4 7 9.3

*p is the execution time per unit workload.
**c is the execution cost per unit workload.

5834 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 23,2023 at 19:01:31 UTC from IEEE Xplore.  Restrictions apply. 



DCDS has two stages to generate schedule plans for
mobile applications: (1) In the edge scheduling stage, the
latest start time is assigned to every task according to the
longest path from it to the sink task. Then, the cheapest
edge server for each task is selected to make the estimated
start times of its immediate successor tasks satisfy the corre-
sponding latest start times. (2) In the cloud offloading stage,
DCDS tries to improve the edge-only schedule plan by
incrementally changing tasks to execute in the cloud and
keeping other tasks’ scheduling results on edge servers
unchanged.

Algorithm 1 shows the pseudocode of DCDS in MEC.
DCDS is applied to generate a schedule plan when a mobile
application aj is released to the MEC network. Same as the
settings of most of the related studies, the information of
both the task graph and the MEC network is assumed to be
known at the time of generating schedule plans. To reduce
the algorithm complexity, for each application, DCDS is
performed only once, instead of repetitively applying rear-
rangement [37] or rescheduling methods [38]. In line 1, an
edge-only schedule plan on edge servers for the application
is generated in the edge scheduling stage. If the overall
deadline cannot be satisfied, the cloud offloading stage is
called to modify the schedule plan in line 3. In lines 4 - 7, if
the overall deadline is satisfied, application aj will be
accepted, and the schedule plan will be applied; otherwise,
application aj will be rejected. In line 8, the idle time slots
on each edge server are updated accordingly. The details of
the edge scheduling stage and the cloud offloading stage
are introduced in the following subsections.

4.1 Edge Scheduling

The edge scheduling stage has three steps: (1) Latest start
time setting. (2) Task ranking. (3) Server selection.

Before introducing the latest start time, we give a brief
introduction of the upward rank, rank. rankðvj;iÞ represents
the longest path from task vj;i to sink task vj;nj [39], which is
recursively defined as:

rankðvj;iÞ ¼ max
ði;i0Þ2Ej

frankðvj;i0 Þ þ ej
i;i0dg þ wj;ip; (11)

where p and d are the average execution time per unit work-
load and the average transmission delay per unit data,
respectively. The upward rank is computed by traversing
the graph upward from the sink task vj;nj to the source task
vj;1. The rankðvj;njÞ of the sink task vj;nj is

rankðvj;njÞ ¼ wj;njp ¼ 0: (12)

The rankðvj;1Þ of the source task vj;1 represents the longest
path of Gj.

Algorithm 1. DCDS

Input: Gj, t
r
j , t

d
j

Output: hj;i; t
s
j;i

/* Edge scheduling stage */

1: Call Algorithm 2 and get the edge-only schedule plan
fhj;i; t

s
j;ijvj;ig;

/* Cloud offloading stage */

2: if tfj;nj > tdj then

3: Call Algorithm 3 and modify the schedule plan
fhj;i; t

s
j;ijvj;i 2 Vjg ;

/* Apply the schedule plan */

4: if tfj;nj � tdj then
5: Accept aj and apply fhj;i; t

s
j;ijvj;i 2 Vjg;

6: else
7: Reject aj.;
8: Update idle time slots on edge servers;
9: end;

Latest Start Time Setting. First, we assign each task vj;i the
latest start time in proportion to the longest path of the task
graph Gj minus the longest path from vj;i to the sink task,
i.e., rankðvj;1Þ � rankðvj;iÞ. The latest start time LT of task
vj;i is computed via

LT ðvj;iÞ ¼ trj þ ðtdj � trjÞ �
rankðvj;1Þ � rankðvj;iÞ

rankðvj;1Þ : (13)

Specially, LT ðvj;1Þ and LT ðvj;njÞ are equal to the release time
trj and the overall deadline tdj , respectively. We note that the
latest start time can be modified according to different dead-
line distribution methods.

Task Ranking. Next, tasks are sorted in ascending order of
upward ranks. Since the rank upward of a task is always
lower than its predecessors according to Eq. (11), this rank-
ing method ensures the topological order of Gj and pre-
serves the dependencies. Therefore, when scheduling a
task, the scheduling decisions (i.e., execution servers and
start times) of its predecessors are already determined.

Server Selection. Finally, the execution server is selected
for each task. When it is task vj;i’s turn, scheduling decisions
of its predecessors are already determined. The scheduling
decision of task vj;i must satisfy dependency constraints in
Eq. (7) and overlap constraints in Eq. (5). It is noted that the
scheduling decisions of the source task vj;1 are determined
(i.e., tsj;1 ¼ trj and hj;1 ¼ hr

j), and the start time of the sink
task vj;nj is determined regardless of overlap constraints in
Eq. (5). For each task vj;i other than two dummy tasks, the

Fig. 4. An example of task graph Gj that illustrates the differences
between DCDS and existing heuristics when scheduling the task vj;6.
The existing heuristics only consider the input data and the task vj;6’s
workload inside the dotted black circle. In DCDS, the future impact of the
task vj;6, i.e., the output data inside the orange circle, are additionally
considered in the edge scheduling stage. In the cloud offloading stage,
the blue node and its descendants (i.e., light blue nodes) are offloaded
to the cloud together.
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earliest start time (EST ) of vj;i on every server is computed
before selecting the server.

In order to improve the resource utilization and make the
start time earlier, the insertion-based policy ESTfindwidely
used in workflow scheduling [19], [39] is applied to com-
pute EST . ESTfind tries to insert a task at the earliest idle
time between two already scheduled tasks on a server if the
time slot is large enough to accommodate the task.
EST ðvj;i; suÞ is computed by

EST ðvj;i; suÞ

¼
trj ; i ¼ 1;

ESTfindðsu; TF ðvj;i; suÞ; wj;ipuÞ; 1 < i < nj;

TF ðvj;iÞ; i ¼ nj;

8><
>: (14)

where TF ðvj;i; suÞ is the input data transmission finish time
of task vj;i on su. TF ðvj;i; suÞ is computed by

TF ðvj;i; suÞ ¼ max
ði0;iÞ2Ej

ftsj;i0 þ wj;i0phj;i0 þ ej
i0;idhj;i0 ;ug: (15)

The insertion-based policy ESTfind is implemented by
searching for the earliest idle time slot (after TF ðvj;i; suÞ)
that is capable of accommodating task vj;i’s execution time
wj;ipu on server su:

ESTfindðsu; t; wj;ipuÞ ¼
min
k2su:l
fmaxðt; xs

k;uÞjxf
k;u �maxðt; xs

k;uÞ � wj;ipug; (16)

where su:l is the idle time slot list of server su, and xs
k;u and

xf
k;u are the start time and the finish time of time slot k on

server su, respectively. The earliest finish time (EFT ) of task
vj;i in server su is calculated by

EFT ðvj;i; suÞ ¼ EST ðvj;i; suÞ þ wj;ipu: (17)

The overall deadline will be satisfied if a schedule plan
meets all tasks’ latest start time for LT ðvj;njÞ ¼ tdj and wj;nj ¼
0. When scheduling a task vj;i, the objective is to make every
successor of vj;i start earlier than its latest start time. The
estimated earliest start time (EEST ) of vj;i’s successors is:

EEST ðvj;i0 Þ ¼
EFT ðvj;i; suÞ þ eji;i0du; i0 6¼ nj;

EFT ðvj;i; suÞ þ ej
i;i0du;hrj ; i0 ¼ nj;

8<
: (18)

where du is the average delay per unit data transmission
from server su to other edge servers. ej

i;i0du is used to esti-
mate the required transmission time from task vj;i to task
vj;i0 before determining the execution server of the successor
task vj;i0 . In this way, the size of the transmission data to suc-
cessor tasks and the bandwidth of edge servers are consid-
ered when scheduling the current task. A server su is
selected to meet the latest start times of its successors:

EEST ðvj;i0 Þ � LT ðvj;i0 Þ; 8ði; i0Þ 2 Ej; (19)

If there exist edge servers that can satisfy Eq. (19) for every
successor of task vj;i, DCDS chooses the cheapest one; other-
wise, it chooses the edge server that causes the minimal
maximum lateness of the current task’s successors:

hj;i ¼ argmin
su2S

f max
ði;i0Þ2Ej

fEEST ðvj;i0 Þ � LT ðvj;i0 Þgg: (20)

The detailed algorithm is shown in Algorithm 2. In lines
1-2, the upward ranks and latest start times of tasks are
computed. In lines 5-14, if there exist edge servers that can
satisfy Eq. (19), the cheapest one will be selected; otherwise,
the server that causes the minimal maximum lateness of the
successors is selected in line 16. In line 17, the start time of
task vj;i is set. In line 18, task vj;i is scheduled to server shj;i
and idle time slots in server shj;i are temporally updated.

Algorithm 2. Edge Scheduling

Input: S, Gj, t
r
j , t

d
j

Output: hj;i, t
s
j;i

1: Compute the upward rank for each task via Eq. (11);
2: Compute the latest start time for each task via Eq. (13);
3: Sort tasks of application aj in a scheduling list in ascending

order of upward ranks;
4: for vj;i in the scheduling list do
5: hj;i ¼ �1;
6: c ¼ maxsu2Sfcug þ 1;
7: if vj;i ¼ vj;1 or vj;i ¼ vj;nj then
8: hj;i ¼ hr

j ;
9: else
10: for su 2 S do
11: Compute EEST ðvj;i0 Þ via Eq. (18);
12: if maxði;i0Þ2EjfEEST ðvj;i0 Þ � LT ðvj;i0 Þg < 0 and c >

cu then
13: hj;i ¼ u;
14: c ¼ cu;
15: if hj;i ¼ �1 then
16: Compute hj;i via Eq. (20);
17: tsj;i ¼ EST ðvj;i; suÞ, where u ¼ hj;i;
18: Update idle time slots on edge server shj;i ;
19: Recover idle time slots on edge servers to the state before

scheduling aj;
20: end;

Theorem 2. The schedule plan generated in the edge scheduling
stage satisfies constraints in 3, 5, 4, 6, and 7.

Proof. Each task’s start time is later than the source task’s
start time since the source task is the root of the task
graph. Based on tsj;i ¼ trj in Eq. (14), all tasks’ start times
satisfy constraints in Eq. (3). Eq (4) and Eq. (6) are satis-
fied for the algorithm settings. For overlap constraints in
Eq. (5), the insertion-based policy ESTfind makes sure
that each task runs in an idle time slot of the selected
edge server. Besides, according to ESTfind in Eq. (14),
each task’s scheduling decisions meet dependency con-
straints in Eq. (7). tu

4.2 Cloud Offloading

When the edge-only schedule plan generated by Algo-
rithm 2 fails to meet the application’s deadline, DCDS tries
to utilize powerful cloud resources and improve the sched-
ule plan instead of directly discarding it. However, chang-
ing any task from edge servers to the cloud will affect other
tasks’ scheduling, and cost-effectively rescheduling these
affected tasks under deadline constraints is also NP-hard.
For instance, in Fig. 4, if only task vj;3 is offloaded to the
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cloud, rescheduling the sub task graph consisting of vj;6, vj;9,
vj;10 and vj;12 on edge servers to meet the deadline is also
NP-hard.

Therefore, in the cloud offloading stage, the problem is
heuristically simplified by offloading some tasks to the
cloud and keeping other tasks’ scheduling decisions on
edge servers unchanged. Specifically: (1) Applying one-
climb offloading [40]. One-climb offloading means that in
any task path from the source task to the sink task, there
exists at most one data transmission from edge servers to
the cloud [40]. Take Fig. 4 as an example, in a path vj;1 !
vj;3 ! vj;6 ! vj;9 ! vj;12, there is only one climb at vj;3 !
vj;6. (2) Setting the sink task to receive the data sent back
from the cloud. If a task is scheduled to the cloud, its
descendant tasks, except for the sink task, should also be
scheduled to the cloud. In Fig. 4, if task vj;6 is scheduled to
the cloud, its descendants (light blue nodes) except for vj;12
are also scheduled to the cloud. The heuristic simplification
is reasonable since (a) frequent offloading can bring too
much transmission latency, and (b) the size of the final
result is relatively small for mobile applications [41], [42].
We leave the scheduling problem of offloading arbitrary
tasks to the cloud as future work.

Algorithm 3. Cloud Offloading

Input: S, Gj, hj;i, t
s
j;i, t

d
j

Output: hj;i, t
s
j;i

1: Compute RTCðvj;iÞ for each task via Eq. (21) and Eq. (22);
2: Initialize the edge task set ETS ¼ Vj;
3: Initialize the offloading task queue OTQ;
4: for ði; njÞ 2 Ej do
5: if tsj;i þ wj;iphj;i þ eji;njdhj;i;hj;nj > tdj then

6: OTQ:pushðvj;iÞ, ETS  ETS n fvj;ig;
7: while lenðOTQÞ > 0 do
8: vj;i ¼ OTQ:popðÞ;
9: if vj;i ¼ vj;1 then
10: Return hj;i; t

s
j;i;

11: for ði0; iÞ 2 Ej do
12: if vj;i0 2 ETS and tsj;i0 þ wj;i0phj;i0 þ ej

i0;idr þRTCðvj;iÞ >
tdj then

13: OTQ:pushðvj;i0 Þ, ETS  ETS n fvj;i0 g;
14: for ði; i0Þ 2 Ej do
15: if vj;i0 2 ETS and i0 6¼ nj then
16: OTQ:pushðvj;i0 Þ, ETS  ETS n fvj;i0 g;
17: tsj;nj ¼ tdj ;

18: for vj;i 2 Vj n ETS do

19: Update idle time slots on edge server shj;i ;
20: hj;i ¼ r;

21: tsj;i ¼ tdj �RTCðvj;iÞ;
22: Call RefineScheduling(S, Gj, t

s
j;i, vj;i);

23: end;

Through the above simplification, the scheduling prob-
lem is transformed to determining which tasks and their
descendants (except for the sink node) should run in the cloud to
meet the overall deadline.

Before describing the algorithm, some definitions are first
introduced:

1) Edge task: the task executed on edge servers.
2) Cloud task: the task executed in the remote cloud.
3) Offloading task: the cloud task, one of whose prede-

cessors is executed on edge servers. On the one
hand, offloading tasks belong to cloud tasks; On the
other hand, cloud tasks are offloading tasks or
descendants of offloading tasks.

4) Remaining execution time in the cloud (RTC): for
each task, the RTC is defined as the longest path
from it to the sink task, assuming that the task and
its descendant tasks are scheduled to the cloud.

RTC is used to identify the edge tasks, cloud tasks, and
offloading tasks in a low time complexity way. Since the
transmission time between two tasks in the cloud is negligi-
ble, RTC is defined as

RTCðvj;iÞ ¼ max
ði;i0Þ2Ej

fRTCEðej
i;i0 Þ þ wj;ipjrg; (21)

where RTCEðej
i;i0 Þ is the remaining execution time in the

cloud on edge ej
i;i0 and defined as

RTCEðej
i;i0 Þ ¼

RTCðvj;i0 Þ; i0 6¼ nj;

RTCðvj;i0 Þ þ eji;njdr; i0 ¼ nj:

(
(22)

Specifically, RTCðvj;njÞ is equal to 0 for sink task vj;nj .
A successful schedule plan obeys that: For each offload-

ing task vj;i and anypredecessor of vj;i on edge servers (e.g.,
vj;i0 ), vj;i0 ’s finish time plus transmission time of the edge-
cloud link plus RTCðvj;iÞ satisfies the deadline tdj :

tsj;i0 þ wj;i0phj;i0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
vj;i0 0s finish time

þ ej
i0;idr|fflffl{zfflffl}

transmission time

þRTCðvj;iÞ � tdj (23)

The cloud offloading stage is designed to find all offloading
tasks, set them and their descendants except the sink task as
cloud tasks, and remain other tasks’ scheduling decisions. It
mainly includes: First, any predecessor task vj;i of the sink
task vj;nj that causes the application’s lateness (i.e., tsj;iþ
wj;iphj;i þ eji;njdhj;i;hj;nj > tdj ) will be identified and changed to
be an offloading task. Then, traversing the task graph
upward from these offloading tasks, tasks are checked one
by onewhether they should be offloaded to the cloud.

Algorithm 3 shows the details of the cloud offloading
stage. In line 1, the RTC of each task is computed by travers-
ing the task graph upward from the sink task vj;nj . In lines
2-3, the edge task set ETS and the offloading task queue
OTQ are initialized. Since all tasks are executed on edge
servers by default, ETS initially includes all tasks of the
application, and OTQ is empty. In lines 4-6, any predecessor
task of the sink task vj;nj that causes the application’s late-
ness will be removed from ETS and pushed to OTQ. In the
loops of lines 7-16, the predecessors and successors of the
task vj;i popped from OTQ will be verified whether they
should be offloaded to the cloud. In lines 9-10, the original
unsuccessful schedule plan is returned since the source task
vj;1 cannot be executed in the cloud. In lines 11-13, if any
predecessor (e.g., vj;i0 ) of vj;i is an edge task and unsatisfied
Eq. (23), vj;i0 is pushed to OTQ and removed from ETS. In
lines 14-16, if any successor (except the sink task) of cloud
tasks is an edge task, it is also pushed to OTQ and changed
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to be a cloud task. In line 17, the start time of the sink task
vj;nj is set to tdj . In lines 20-21, the execution servers and the
start times of cloud tasks are updated. In line 22, the func-
tion RefineScheduling is called to reduce the execution cost
further while still satisfying all constraints.

Algorithm 4. RefineScheduling

Input: S, Gj, hj;i, t
s
j;i

Output: hj;i, t
s
j;i

1: for vj;i ¼ vj;2 to vj;ðnj�1Þ do
2: c ¼ chj;i ;
3: for su 2 S n fshj;ig do
4: Compute EFT ðvj;i; suÞ via Eq. (14) and Eq. (17);
5: LFT ðvj;i; suÞ ¼ minði;i0Þ2Ejftsj;i0 � ej

i;i0du;hj;i0 g ;
6: if EFT ðvj;i; suÞ � LFT ðvj;i; suÞ and cu < c then
7: c ¼ cu;
8: hj;i ¼ u;
9: tsj;i ¼ EFT ðvj;i; suÞ � wj;ipu;
10: end;

The function RefineScheduling shown in Algorithm 4 is
designed to refine tasks’ schedule decisions. For each task
vj;i, the function modifies its scheduling decision to gradu-
ally reduce the total cost without affecting other tasks. In
detail, for tasks other than the sink task vj;1 and the source
task vj;nj , RefineScheduling computes the earliest finish
time EFT and the latest finish time LFT on each server. If a
task’s output is transferred to its successor tasks in time, i.e.,
EFT ðvj;i; suÞ � LFT ðvj;i; suÞ, then server su is a feasible
server for task vj;i. In lines 6-9, the cheapest feasible server
is selected as the execution server, and the start time is
updated correspondingly.

Theorem 3. The schedule plan generated in the cloud offloading
stage satisfies constraints in 3, 5, 4, 6, and 7.

Proof. In Section 4.1, we show that the schedule plan pro-
duced in the edge scheduling stage satisfies constraints in 3,
5, 4, 6, and 7. The schedule plan returned in line 10 of Algo-
rithm 3 remains unchanged, so it also satisfies all con-
straints. Then, the modified schedule plan in lines 20-21 of
Algorithm 3 is considered. There is no overlap constraint
Eq. (5) in the cloud since its infinite computation resources.
We now prove that the execution server and start time
changes in lines 20-21 of Algorithm 3 still obey with con-
straints in 3, 4, 6, and 7. The constraints in Eq. (4) are satisfied
since tfj;i ¼ tsj;i þ wj;iphj;i . Two dummy tasks are scheduled
to the release server, so constraints in Eq. (6) aremet.

For dependency constraints in Eq. (7), dependencies
are classified into: (1) Dependency between edge tasks,
which is proved in Section 4.1. (2) Dependency between
an edge task vj;i and an offloading task vj;i0 . Suppose
edge task vj;i is scheduled to server su. From Eq. (23), we
obtain that such dependency satisfies that

tsj;i þ wj;ipu þ ej
i;i0dr þRTCðvj;i0 Þ � tdj : (24)

And based on line 21 of Algorithm 3, we obtain:

tfj;i þ ej
i;i0du;r ¼ tsj;i þ wj;ipu þ ej

i;i0dr

� tdj �RTCðvj;i0 Þ ¼ tsj;i0 : (25)

(3) Dependency between two cloud tasks vj;i and vj;i0 .
First, the transmission time between servers in the
remote cloud is negligible, i.e., ej

i;i0dr;r ¼ 0. From Eqs. (21)
and (22), we get RTCðvj;iÞ � RTCðvj;i0 Þ þ wj;ipr. In addi-
tion, based on line 21 in Algorithm 3, we have:

tfj;i þ ej
i;i0dr;r ¼ tsj;i þ wj;ipr þ ej

i;i0dr;r

¼ tsj;i þ wj;ipr

¼ tdj �RTCðvj;iÞ þ wj;ipr

� tdj �RTCðvj;i0 Þ ¼ tsj;i0 : (26)

(4) Dependency between a cloud task vj;i and the sink
task vj;nj . Based on Eqs. (21) and (22), we have
RTCðvj;iÞ � wj;ipr þ eji;njdr. According to line 21 in Algo-
rithm 3, we have:

tfj;i þ eji;njdhj;i;hj;nj ¼ tsj;i þ wj;ipr þ eji;njdr

¼ tdj �RTCðvj;iÞ þ wj;ipr þ eji;njdr

� tdj ¼ tsj;nj : (27)

As a result, all dependencies satisfy dependency con-
straints in Eq. (7). Furthermore, based on the dependency
constraints and the fact that the source task is the root of
the task graph, it is obvious that for every task vj;i, t

s
j;i �

tfj;1 ¼ trj , which is equal to Eq. (3).
Besides, RefineScheduling modifies each task’s sched-

uling decisions without violating any constraints. tu

4.3 Time Complexity Analysis

In this subsection, we analyze the time complexity of DCDS.
The proposed algorithm consists of the edge scheduling
stage and the cloud offloading stage. In the edge scheduling
stage, the time complexity of computing the upward rank
and the latest start time for tasks is OðjVj þ jEjÞ, where jVj
and jEj are task number and edge number, respectively. The
time complexity of selecting servers for tasks is OððjVj þ
jEjÞjSjÞ. In the cloud offloading stage, the time complexities
of computing RTC for each task, changing edge tasks to
cloud tasks, and RefineScheduling are OðjEjÞ, OðjVj þ jEjÞ
and OððjVj þ jEjÞjSjÞ, respectively. Therefore, the overall
time complexity of the proposed algorithm is OððjEj þ
jVjÞjSjÞ ¼ OðjEjjSjÞ, and for dense DAGs, it becomes
OðjVj2jSjÞ.

5 EVALUATION

5.1 Simulation Setup

DCDS is evaluated via simulations. Simulation setup about
the MEC network, applications, and metrics are introduced
first, followed by the description of existing baselines. Simu-
lation results and corresponding analysis are then pre-
sented. The DCDS and the simulation environment are
implemented in Python 3.6 on a desktop with an Intel Core
i9-10900 K 3.70 GHz CPU and 32 GB RAM. Each simulation
result has been repeated ten times to mitigate the influence
of randomness.

MEC Network. The MEC network consists of jSj ¼ 20
edge servers and a remote cloud. The configurations of dif-
ferent edge server types are listed in Table 3. The server

5838 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 23,2023 at 19:01:31 UTC from IEEE Xplore.  Restrictions apply. 



configurations in Table 3 are set by referring to [16], [23]. p is
the execution time per unit workload and c is the execution
cost per unit workload. The following adjustments are
made to edge servers based on the configurations generated
for cloud servers [16], [23]: (1) Since edge servers are
resource-constrained, the execution time per unit workload
of different edge servers in Table 3 is set to a narrower range
(i.e., 5 - 10). (2) The edge servers with more powerful proc-
essing capabilities (i.e., lower execution time per unit work-
load) have higher execution costs, and the execution cost
grows faster than the processing capability. Thus, the edge
server with p ¼ 5 is set to three times more expensive than
the edge server with p ¼ 10. To investigate the influence of
different server configurations, additional experiments with
server configurations of [16] are conducted in Section 5.2.3.
The execution cost and the execution time per unit work-
load of each edge server in S are randomly chosen from
Table 3. The execution cost and the execution time per unit
workload of the cloud are 50 and 2, respectively. In this
paper, to represent each edge server’s network state, the
average time du per unit data transmission between server
su and other edge servers is randomly chosen from ½12 d; 32 d�.
Then, du;v of each pair of servers su and sv is chosen from
½34 du; 54 du�. By default, dr is set to 5d.

Application. The experiment application dataset is gener-
ated by randomly choosing different structures of real-
world applications. For real-world applications, Workflow
Generator [43] is used to generate structures of five well-
known workflows [44] with different characteristics.

1) Montage is an astronomy application used to gener-
ate custom mosaics of the sky, and most of its tasks
are I/O intensive but do not require much CPU
capacity.

2) LIGO is used in physics for detecting gravitational
waves and has CPU-intensive tasks that consume
large amounts of memory.

3) Epigenomics is a data processing pipeline to auto-
mate the execution of various genome sequencing
operations.

4) SIPHT is used in bioinformatics to automate the
search for sRNA encoding-genes.

5) CyberShake is used to characterize earthquake haz-
ards by generating synthetic seismograms and is a
data-intensive workflow with large memory and
CPU requirements.

Then, the weights of tasks and edges are generated. The
communication to computation ratio (CCR) is used to repre-
sent the relation between dependency transmission data
and tasks’ computation workload. CCR is defined as
CCR ¼ e�d

w�p , where e and w are the average amount of trans-
mission data of dependencies and the average amount of
task workload, respectively. The transmission data of a
dependency is randomly chosen from ½12 e; 32 e�, and the work-
load of a task is randomly chosen from ½12w; 32w�.

In offline and online scenarios, for every experiment, a
trace containing 1000 applications is generated with differ-
ent structures, workloads, and dependencies. Applications
are released stochastically and associated with a deadline.
By default, the release interval follows a Poisson distribu-
tion with � ¼ 1

100 in online scenarios.

Metrics. Success Rate (SR) is defined as the ratio between
the number of accepted applications and the total number
of applications.

SR ¼
P

aj2A 1ftfj;nj � tdjg
jAj : (28)

Normalized Cost (NC) is the total execution costs of
accepted applications divided by the total workload of
them.

NC ¼
P

aj2A
Pnj

i¼1 1ftfj;nj � tdjgwj;ichj;iP
aj2A

Pnj
i¼1 1ftfj;nj � tdjgwj;i

: (29)

For an application aj, the makespan of the schedule plan of
HEFT [39] is denoted as Mj and is used as the basic dead-
line [16]. The deadline factor b is defined to represent the
looseness degree of application deadlines. The deadline of
an application aj is

tdj ¼ trj þMj � b: (30)

Baselines. DCDS is compared against the representative
and most cited algorithms of cost-effective scheduling for
deadline constrained dependent tasks. These baselines are
all selected from deadline distribution based heuristics since
the low complexity satisfies the real-time requirements of
edge computing:

1) HEFT [39] is a well-known heuristic that aims to
minimize makespans of dependent tasks for hetero-
geneous computing. It schedules each task to the
server with the earliest finish time. HEFT can be seen
as a special case of deadline distribution based algo-
rithm where each task’s sub-deadline is equal to the
application’s release time.

2) PCP [21] finds Partial Critical Path (PCP), distributes
sub-deadlines to tasks on each PCP, and selects the
cheapest resource to meet each task’s sub-deadline.

3) ProLis [16] is a stochastic scheduling algorithm. It
sets a sub-deadline for each task proportionally to
the longest path to the entry node. The probabilistic
upward rank is used to represent the longest path in
ProLis [16].

4) BDAS [24], which distributes sub-deadlines based on
a deadline proportion and the number of tasks in
each level. In this paper, the total execution cost is
the objective and the deadline is the constraint, so
the deadline distribution method of BDAS is chosen
as a baseline.

5.2 Results and Analysis

In the simulations, the performance of DCDS is compared
with baselines in terms of SR and NC. Then, the time effi-
ciency of DCDS is evaluated.

5.2.1 Offline Scenarios

In offline scenarios, there is no resource competition
between tasks of different applications, and the computa-
tion resources are all available to the current application.
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Fig. 5 shows the results of DCDS and four baselines in the
edge-only MEC network (i.e., an MEC network only has
edge servers). In this experiment, DCDS only applies the
edge scheduling stage. The overall performance of DCDS is
much better than baselineswith differentCCRs and deadline
factors b. When scheduling a single task, DCDS takes into
account its output data and servers’ bandwidth, which alle-
viates the lateness of the following tasks and thus achieves a
higher success rate. In addition, by scheduling the current
task and the following tasks in a balanced way, DCDS pre-
serves more time than other baselines to select cheaper serv-
ers for the following tasks. Thus, the normalized execution
cost is also reduced. The improvement of DCDS becomes
smaller with smaller CCR since the shorter transmission
time causes less lateness of baselines. In particular, when
CCR ¼ 0:1 and b ¼ 1, DCDS’s SR is lower than PCP. The rea-
son is that compared with other deadline distribution based
baselines, PCP tends to set tighter sub-deadlines for individ-
ual tasks, which also results in higher execution costs. The
HEFT schedules tasks to minimize the makespan without
considering execution costs, and the basic deadline is set to
the makespan of HEFT (i.e., in Eq. (30)). Therefore, HEFT’s
NC is the highest, and its SR is 1. PCP and ProLis have close
performance, for they only have a slight difference in the
concrete implementation of deadline distribution. ProLis
tends to set as late sub-deadlines to tasks as possible and
PCP sets tighter sub-deadlines, so the SR of PCP is slightly
higher than ProLis inmost cases, and theNC of PCP is higher
than ProLis. BDAS has the worst performance due to the
level-based deadline distribution method, which is specifi-
cally designed for looser deadlines and scalable resources in
cloud computing instead of the tight application deadlines
and the resource-limitedMEC network.

In the experiment of Fig. 6, applications are scheduled in
a generic MEC network (i.e., an MEC network including
edge servers and the remote cloud). In this scenario, both
the edge scheduling stage and the cloud offloading stage
are called. Similar to the above experiment, the overall per-
formance of DCDS is still much better than baselines. When

CCR ¼ 0:1, the performance of three deadline distribution
based algorithms is unstable, for they only focus on the cur-
rent task’s finish time when making the scheduling deci-
sion. In this way, offloading tasks to the cloud brings
additional latency when transferring data back to the edge,
which results in the lateness of the entire application. When
CCR ¼ 1, since the long transmission time of the edge-cloud
link, and the high execution costs of the cloud, all algo-
rithms prefer to select edge servers (i.e., the NC of CCR ¼ 1
is much lower than CCR ¼ 0:1). Therefore, the simulation
results are close to Figs. 5c and 5d, and cloud resources are
underutilized.

Impact of the Transmission Time Between Edge and Cloud.
The performance of different algorithms is compared under
different transmission times per unit data of the edge-cloud
link, as shown in Fig. 7. In this experiment, we first fix
CCR ¼ 0:5 and set the transmission time dr ¼ f2d; 8dg,
where d is the average time per unit data transmission
between edge servers. With shorter transmission time, i.e.,
dr ¼ 2d, algorithms tend to schedule tasks to the cloud,
resulting in a higher NC. However, deadline distribution
based algorithms do not explicitly consider the significant
data transmission time from the cloud back to edge servers.
The completion times of applications are more likely later
than deadlines, and thus the SR of these algorithms is unsta-
ble. With longer transmission time dr, i.e., dr ¼ 8d, the
results are close to Figs. 5c and 5d for algorithms prefer to
select edge servers.

Impact of the Number of Edge Servers. The performance of
different algorithms is compared under different numbers
of edge servers, as shown in Fig. 8. In this experiment, we
fix CCR ¼ 0:5 and b ¼ 1:2. It can be observed that DCDS
consistently outperforms the four baselines in terms of SR
and NC. The performance of PCP, ProLis, and BDAS is
unstable with varying numbers of edge servers since the
base deadline Mj is determined by HEFT and different con-
figurations of the MEC network. These baselines schedule a
single task only to meet the sub-deadline, so they can not
guarantee stable performance.

Fig. 5. SR and NC of different algorithms for applications with CCR ¼
0:1; 1 in an edge-only MEC network.

Fig. 6. SR and NC of different algorithms for applications with CCR ¼
0:1; 1 in a generic MEC network.
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5.2.2 Online Scenarios

In online scenarios, applications released at different times
share the computation resources of edge servers and the
cloud. Therefore, the SR of all algorithms in online scenarios
is lower than in offline scenarios. In Figs. 9 and 10, DCDS
still outperforms other baselines in terms of SR. We detailly
analyze the simulation results in the following.

In Fig. 9, applications are scheduled in an edge-only
MEC network. We observe that the performance advance of
DCDS is more significant with tighter deadlines. The reason
is that DCDS selects suitable servers for application tasks
with different importance: fast servers for urgent tasks and
slow servers for other tasks. Thus, the edge servers’
resource utilization of DCDS is higher than baselines under
tight deadlines. When deadlines are looser, the limited com-
putation resources of edge servers gradually become the
bottleneck. Comparing the experiment results of � ¼ 1

50 and
� ¼ 1

250 , the SR of scheduling algorithms is lower when the
workload is more intensive (i.e., larger � means smaller
application release intervals). When edge servers cannot
afford such an intensive workload, scheduling results grad-
ually converge to the limitation of computation resources.

In Fig. 10, applications are scheduled in a generic MEC
network. When � ¼ 1

50 , both SR and NC of DCDS are much
higher than baselines since DCDS efficiently utilizes the
expensive computation resources in the cloud to complete

more applications before their deadlines. The reason is that
DCDS computes each task’s remaining execution time in
the cloud, while other algorithms only focus on a single
task’s finish time. This short-sighted feature makes these
baselines tend to schedule tasks on edge servers to avoid
the considerable transmission latency of the current task,
which leads to underutilized cloud resources. Naturally,
using more cloud resources results in a higher NC of DCDS
than baselines since its higher cost. When � ¼ 1

250 (i.e., less
intensive workload), the NC of DCDS becomes much lower
than � ¼ 1

50 since a larger proportion of tasks can be exe-
cuted on cheap edge servers.

5.2.3 Different Server Configurations

In this section, the server configuration of [16] is applied to
further evaluate the performance of DCDS. Different types
of servers are listed in Table 4. In this configuration, edge

Fig. 7. SR and NC of different algorithms with different transmission
times of the edge-cloud link.

Fig. 8. SR and NC of different algorithms with different numbers of edge
servers.

Fig. 9. SR and NC in online and edge-only scenarios with � ¼ 1
50 ;

1
250 .

Fig. 10. SR and NC in online and generic scenarios with � ¼ 1
50 ;

1
250 .
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servers have a wide range of processing capabilities and rel-
atively close execution costs. Since the execution time per
unit workload of servers in this experiment are shorter than
the Table 3, the � of online scenarios is set to 1

20 (i.e., shorter
release interval). The experiment results of offline and
online scheduling are shown in Fig. 11. Similar to the results
of the above experiments, DCDS consistently outperforms
four baselines under the edge server configurations of [16].
In the offline scenario, the NC of DCDS is lower than other
baselines with different b. Besides, the reduction of NC
under the configurations of Table 4 is less than Table 3 for
the execution costs are closer between servers with different
processing capabilities in Table 4.

5.2.4 Runtime Comparison

The scheduling algorithm runtime is critical due to the tight
deadline requirements of mobile applications. The time effi-
ciency of DCDS and baselines is compared.

Montage workflows with the three different sizes are
generated: Montage_25 (i.e., a Montage workflow with 25
tasks), Montage_50, Montage_100. The experiment is
repeated 500 times under the default settings of the offline
scenario to get the average runtime, and the results are
shown in Table 5. Since the task graphs of mobile applica-
tions are usually sparse, i.e., the number of edges is close to
the number of nodes, the runtime of all algorithms is nearly
in proportion to the task number. The runtimes of the four

baselines are at the same level, for they all focus on the fin-
ish time computation of each task on each server. The run-
time of DCDS is longer than other algorithms since the
estimated earliest start times of each task’s immediate suc-
cessors are computed in the edge scheduling stage. Besides,
in the cloud offloading stage, whether every task can run on
every server is tested, and in each test, the task’s predeces-
sors and successors are taken into consideration. Though,
the runtime of DCDS is still at an affordable level.

In Table 6, the runtimes for Montage_25 of different algo-
rithms are compared over different edge server numbers,
jSj ¼ f10; 20; 30; 40; 50g. Similarly, the runtimes of the four
baselines are at the same level, and DCDS has the longest
runtime. The runtime increases linearly with the number of
edge servers, which is in line with the time complexity of
DCDS analyzed in Section 4.3.

6 DISCUSSION

6.1 Fault Tolerance

Fault tolerance is another critical feature of the dependent
task scheduling problem [45], [46]. Hardware and software
failures may increase the possibility of mobile application
lateness. The unexpected delay of data communication and
task execution due to the dynamics of MEC is thought of as
a type of failure (i.e., the execution result is not available in
time) [45]. Fault tolerance can be considered in DCDS by
adding task replications or choosing faster servers for tasks
to leave more slacks for rescheduling [46]. However, both of
these solutions will encounter the following challenging
issues: (1) They inevitably lead to higher execution costs [45].
(2) They will occupy more computation resources [46],
which may result in the lateness of the following tasks. (3)
The heterogeneity, dynamics, and resource limitation of
edge nodes in MEC need to be comprehensively considered,
resulting in a much more complex system model. These
challenges make the fault-tolerant scheduling of dependent
tasks with tight deadlines much intractable. In this paper,

TABLE 4
Server Configurations of [16]

Server type p* c** Server type p* c**

Edge Server 1 1 0.12 Edge Server 6 0.29 0.17
Edge Server 2 0.67 0.13 Edge Server 7 0.25 0.18
Edge Server 3 0.5 0.14 Edge Server 8 0.22 0.19
Edge Server 4 0.4 0.15 Cloud Server 0.2 0.2
Edge Server 5 0.33 0.16

*p is the execution time per unit workload.
**c is the execution cost per unit workload.

Fig. 11. SR and NC of offline and online scheduling.

TABLE 5
Runtime (s) Comparison With Different Sizes of Montage Work-

flows for DCDS and Baselines

Algorithms Montage_25 Montage_50 Montage_100

DCDS 0.021 0.045 0.096
HEFT 0.007 0.015 0.032
PCP 0.007 0.016 0.033
ProLis 0.007 0.016 0.032
BDAS 0.008 0.016 0.032

TABLE 6
Runtime (s) Comparison With Different Numbers of

Edge Servers for DCDS and Baselines

Number of Edge Servers 10 20 30 40 50

DCDS 0.022 0.041 0.059 0.078 0.097
HEFT 0.008 0.015 0.022 0.028 0.035
PCP 0.007 0.015 0.021 0.028 0.034
ProLis 0.008 0.014 0.021 0.028 0.034
BDAS 0.008 0.014 0.022 0.028 0.035
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we focus on latency-sensitive dependent task scheduling
without considering server failures and leave further stud-
ies about fault tolerance as future work.

6.2 Link Capacity

Some studies [47], [48] on dependent task scheduling addi-
tionally consider the link/path capacity constraint or net-
work resource contention. In their network models, the data
transmission of different tasks must share the network band-
width [48] or the link bandwidth [47], which means that a
task’s transmission must wait for other tasks’ on the same
link. In this paper, to incorporate the link/path capacity con-
straint, we can directly modify the EST computation in
Eq. (14) and EST estimation in Eq. (18) by allocating idle time
intervals of the link resource on dependent data transmis-
sions. After scheduling each task, the corresponding time
intervals of the link resource should be labeled as ”busy”.

However, the problems of allocating link resources and
scheduling dependent tasks are coupled with each other. In
addition, the network routing and background traffic
should also be taken into consideration. To achieve higher
performance, the scheduling decisions should be made by
jointly considering these aspects. As a result, the scheduling
problem will be more complicated. In this paper, we focus
on dependent task scheduling with tight deadline con-
straints and leave the incorporation of link resource sched-
uling and network routing as future work.

6.3 AI Applications

AI applications are emerging mobile applications that can
provide powerful capabilities. They are divided into infer-
ence applications and training applications. For inference
applications based on neural networks, the entire neural
network can be partitioned into multiple parts executed on
different devices to achieve lower latency [49]. The neural
network can also be modeled as a DAG [50], where each
vertice represents a layer of the neural network. The model-
ing is akin to the task graph in this paper, so DCDS can still
be applied to schedule these applications. Moreover, these
applications typically need more Python libraries and large
amounts of trained neural network parameters, whose size
is large. The runtime initialization process and storage
capacity should be carefully considered. A neural network
layer requires much more computation resources than tra-
ditional dependent tasks, so the set of candidate servers is
different for diverse layers. For training applications based
on neural networks, e.g., Federated Learning [51], the com-
munication mechanism and the training algorithm should
be further improved for heterogeneous MEC networks. We
will take these unique features into consideration and
design more suitable algorithms in the future.

6.4 Server Sharing

Generally, MEC is multi-tenant, where edge servers are
shared by dependent tasks and other applications. In this
paper, edge servers are assumed to be unary, so each server
executes one task at a time [17]. Edge servers are shared in a
time-multiplexingmanner and other applications can occupy
computation resources in some time slots. To deal with the
problem of server sharing, the following modifications can

be applied to this paper: (1) Before scheduling a task graph,
the scheduler collects the information of the time slots
reserved for other applications. (2) The idle time slot list of
each server in Eq. (16) is updated by removing these reserved
time slots. (3) After the schedule plan is generated, the execu-
tion time slot of each dependent task is reserved and not
allowed to be used for other applications.

However, whenmultiple tasks are allowed to be executed
simultaneously on an edge server, these tasks compete for
shared resources such as CPU cache, network and memory
bandwidth. Thus, a complicated performance interference
model of multiple running tasks should be built [52]. In the
future, wewill study the problem of dependent task schedul-
ing incorporatedwith performance interference.

7 CONCLUSION

In this paper,we formulate the deadline-constrained cost opti-
mization problem for dependent task scheduling in heteroge-
neous MEC. We design DCDS by considering the future
impacts of current scheduling decisions. DCDS has two
stages: (1) In the edge scheduling stage, the latest start time is
assigned to each task, and the current task is scheduled to the
cheapest edge server to satisfy the latest start times of its
immediate successor tasks. (2) In the cloud offloading stage,
to deal with the long transmission time of the edge-cloud link,
the remaining execution time in the cloud is computed for
each task, and schedule plans are efficiently modified by off-
loading multiple tasks to cloud servers. Simulation results
based on well-known real-world applications show the sub-
stantial performance advantage of DCDS over baselines in
both online and offline scenarios.
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