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Abstract— In edge-assisted vehicular networks, containers are
very suitable for deploying applications and providing services
due to their lightweight and rapid deployment. To provide high-
quality services, many existing studies show that the containers
need to be migrated to follow the vehicles’ trajectory. However,
it has been conspicuously neglected by existing work that making
full use of the complex layer-sharing information of contain-
ers among multiple users can significantly reduce migration
latency. In this paper, we propose a novel online container
migration algorithm to reduce the overall task latency. Specifi-
cally: 1) we model the multi-user layer-aware online container
migration problem in edge-assisted vehicular networks, com-
prehensively considering the initialization latency, computation
latency, and migration latency. 2) A feature extraction method
based on attention and long short-term memory is proposed
to fully extract the multi-user layer-sharing information. Then,
a policy gradient-based reinforcement learning algorithm is pro-
posed to make the online migration decisions. 3) The experiments
are conducted with real-world data traces. Compared with the
baselines, our algorithms effectively reduce the total latency by
8% to 30% on average.
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I. INTRODUCTION

WITH the rapid development of fifth-generation (5G)
and Internet of Vehicles, vehicles generate a large

amount of raw data every day with more intelligent sen-
sors equipped [1]. These raw data require local real-time
processing, fusion, and feature extraction for target detection
[2], path planning [3], computation offloading [4], [5], etc.
Therefore, a low latency and reliable edge computing platform
is significant. The edge-assisted vehicular network relies on
edge-cloud collaboration and communication infrastructure
provided by LTE/5G [6]. In addition, each roadside unit (RSU)
is equipped with an edge node to provide more computing
capability.

In edge-assisted vehicular networks, using containers to
deploy applications can fully utilize the lightweight and easy
deployment characteristics to achieve rapid and scalable Inter-
net of Vehicles services. When the vehicle moves, the services
requested by the vehicular user need to migrate with the user.
With the maturity of Cellular Vehicle to Everything (C-V2X)
communications, fast handover can be achieved [7]. However,
a large amount of vehicular data in the edge node must also
be migrated following the movement. Therefore, efficiently
and timely migrating containers and vehicular data has been
regarded as a critical issue.

The container migration mainly includes the migration of
the writable container layer and the read-only container image
file.1 The image can be shared among users since many users
request the same image, e.g., the task of road information
processing [9]. When multiple vehicles move simultaneously,
many repeated downloads during migration can be reduced
if the sharing information of the requests is considered.
Moreover, the image comprises multiple layers, and common
layers can be shared by different images [8]. By optimizing
which layers need to be migrated and which ones need to be
downloaded, we expect to significantly reduce the latency for
container migration [10].

It is very promising to make online container migration
decisions considering the multi-user layer-sharing informa-

1The container image file contains the code, binaries, system tools, config-
uration files, etc., required to run the container [8]. We use ‘image’ in this
paper to refer to the container image file for simplicity.
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tion to reduce the migration time and further reduce the
total latency. Nevertheless, the following challenges require
to be addressed. First, how to fully extract the multi-user
layer-sharing information. Different users may request the
same set of layers, i.e., the same image, while some layers can
be shared among multiple users. Considering the geographic
location information of layers and node heterogeneity, extract-
ing layer-sharing features and making wise migration decisions
efficiently is technically challenging. Moreover, when multiple
users are moving, considering the moving targets, the overlap
of paths, and the same requested layers, the users requiring the
same set of layers and having similar paths can be migrated
to the same node to reduce the migration latency further.
To solve these issues, a self-attention-based encoder network
is designed to extract interdependence features of layers [11].
And a long short-term memory (LSTM [12])-based neural
network is designed to input each migration decision to the
next time slot to extract the multi-user features further.

The second challenge focuses on making appropriate online
scheduling decisions based on the extracted multi-user layer-
sharing information to gain long-term benefits in less total
latency, i.e., the sum of initial latency, computation latency,
and migration latency. Compared with heuristic algorithms,
Reinforcement Learning (RL) algorithms can fully consider
the impact of continuous decisions [13]. The long-term bene-
fits and the impact of layer sharing can be fully considered
with a reward function. Moreover, the strategy of RL can
be learned and updated through the loss function, adapting
to complex environments without any human intervention.
Thus, RL-based algorithms are suitable for online decision-
making, and a policy gradient-based RL algorithm [14] is
further utilized to reduce the total latency.

To the best of our knowledge, there exist few studies
investigating the multi-user online container migration prob-
lem considering the layer sharing in edge-assisted vehicular
networks. An Online Container Migration (OCM) algorithm
is proposed based on the proximal policy optimization (PPO)
algorithm [14]. The resources of heterogeneous edge nodes,
the features of tasks, and the layer dependencies are fully
considered in the input state. The self-attention method is used
to extract the layer-sharing features. The policy network and
value function of the RL agent are also carefully designed to
make migration decisions based on feature embeddings and
combinations. Finally, experiments are conducted based on
real-world mobility traces of taxi cabs [15] to verify the per-
formance of the algorithm. The image and layer information
is crawled from Docker Hub [16]. The proposed algorithm is
compared with the default scheduling algorithm of Kubernetes
[17] and the state-of-the-art layer-based heuristic algorithms
[8]. Experimental results show that the proposed algorithm
performs better than all baseline algorithms.

The contributions of our work are summarized as follows.
1) We model the multi-user layer-aware online container

migration problem in edge-assisted vehicular networks
for the first time. Our objective is to minimize the initial
latency, computation latency, and migration latency of
vehicular tasks.

2) To fully consider the layer-sharing information during
migration, a self-attention-based encoding network is

designed. Then, a feature extraction network is proposed
to capture the multi-user trajectory features. An OCM
algorithm is further proposed based on policy gradient
RL to make online container migration decisions.

3) The experiments are conducted based on large-scale
real-world taxi traces and image traces. The results val-
idate the effectiveness of our proposed OCM algorithm.
The total latency is reduced by up to 53%.

The remainder of the paper is organized as follows.
In Section II, the related work and motivation examples are
illustrated. In Section III, the system model and problem
formulation are described. OCM algorithm is proposed in
Section IV. Performance is evaluated in Section V. Finally,
Section VI gives some discussions, and Section VII concludes
the paper.

II. RELATED WORK AND MOTIVATION

A. Container and Service Migration

Some researchers have modified the container architecture
or designed the migration strategy to reduce the migration cost.
Shi et al. [18] propose a system across data centers to improve
the migration performance by reducing the amount of dirty
data in the migration process. Fu et al. [19] propose a runtime
system that effectively deploys microservice-based services in
the cloud-edge continuum to minimize the required computa-
tional resources. CloudHopper [20] provides the design and
implementation of live migration of containers across cloud
providers.

To further meet the mobility requirements in edge com-
puting, Tang et al. [21] and Wang et al. [22] model the
container and service migration strategy as a Markov Decision
Process (MDP) and propose migration algorithms to reduce the
migration delay and power consumption. Wang et al. [23] pro-
pose a novel learning-driven method to make effective online
migration decisions. To address unpredictable user mobility,
Ouyang et al. [24] study the mobile edge service performance
optimization problem under long-term cost budget constraints
and design an approximation algorithm based on Markov
approximation to seek a near-optimal solution. Ma et al. [25]
consider the user mobility and service delay requirements and
formulate two optimization problems of user service request
admissions to maximize the accumulative network utility.
Zhang et al. [26] propose an online lazy-migration adaptive
interference-aware algorithm for real-time virtual network
function (VNF) deployment and cost-efficient VNF migration
in a 5G network slice to maximize the total throughput.
Besides, there are many studies on virtual machine migration.
For example, Han et al. [27] propose an approximate MDP-
based dynamic virtual machine management method.

B. Layer-Aware Scheduling

Layer-aware scheduling research is currently in its infancy.
Ma et al. [10] propose an edge computing platform archi-
tecture that supports seamless migration of offloaded services,
which uses the layered features of the storage system to reduce
the synchronization cost of the file system. Rong et al. [28]
pull 3735 representative images from Docker Hub and find
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Fig. 1. An example of multi-user layer-aware online container migration. Task k2 requests layers l1, l2, l3, l4, and l5. When k2 moves, if layer sharing
is not considered, the container requested by k2 should be migrated to e3, and layers l2, l3, and l4 need to be downloaded. When considering vanilla layer
sharing, the container should be migrated to e4 because there are more required layers on it. However, when considering multi-user layer sharing, the container
should be migrated to e3 to minimize the overall download cost for multiple users. More detailed explanations are in Section II-C and TABLE IV.

that the image layers can be cached in the destination servers
to reduce the migration time.

Gu et al. [29] propose a layer-sharing microservice deploy-
ment and image-pulling strategy that explores the advantage of
layer-sharing to speed up microservice startup and lower image
storage consumption. Besides, they also study a layer aware
microservice placement and request scheduling at the edge
[30]. Lou et al. [31] formulate the container assignment and
layer sequencing problem and prove its NP-hardness. A layer-
aware scheduling algorithm is further proposed. Dolati et al.
[32] address essential aspects of orchestrating services such
as downloading and sharing container layers and steering
traffic among network functions. Liu et al. [33] study the
optimal deployment strategy to balance layer sharing and chain
sharing of microservices to minimize image pull delay and
communication overhead.

However, the above studies are all based on offline
decision-making. Tang et al. [8] model the online layer-
aware scheduling problem and propose an online scheduling
algorithm. To our knowledge, this paper is the first study
to make online migration decisions based on layer-sharing
information.

C. Motivation Example

When migrating, it is important to consider the trade-off
between the migration cost and communication latency [21].
To illustrate the importance of multi-user layer sharing, in this
example, we only consider the download cost incurred when
migrating. As shown in Fig. 1, in the edge-assisted vehicular
networks, different services are deployed on the edge nodes
associated with the RSUs through containers. The vehicles k1,
k2 and k3 are moving. TABLE I shows six different layers of
different sizes. The tasks k1, k2 and k3 request the image i1,
i2, and i3, respectively. The corresponding requested layers

TABLE I
EXAMPLE LAYERS

TABLE II
EXAMPLE TASKS

TABLE III
EXAMPLE EDGE NODES

are shown in TABLE II. The layers stored on each node are
shown in TABLE III.

As shown in Fig. 1, three vehicles start from node e1 or
e5 and move along the road, so the containers they request
should be migrated to nodes e2, e3 or e4. As shown in
TABLE IV, when no layer sharing is considered, as k1 moves,
the containers it requests will be migrated from edge node
e1 to node e2. Therefore, the layers that need to be downloaded
are l1 and l2, and the download size is 3 MB. On the other
hand, for tasks k2 and k3, the download sizes are 11 MB
and 45 MB, respectively. Therefore, the total download size
is 59 MB when layer sharing is not considered.
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TABLE IV
EXAMPLE OF MULTI-USER LAYER SHARING

Vanilla layer sharing refers to single-user layer sharing
without considering the layer sharing among users, which
only considers the layer sharing of a single user on different
nodes [8], [31]. Since there are more layers on e3 than
e2, k1 can be migrated to e3 so that only l2 needs to be
downloaded, and the corresponding download size is 2 MB.
Similarly, k2 can be directly migrated to e4, and k3 can be
migrated to e3. As a result, the total download size should only
be 16 MB. Therefore, after considering vanilla layer sharing,
the download size can be reduced from 59 MB to 16 MB,
effectively reducing the migration cost.

As shown in TABLE IV, such a migration decision of
vanilla layer sharing is not problematic when the layers cannot
be shared among users. However, in reality, layers requested by
different users can also be shared, so multi-user layer sharing
needs to be considered. The task k2 and k3 both request the
layers i1, i2, i3, i4, and i5. Their paths from e2 are the same.
Therefore, if the container of k2 is directly migrated to e3, the
download size can be further reduced to 11 MB.

From the above example, the migration cost can be
effectively reduced if multi-user layer sharing can be fully con-
sidered when making migration decisions. Furthermore, this
requires extracting the layer-sharing information and multi-
user information fully. In this paper, in addition to considering
the download cost, we also consider the initialization cost
and computation cost during migration so that the problem
will be much more complicated than the example. The online
container migration algorithm is proposed to achieve better
long-term benefits, and the details are as follows.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
We consider a dynamic edge-assisted vehicular network

architecture. As shown in Fig. 1, edge nodes are deployed
on the roadside. The number and capacity of edge nodes can
be upgraded when needed. New tasks from new vehicles (i.e.,
users) arrive at any time, e.g., real-time navigation information,
real-time road condition information processing, etc. These
tasks have stringent latency requirements. Hence, they must be
offloaded to the edge-assisted RSU for real-time processing.
The required containers should be initialized on edge nodes
before executing tasks, which incur startup latency. Each task
runs in one corresponding container [8]. During the execution
of tasks, as the vehicles move, the containers they request
must also be migrated along the moving trajectory, thereby

TABLE V
NOTATIONS

reducing the task communication latency. Migration will bring
a certain amount of migration cost, which can be effectively
reduced when considering multi-user layer sharing. The main
components are defined as follows.

Task: The set of mobile users, denoted as u ∈ U =
{u1, u2, . . . , u|U|}, are connected to different RSUs through
wireless access technology, i.e., 5G or WiFi, where | · | is used
to indicate the number elements in the set, e.g., |U| is the
number of users. The task k ∈ K = {k1, k2, . . . , k|K|} is
generated from different users and offloaded to the edge nodes
for processing. The data size for task k is dk. The location
of task k at time t is denoted as ok(t), a two-dimensional
coordinate value.

Edge node: A set of RSUs are deployed at the roadside.
Each RSU is equipped with an edge node to provide com-
puting capability. The edge nodes, denoted as e ∈ E =
{e1, e2, . . . , e|E|}, provide the services to users through con-
tainers. The bandwidth of the edge node e is be. Moreover, the
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storage capacity is de. The maximum number of running
containers is Ce. The resource capacity of each node can be
adjusted. Besides, the remote cloud can be considered an edge
node with unlimited computing capacity, denoted as e|E|+1.

Container: A group of containers, denoted as C =
{c1, c2, . . . , c|C|}, are deployed on the edge nodes. The band-
width requirement of the container c ∈ C is bc. Each
container needs an image file. The set of images are denoted as
I = {i1, i2, . . . , i|I|}. Requesting a container is equivalent to
requesting the corresponding image. The difference between
a container and an image is only a writable container layer,
i.e., i0. Specifically, when a new container is created, a new
writable layer on top of the underlying layers is added, which
is often called the “container layer” [34]. All changes to the
running container, e.g., writing new files or modifying existing
files, are written to this writable container layer. Thus, multiple
containers can share access to the same underlying image and
yet have their own data. This means that only the container
layer needs to be transferred when migrating. Each image is
composed of several layers, and the set of layers is denoted
as L = {l1, l2, . . . , l|L|}. The size of each layer l ∈ L is
denoted as dl. After scheduling, the node assigned by this
task is represented as ek. The requested layers of task k can
be denoted as Lk. Generally, we assume that only one task
runs in each container [8], [31].

B. Cost

The scheduler should carefully decide whether to migrate
the associated containers with the user if the user u moves,
comprehensively considering the initialization latency, compu-
tation latency, and migration latency.

Initialization latency: The initialization latency includes
the communication latency between the mobile user and the
RSU and the container startup latency in the edge node. Each
mobile user u is associated with its nearby RSU to offload the
task, e.g., the real-time traffic information processing task.

The mobile users connected to the RSU equally share the
bandwidth resources. The wireless uplink transmission rate
ξcomm
k,e (t) for the task k with data size dk to edge node e

is defined as follows [35] and [36].

ξcomm
k,e (t) = bk,e(t)× log

(
1 +

pk × |hk,e(t)|2

bk,e(t)× σ

)
, (1)

where bk,e(t) is the allocated bandwidth resource of the edge
node e for the task k at time slot t and pk is the transmission
power of the task k. hk,e(t) is the channel gain between the
mobile device and the corresponding edge node, which is
calculated as hk,e(t) = 10β log(ok,e(t)) + 5 [35], where β
is the path loss coefficient and ok,e(t) is the distance between
task k and edge node e at time t. σ is the power spectral
density of the Gaussian white noise.

Then, the communication latency for the task k on edge
node e can be calculated as:

T comm
k =

∫
dk

ξcomm
k,e (t)

dt. (2)

When the task k is scheduled to edge node e, the requested
container c needs to be started. We define the binary variable

xc,k ∈ {0, 1}. If xc,k = 1, the container c is requested by
the task k. Otherwise, the container c is not requested. The
binary variable yc,l ∈ {0, 1} is defined. If yc,l = 1, the
layer l is contained in the container c. Otherwise, the layer
is not contained in the container. Besides, the binary variable
zl,e(t) ∈ {0, 1} is defined. If zl,e(t) = 1, the layer l is located
on edge node e at time t. Otherwise, it is not.

Then, the download size required to initialize task k can be
calculated as follows.

Dk,e =
∑
c∈C

∑
l∈L

xc,k × yc,l × (1− zl,e(t))× dl. (3)

Compared with the significant transmission delay, the prop-
agation delay and queuing delay can be ignored [30], [37].
Thus, the download latency can be obtained as follows:

T down
k =

∫
Dk,e

bk,e(t)
dt. (4)

The data communication and layer download can proceed
simultaneously so that the initialization time can be calculated
as follows:

T init
k = max

(
T comm

k , T down
k

)
. (5)

Computation latency: The tasks are offloaded to the RSU
associated with an edge node. Multiple mobile users share the
computing resources of edge nodes to process their applica-
tions. At time slot t, the processing density of the offloaded
tasks is denoted as κ. Thus, the required CPU cycles for
processing the tasks can be calculated as fk = dk × κ.
Moreover, the workload of the serving edge node is defined
as we(t), and the total computing capacity of the serving
edge node is Fe(t). A weighted resource allocation strategy
is considered on each edge node, where tasks are allocated
with computation resources proportional to their required CPU
cycles [23]. Therefore, the computation delay of executing the
task can be calculated as

T comp
k =

∫
fk

fk

we(t)+fk
× Fe(t)

dt. (6)

Migration latency: Let tho denote the maximum communi-
cation distance between the task and edge node. If ok,ke

(t) >
tho, then the task k needs to be migrated. As explained in [30],
the container contains a list of read-only layers Lk ∈ L and a
writable layer lk. The writable layer is on the top of a container
that records the changes in the running container. The other
underlying read-only layers can be downloaded from the cloud
registry. Hence, only the writable layer needs to be migrated.
Define the binary variable xc,k,e(t), when xc,k,e(t) = 1,
it means that the container c needs to be migrated to the edge
node e at time slot t. The download size from the cloud can
be calculated as follows:

Dc,k,e =
∑
e∈E

∑
c∈C

∑
l∈L

xc,k,e(t)× yc,l × (1− zl,e(t))× dl.

(7)

Then, the download time can be calculated as follows:

T down
k =

∫
Dc,k,e

bk,e(t)
dt. (8)
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Moreover, the writable container layer must be migrated
from the original edge node to the destination edge node. The
migration latency can be obtained as follows:

Tmig
k = max

(
T down

c,k,e ,
dlk

bv
+ αk × he′,e

)
, (9)

where bv is the wire transfer rate between edge nodes. αk

is a positive coefficient, indicating the experience value of
one hop. he′,e is the two-dimensional state mapping of the
shortest path from the original edge node to the target edge
node and measures the number of hops [22]. During the
migration, in addition to the transmission latency caused by
migration, there will also be handover latency and startup
latency. However, this latency is minimal compared to the
transmission latency [21], so we only consider the transmission
delay in this paper.

Finally, the total latency of container migration is
denoted as:

Tk = T init
k + T comp

k + Tmig
k . (10)

C. Problem Formulation and Analysis

Constraints: It is assumed that the scheduler is located at
the remote cloud or a master RSU [21]. When the vehicle
moves, the decision must meet the resource capacity and the
storage resource limit of the associated edge node. The con-
tainer number limit is used to denote the resource constraint
of the edge nodes, which can be described as:

|Ce(t)| ≤ Ce, ∀t,∀e. (11)

The storage resource limit of each node is defined as follows:∑
l∈L

(1− zl,e(t))× dl ≤ de, ∀t, ∀n. (12)

Moreover, each task should be scheduled to only one
node or the cloud. We denote the scheduling results by{
uk,e|e ∈ E ∪ {e|E|+1}

}
, where uk,e = 1 if the task k is

scheduled to edge node e, otherwise, uk,e = 0. Then, this
constraint can be represented as:∑

e∈E∪{e|E|+1}

uk,e = 1, ∀k. (13)

Problem Formulation: We aim to minimize the overall
total latency from a long-term perspective, which is defined
in Eq. (10). The target is to find the best strategy to minimize
the overall time while obeying the constraints. The Online
Container Migration (OCM) problem is defined as follows:

Problem OCM. min T =
∑
k∈K

Tk,

s.t. Eqs. (11), (12), (13),
xc,k ∈ {0, 1},∀c ∈ C,∀k ∈ K,

yc,l ∈ {0, 1},∀c ∈ C,∀l ∈ L,

zl,e(t) ∈ {0, 1},∀l ∈ L,∀e ∈ E.

Problem OCM is an advanced bin-packing problem, which
is NP-hard and can only be solved heuristically. The goal is
to make online migration decisions in a dynamic vehicular

network and obtain long-term benefits. However, decisions are
made according to a deterministic strategy for most heuristic
algorithms, which cannot consider the dynamic environment
and the impact of continuous decisions. For meta-heuristic
algorithms, all future information needs to be known if used to
solve this problem from a long-term perspective. Nevertheless,
the tasks arriving in the future are unknown. As a result,
most of the existing heuristic and meta-heuristic algorithms
are unstable in a real vehicular network environment.

In this problem, the first-order transition probability of the
tasks’ resource demand is quasi-static for an extended period
and not uniform distribution by adequately choosing the time
slice duration [38]. Moreover, the arrival of tasks and the envi-
ronment update have the memoryless property [21]. Therefore,
this problem can be modeled as an MDP. RL algorithms are
suitable for solving MDP problems [39]. In RL algorithms,
at each time t, the RL agent collects system state st and
calculates the reward during the last time slice rt−1. Then,
the agent selects action at according to a pre-defined strategy.
After performing the action, the system transits to the new
state st+1 in the next time slice. Based on the collected state,
action, reward, and a proper discount factor, a value can be
calculated to denote the expected long-term return. The reward
is an immediate signal received in a given state, while the
value is a long-term expectation. The RL agent might receive
a low, immediate reward even as it selects an action with great
potential for long-term value. By value function, the RL agent
can optimize the policy and make decisions from a long-term
perspective.

IV. ALGORITHMS

A. Algorithm Settings

The state, action, and reward are defined to train the agent.
State: A state st is a complete description of the vehicular

networks. As shown in Fig. 2, the state contains three aspects:
the task, nodes, and the action embedding. The state sk

t of task
k is described as follows. First, the location ok(t) of the task
at time t, the size dk, the CPU request fk, and the memory
request mk are all features that affect decision-making. The
requested layer set Lk is also essential. The total size of layers
that need to be downloaded is calculated as dLk

=
∑

l∈Lk
dl.

Besides, the distance between task k and all edge nodes are
also significant, denoted as Ok(t) = {ok,1(t), . . . , ok,|E|(t)}.
Ok(t) is different for each task, which has a great impact
on the initialization latency. In short, the state of task k is
sk

t = {ok(t), dk, fk, mk,Lk, dLk
,Ok(t)}.

The location of each edge node Oe = {o1, o2, . . . , o|E|}, the
available storage capacity De(t) = {d1(t), d2(t), . . . , d|E|(t)},
available CPU capacity Fe(t) = {f1(t), f2(t), . . . , f|E|(t)},
and the available memory capacity Me(t) = {m1(t),
m2(t), . . . ,m|E|(t)} are used as part of the state. Oe can
be used to calculate the distance between nodes and has
an impact on initialization latency and migration latency.
Besides, Oe may vary with the node location, e.g., mobile
edge nodes like drones. Therefore, it is also added to the
state. The layer status Le(t) = {z1,e(t), . . . , z|L|,e(t)} are
also significant. Then, the state of the node e can be denoted

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on November 10,2023 at 22:17:28 UTC from IEEE Xplore.  Restrictions apply. 



TANG et al.: MULTI-USER LAYER-AWARE OCM IN EDGE-ASSISTED VEHICULAR NETWORKS 7

Fig. 2. Algorithm overview.

as se
t = {Oe,De(t),Fe(t),Me(t),Le}. In this way, the

resource capacity adjustment of the node will only affect the
remaining resources of the node, and will not affect the state
representation and feature extraction.

Moreover, to fully explore the layer sharing on each node
and consider the computation resources, the estimated down-
load size Desti

k,e (t) can be calculated by Eq. (3). The estimated
communication latency from the task k to all edge nodes
are denoted as Tcomm

k = {T comm
k,1 , . . . , T comm

k,|E| }. Due to the
influence of continuous actions, the action at the last moment
is also used as part of the state. To improve the representation
ability of the action at−1, we convert it into embeddings by
looking up a trainable embedding matrix, i.e., At−1.

To sum up, the state at time t can be denoted as:

st = {sk
t , se

t ,D
esti
k,e (t),Tcomm

k ,At−1} (14)

Action space: A task can be offloaded to any available edge
server. Meanwhile, with the mobility of the agent, the task can
be migrated to any valid node or the remote cloud. Therefore,
the action at time t can be defined as at ∈ E∪{e|E|+1}. When
the number of nodes changes, the action space must also be
modified accordingly.

Reward: The reward function rt is critically important for
long-term revenue. The goal of the agent is to maximize the
reward, while in vehicular networks, the goal is to minimize
the total latency. So, the reward can be obtained as rt = −Tk.

B. Online Container Migration

In this section, the Online Container Migration (OCM)
algorithm is introduced, including layer-sharing feature encod-
ing, multi-user feature extraction, and the training of the
algorithm.

Overview: The OCM algorithm is shown in Algorithm 1.
To facilitate traversal of tasks, all tasks are added to a priority
queue Q1, and use the start time of the task as the key [8].
In other words, Q1 stores all the tasks that need to be
processed, and we take the tasks out of Q1 according to the
time order for scheduling. We can select the next task to be

scheduled according to the priority, task interaction, or other
indicators, but this is not the focus of this paper. Besides,
an empty priority queue Q2 is initialized to record running
tasks. Through Q2, it can be judged whether a task is still
running or has finished running. In practice, reading the task
process can usually achieve this goal. As shown in lines 1 - 4,
in the beginning, the first task k0 is obtained from Q1. Then
the location ok(t0) and the filtered set of edge nodes At0 are
obtained, which is a set of all edge nodes whose distance from
task k0 is within the range of communication distance. The
hidden parameters of the policy network are initialized.

Each time t, the agent observes the state st and then selects
the action at according to the policy πt and filtered action
set At. The key-value tuple (t + T comp

k , k) is put into Q2 to
be processed. Then, as shown in lines 10 - 22, when the
task queue Q2 is not empty, the agent processes tasks in
Q2 according to time order sorted by the key tk. If tk < t, the
task k is finished, then the resources are released. Otherwise,
the latest location ok(t) is obtained. Then, the distance ok,ke

(t)
between the task k and the corresponding edge node ke is
calculated. If the task needs to be migrated, it is put into the
task queue Q1. Otherwise, the task is returned to Q2.

After that, the first task in the queue Q1 is obtained. The
environment is updated, and the new filtered set At+1 is
obtained. The layer-sharing features are extracted through an
encoder network based on the attention mechanism and an
LSTM-based recurrent neural network (RNN). The extracted
features are fused into the policy network. Finally, the policy
π is trained and updated through the policy gradient method.
The details will be introduced in the following.

Layer sharing feature encoding: To fully extract the layer-
sharing information, a self-attention-based encoder network is
designed [11]. As shown in Fig. 2, the layer-sharing feature
encoding mainly includes three parts: action embedding, task
feature embedding, and edge node feature encoding. The
action embedding and task feature embedding map the last
action and task features to two embedding vectors.

For the node features, a self-attention-based network is
designed based on Transformer [11], which receives as input
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Algorithm 1 The OCM Algorithm
Input : Q1,Q2 = ∅, πθ,N
Output: at

1 Get the first task k0 from Q1 ;
2 Get the location ok(t0) of task k0 at time t0 ;
3 Get the filtered set of edge nodes At0 ;
4 Initialize the hidden parameters;
5 for t = 1, 2, . . . do
6 Get the state st by Eq. (14);
7 Select the node e = at according to πt and At;
8 Calculate the computation time T comp

k by Eq. (6);
9 Put (t + T comp

k , k) to Q2 ;
10 while Q2 ̸= ∅ do
11 Get the first task (tk, k) from Q2;
12 if tk < t then
13 Release the resource by task k;
14 else
15 Get the location ok(t);
16 if ok,ke(t) > tho then
17 Q1 ← put(k) ;
18 else
19 Q2 ← put(tk, k).
20 end if
21 end if
22 end while
23 Get the first task k from Q1 ;
24 Get the location ok(t) ;
25 Update the environment ;
26 Get the filtered set of edge nodes At+1;
27 end for

a 1D feature sequence Z ∈ RL×|E|, where |E| is the
number of edge nodes, L is the length of a sequence.
By vectoring each state feature into a latent |E|-dimensional
space, we obtain a sequence of input embedding z for state
st at time slot t. To encode the state spacial information,
we add position embedding pi for each node to all state
embedding zi that form the final sequence input Z =
{z1 + p1, z2 + p2, · · · , zLen + pLen}.

The inputs are fed to an encoder to learn feature rep-
resentations. The encoder is made of L network layers
with alternating multi-headed self-attention and feed-forward
blocks. Dropout, Layernorm, and residual connections are
applied after each block [11]. The first network layer expands
the dimension from Dmodel to Dmlp = 4 · Dmodel and
applies the non-linearity. The second network layer reduces
the dimension from Dmlp to Dmodel. At each network layer L,
the input to self-attention is in a triplet of (query, key, value)
computed from the input ZL−1 ∈ RL×|E| as:

query = ZL−1WQ, key = ZL−1WK , value = ZL−1WV ,

(15)

where WQ/WK/WV ∈ R|E|×d are the learnable parameters
of three linear projection layers and d is the dimension of
(query, key, value). Self-Attention (SA) is then formulated

as follows:

SA
(
ZL−1

)
= ZL−1

+ softmax

(
ZL−1WQ (ZWK)⊤√

M

)(
ZL−1WV

)
. (16)

MSA is an extension with m independent SA operations and
projects their concatenated outputs:

MSA
(
ZL−1

)
=
[
SA1

(
ZL−1

)
;

S A2

(
ZL−1

)
; · · · ; SAy

(
ZL−1

)]
WO,

(17)

where WO ∈ RMd×|E|. d is typically set to |E|/M. An MLP
block then transforms the output of MSA with residual skip
as the layer output as:

ZL = MSA
(
ZL−1

)
+ MLP

(
MSA

(
ZL−1

))
∈ RL×|E|.

(18)

We denote
{
Z1, Z2, · · · , ZLe

}
as the features of transformer

layers. After that, a CNN and a linear layer are used to reduce
the dimensionality of the encoder features.

Multi-user feature extraction: To extract the multi-user
feature, we study an RNN structure called LSTM cells [12],
that can learn the time interdependence between the columns
of the state. In vehicular networks, task scheduling decisions
are made sequentially, forming a sequence. Through LSTM,
the decision sequence of the tasks in the past can be embedded
into the current state, thus taking into account the influence
of multiple users at different times. Moreover, LSTM can
better capture state changes, including the mobility of multiple
vehicle locations, layer distribution changes, etc., which cannot
be obtained from a single state at the current time slot [40].
Specifically, the LSTM network introduces a new internal state
ct for linear recurrent information transmission, and at the
same time, non-linearly outputs information to the external
state of the hidden layer ht, which are calculated as follows:

ct = f t ⊙ ct−1 + it ⊙ c̃t, ht = ot ⊙ tanh (ct) , (19)

where f t is the forget gate, which receives the internal state
and learns how much it should memorize or forget from the
past. it is the input gate that aggregates the output of past
steps and the current input and passes it through an activation
function as done in a conventional RNN. ot is the output gate
that combines the current cell state and the output of the input
gate and generates the LSTM output. ⊙ represents element-
wise multiplication. c̃t is the candidate state obtained by the
nonlinear function. The calculation process is as follows:

c̃t

ot

it

f t

 =


tanh

σ
σ
σ

(W

[
st

ht−1

]
+ b

)
, (20)

where st is the layer sharing feature encoding as shown in
Fig. 2. W and b are neural network weight matrices.

The LSTM blocks can map the state st to a vector with
a fixed size. Every task in the sequence from the task queue
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is fed to the LSTM iteratively. Then the internal state ct and
recurrent output ht are concatenated into a vector, s̃t. Then,
ct and ht are fed into the second LSTM as the initial internal
state and recurrent inputs. Now, the input sequence to the
second LSTM will be the sequence of the tasks. During the
training of this model, the goal is to find optimal values for
the weights and biases of the LSTMs. We use the same concept
to learn a fixed-size representation of our state space. Through
the above steps, the node and task information contained in
state st form a sequence through ct and ht. This enables
the agent to fully consider the impact of historical tasks, i.e.,
multiple tasks when making decisions.

Training: The OCM algorithm is based on policy optimiza-
tion. A policy is a rule used by the agent to decide what actions
to take, which is usually denoted by π, i.e., a(t) ∼ π(·|s(t)).
The probability of the scheduling process in vehicular network
scenarios is defined as:

P (τ |π) = ρ0(s0)ΠT−1
t=0 P (st+1|st, at)π(at|st), (21)

where ρ0(s0) is the start-state distribution. The expected return
denoted by J(π) is obtained as:

J(π) =
∫

τ

P (τ |π)R(τ) = Eτ∼π[R(τ)]. (22)

The optimal policy problem aims to obtain the optimal
policy π∗:

π∗ = arg max
π

J(π). (23)

Policy gradient methods compute an estimator of the policy
gradient and plug it into a stochastic gradient ascent algorithm,
where the advantage function is crucially important [41]. The
advantage function indicates the relative advantage of each
action, which is denoted as:

Aπ(s, a) = Qπ(s, a)− V π(s), (24)

where the value function V π(s) gives the expected return if
the agent starts in state s and acts according to policy π, which
is defined as:

V π(s) = Eτ∼π[R(τ)|s0 = s]. (25)

The most commonly used gradient estimator ĝ has the
form of:

ĝ = Êt

[
∇θ log πθ(at|st)Ât

]
, (26)

which is obtained by differentiating the loss function LPG(θ)
of policy gradient:

LPG(θ) = Êt

[
log πθ(at|st)Ât

]
, (27)

where πθ is a stochastic policy and Ât is an estimator of the
advantage function at time step t. However, it is appealing
to perform multiple optimization steps on the loss LPG(θ)
using the same scheduling trace. Moreover, it often leads to
destructively large policy updates. To solve these problems,
the loss function can be customized as [42]:

LTRPO(θ) = Êt

[
πθ(at|st)

πθold(at|st)
Ât

]
= Êt

[
rt(θ)Ât

]
, (28)

where rt(θ) = πθ(at|st)
πθold

(at|st)
, and rt(θold) = 1. Besides, the

estimated advantage Ât is calculated as:

Ât = −V (st) + γT−tV (sT ) +
T−1∑
τ=t

γτ−trτ . (29)

Without a constraint, maximization of LTRPO(θ) would
lead to a huge policy update. Hence, the loss is further
customized into [14]:

L(θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

(30)

where ϵ is a hyperparameter, e.g., ϵ = 0.2. Furthermore,
clip (rt(θ), 1− ϵ, 1 + ϵ) is used to clip the probability, i.e.,
removes the incentive for moving rt outside of the interval
[1−ϵ, 1+ϵ]. Then, the minimum of the clipped and unclipped
objectives is taken.

Algorithm 2 Training of the OCM Algorithm
Input : Q1,Q2 = ∅, πθ,N,D
Output: at

1 Initialize policy network πθ;
2 Initialize replay memory D = ∅;
3 for episode ← 1, 2, . . . do
4 while Q1 ̸= ∅ or Q2 ̸= ∅ do
5 Sample a set of trajectories τ on policy πθ;
6 Call Algorithm 1 and store {st, at, rt} in D;
7 Compute target value v̂π(st);
8 end while
9 for t=1, 2, . . . , T do

10 Compute Â1, . . . , ÂT by Eq. (29) ;
11 Compute L(θ) by Eq. (30);
12 Optimize the network by mini-batch SGD with

Adam;
13 end for
14 Update weights from time to time πold ← πθ ;
15 end for

The training of the OCM algorithm is shown in
Algorithm 2. The policy network πθ and replay memory D are
initialized for each episode. Then, the Algorithm 1 is called
to make the online container migration decisions. The results
are stored, and the target value is calculated. After that, the
estimated advantages Ât and the loss are calculated. Then, the
network is optimized and updated.

C. Computational Complexity Analysis

The analysis of computational complexity is as follows.
First, as shown in Algorithm 1, the state is obtained by
Eq. (14). The numbers of containers and layers are |C| and
|L|, respectively. The complexity of Eq. (14) is O(|C||L|).
Then, the action is selected according to πt and At. The time
complexity of the policy is only related to the network size,
which can be considered a constant time Ot. So, the complex-
ity of the action selection is O(Ot). The complexity for the
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while loop is O(|K|). These steps are executed sequentially
so they can be completed in polynomial time.

Second, for the training of the OCM algorithm as shown in
Algorithm 2, it mainly updates the network weights in Fig. 2.
To evaluate the complexity of the network update, a theoretical
analysis of the computational complexity of the policy and
value networks based on floating point operations (FLOPs) is
performed, which is widely used to measure the computational
complexity of deep learning models [43], [44].

As shown in Fig. 2, we analyze the FLOPs in order
from bottom to top. In the layer-sharing feature encoding
part, the embedding layers are dictionary lookups with 0
FLOPs [45]. For the Transformer encoder layer, the FLOPs are
4L|E|d + 2L2d, where L is the length of the input sequence,
|E| is the number of edge nodes, and d is the dimension of
(query, key, value) [46]. For the convolutional kernels, the
FLOPs is 2HW (CinK2 + 1)Cout, where H , W , and Cin are
height, width, and number of channels of the input feature
map, respectively. K is the kernel width, and Cout is the
number of output channels [47]. Denote the input and output
dimensions of the j-th linear layer (from bottom to top) by
Di

j and Do
j , respectively. The FLOPs of the two linear layers

in the layer sharing feature encoding part are 2(Di
1 − 1)Do

1

and 2(Di
2 − 1)Do

2, respectively [47].
Then, for the multi-user feature extraction part, the FLOPs

of the LSTM cell are 4Dh(Di + Dh + 3), where Di and
Dh are the dimensions of the input and hidden layers, respec-
tively [48]. Finally, for the online container migration decision
part, the policy network and value network are composed
of one linear layer, whose FLOPs are 2(Di

3 − 1)Do
3 and

2(Di
4 − 1)Do

4, respectively. The FLOPs of the activation
functions can be ignored compared with matrix multiplies and
inner products [49].

V. EVALUATION

A. Experimental Settings

This subsection introduces the data preprocessing, parame-
ter settings, baseline algorithms, and simulator setup.

Data preprocessing: The data-trace used in the experiments
are from the mobility traces of taxi cabs in Rome, Italy [15].
The area with relatively high data density in the data set is
selected, and the moving path is limited within 7km× 7km.
To better compare the performance, different numbers of nodes
and tasks are set. When comparing different numbers of nodes,
the number of tasks is fixed at 500. Furthermore, the numbers
of nodes are set to 16, 36, 64, 100, and 144, respectively [22].
When comparing the number of different tasks, the number
of nodes is fixed at 36, the node interval is 1km, and the
communication range between base stations is fixed at 1.2km.
In addition, for heterogeneous nodes, the CPU frequency
ranges within [64, 96] GHz, and the CPU clock speed of the
task is (0, 1] GHz [23].

Parameter settings: The transmission power pk is set to
0.25W . The power spectral density of the Gaussian white
noise σ is set to −174dBm/Hz. The path loss coefficient
β is set to 6 [35]. The communication bandwidth bk,e(t)
between the task k and edge node e is set to [70, 90] MB/s.

TABLE VI
HYPERPARAMETER SETTINGS

The distance between edge nodes is calculated similarly
as [22]. The positive coefficient of migration latency is set
to [1, 3]. The task sizes are set from 5kb to 5Mb. During a
training epoch, tasks arrive randomly, and the image requested
by each task ranges in size from 1.84MB to 2.03GB [16].
Among them, the size of a layer ranges from 7B to 880.58MB.
Each node is initialized with a random number of layers
assigned to it. For the input of the neural network, we use the
min-max normalization method to scale the layer state into
[−1, 1] and the resource capacity into [0, 1]. The detailed
hyperparameter settings of the deep neural network are shown
in TABLE VI.

Baselines: To compare the performance, several baselines
are conducted. The details are as follows.

1) Kube [17]. Kube is an image-based scheduling
algorithm. It is one of the default algorithms of Kuber-
netes. The scheduling decision is made according to the
score calculated by the distribution of requested images.

2) Greedy. A greedy algorithm selects the edge node with
a minimal layer download size.

3) DRL. It is a traditional actor-critic-based DRL algorithm
with several fully connected layers.

4) DRL-MU. It is a DRL algorithm with only the LSTM
network to extract the Multi-User (DRL-MU) features.

5) DRL-VLS. It is a DRL algorithm with a self-attention-
based encoder to extract the Vanilla Layer-Sharing
(DRL-VLS) features.

Simulator setup: The vehicular network simulation envi-
ronment is implemented with Python, which mainly includes
the classes of edge node, container, image, layer, task, sched-
uler, etc. The details are as follows.

1) Cloud. The remote cloud data center mainly includes
two attributes: CPU and bandwidth.

2) Image. The image class includes the image ID and image
name. Besides, the list of layers in the image, the number
of layers, and the image size are also included.

3) Layer. The layer class includes layer ID, layer name,
image list containing the layer, and layer size.
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Fig. 3. Performance with different numbers of tasks.

Fig. 4. Performance with different numbers of tasks.

4) Node. Each node includes node ID, CPU capacity, mem-
ory capacity, bandwidth, storage capacity, geographic
location coordinates, running container list, and existing
layers on this node.

5) Task. Each task contains the task ID, arrival time,
requested CPU, requested memory, requested band-
width, requested image, and the layer list in the image.

The vehicular network environment is created based on
these classes to return the reward, state, etc. Moreover, the
environment is updated online according to the action the
agent selects. In real deployment, we can deploy socket servers
on the decision-making controller nodes and edge nodes and
connect and transmit decision results, data, etc., through sock-
ets. The vehicle and the RSU can be communicated through
C-V2X, such as LTE-V2X or 5G-V2X [7]. More deployment
details are discussed in the discussion.

B. Experimental Results
To illustrate the performance of the proposed OCM

algorithm, the experiments are conducted in a heterogeneous
vehicular network scenario. Firstly, an example of the OCM
algorithm is illustrated. Then, we conduct a detailed analysis
of the experimental results. Each experimental result has been
repeated 5 - 6 times to mitigate the influence of random-
ness. We draw the mean and variance of the experimental
results in the figures. For example, the solid line in Fig. 4
is the mean, and the shaded area represents the standard
variance of multiple round experiments. Besides, the rewards
in the figures are absolute values to compare the total delay
better.

Performance with the different numbers of tasks:
Figs. 3 and 4 show the performance of each algorithm under
the different numbers of tasks. Fig. 3 shows the computation
time, initial time, migration time, and total reward performance
of the algorithms. As shown in Fig. 3(a), the number of tasks
is set to 500, 750, 1000, 1250, and 1500, respectively. As the
number of tasks increases, the effect of the image-based Kube

algorithm worsens because as the number of tasks increases,
the required image also increases, and the Kube algorithm
cannot reduce the download of unnecessary layers from the
perspective of layers. Furthermore, the greedy algorithm is
unstable under different task numbers because it cannot con-
sider long-term benefits. In addition, as the number of tasks
increases, the computation time of the OCM algorithm is
consistently better than that of the DRL-MU and DRL-VLS
algorithms.

As shown in Fig. 3(b), the initial time of the OCM algorithm
is always lower than that of other algorithms. Overall, the
initial time order of these algorithms is OCM < DRL-VLS <
DRL-MU < Greedy < DRL < Kube. As described in the
system model in Section III, the initial time includes the
download time of layers and the transmission time of tasks,
as shown in Figs. 4(a) and 4(b), respectively. As the number
of tasks increases, the layer download time and transfer time
of the OCM algorithm are consistently lower than other
algorithms. Compared with the DRL-VLS algorithm, the OCM
algorithm can consider the multi-user features, so tasks can
be scheduled to the same node as much as possible to save
downloads. Compared with the DRL-MU algorithm, OCM can
fully consider sharing layers, effectively reducing the layer
download overhead.

The migration times of different algorithms are shown in
Fig. 3(c). As the number of tasks increases, the overall migra-
tion time relationship is OCM < DRL-VLS < DRL-MU <
DRL < Kube < Greedy. This is because the OCM algorithm
can fully consider sharing layers, effectively reducing migra-
tion time. Figs. 4(c) and 4(d) show the layer download time
and container layer migration time during container migration,
respectively. It can be seen from the figure that the effect of
the Greedy algorithm is worse than that of Kube because the
Greedy algorithm only considers that the target node needs to
download the least layers but does not consider the container
transmission time caused by the distance, so it may choose
to exist layer A more significant number of nodes with a
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Fig. 5. Performance with different numbers of edge nodes.

Fig. 6. Performance with different numbers of edge nodes.

longer distance leads to a longer overall migration time of
the algorithm.

Finally, the overall reward function under different task
numbers is shown in Fig. 3(d). The rewards in the figure are
absolute values. It can be seen from the figure that the OCM
algorithm can reduce up to 53% of the total latency against
the baseline algorithms. Specifically, the total latency with the
different numbers of tasks is reduced by 30%, 21%, 21%,
8%, and 10% on average compared with Kube, Greedy, DRL,
DRL-VLS, and DRL-MU algorithms, respectively. DRL-VLS
and DRL-MU algorithms only consider vanilla layer sharing
or multi-user features. As the number of tasks increases,
many popular layers have been downloaded, so the number of
layer downloads required by popular nodes can be reduced.
In other words, our proposed OCM algorithm can adapt well
to different numbers of tasks and maintain better performance
than the baselines.

Performance with the different numbers of edge nodes:
Figs. 5 and 6 show the performance of different algorithms
in the case of different numbers of nodes. As shown in
Fig. 5(a), as the number of edge nodes increases, the com-
puting resources are more sufficient, so the overall computing
time becomes less and less. The initialization time of different
algorithms is shown in Fig. 5(b). The initialization time mainly
includes layer download and transmission time, as shown in
Figs. 6(a) and 6(b), respectively. Fig. 6(a) shows that the
OCM algorithm can fully consider the sharing of layers, thus
effectively reducing the layer download time. From Fig. 6(b),
we can see that the transmission time decreases as the number
of nodes increases. This is because the distance between nodes
becomes shorter as the number of nodes increases, so the
required transmission time is further reduced.

As shown in Fig. 5(c), when the number of nodes changes,
the migration time of containers does not change. This is
because the user’s movement track does not change, and the
user’s task volume also does not change. Overall, in terms of
container migration time, OCM < DRL-VLS < DRL-MU <
DRL < Greedy < Kube. The container migration time mainly

includes the time to download the layer from the cloud
and the time to migrate the container layer, as shown in
Figs. 6(c) and 6(d), respectively. As the number of nodes
increases, the number and types of layers existing on each
node are also more, so the layer download time decreases,
as shown in Fig. 6(c). In addition, with the number of nodes,
the distance between nodes becomes closer, so the migration
time is shortened, as shown in Fig. 6(d).

As shown in Fig. 5(d), different numbers of nodes have little
effect on reward, which fully demonstrates the robustness of
the algorithm. Besides, this also illustrates that our algorithm
can adapt to different vehicular networks, e.g., different num-
bers of nodes. In terms of overall reward, the OCM algorithm
reduces the total latency than Greedy, Kube, DRL, DRL-MU,
and DRL-VLS algorithms by 23%, 55%, 14%, 10%, and 10%
on average, respectively.

Performance with different storage capacities: As shown
in Fig. 7, to compare the performance under different edge
node capacities, the capacity of edge nodes is set from 5 to 25,
respectively. As the capacity of the node increases, the ini-
tialization time and migration time of different algorithms
decrease. This is because the node can store more layers when
the capacity is more extensive, reducing the layers that need to
be downloaded during initialization and migration. Our OCM
algorithm can maintain the best performance when the node
capacity changes.

Performance with different running container numbers:
To compare the impact of different computing capabilities
of nodes, the maximum number of running containers of
the nodes is set from 5 to 25, and the experimental results
are shown in Fig. 8. It can be seen from the figure that
as the computing capability of the nodes increases, the total
task running time decreases. This is because each node can
run more containers, resulting in an effective reduction in
computation time.

Performance with different bandwidth: Since the band-
width affects the download speed, affecting the total latency,
Fig. 9 shows the performance under different bandwidths.
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Fig. 7. Performance with different storage capacities.

Fig. 8. Performance with different numbers of containers.

Fig. 9. Performance with different bandwidth.

Fig. 10. CDF of total latency.

As the bandwidth increases, the time required to download the
layer decreases, so the overall reward decreases. No matter
how the bandwidth changes, the performance of the OCM
algorithm is better than other algorithms.

CDF of total latency: It can be seen from Fig. 10 that the
proportion of tasks with a shorter total latency of the OCM
algorithm is more than baseline algorithms. Moreover, the
average total latency of the OCM algorithm is shorter than that
of baseline algorithms. This proves that the OCM algorithm
can optimize container migration decisions from a long-term
perspective.

Performance of the OCM algorithm: In order to illustrate
the convergence of the algorithm, the policy loss, critic loss,
and average total reward of the OCM algorithm are shown in
Figure 8. As shown in Figs. 8(a) and 8(b), the loss of the policy
network and the critic network reached convergence after
about 200 epochs, showing the OCM algorithm’s convergence.
The reward of the first 1000 epochs is shown in Figure 8(c).
It can be seen from the figure that the reward of the OCM
algorithm also converges to a higher value quickly. Since the

TABLE VII
COMPUTATION RESOURCES FOR DIFFERENT ALGORITHMS

Kube and Greedy algorithms adopt a fixed strategy, the reward
of each epoch is the same. Therefore, after multiple rounds of
epoch training, the reward of the OCM algorithm is better than
other algorithms.

Performance for the migration decisions: In order to fur-
ther illustrate the effect of the algorithm, the average migration
frequency is shown in Figure 9. It can be seen from the figure
that the average migration frequency of the OCM algorithm
is the lowest among all algorithms. This fully demonstrates
that the OCM algorithm can effectively reduce the number
of migrations while maintaining a high reward, which further
illustrates the effect of the algorithm. On the other hand, the
migration frequency of the Kube algorithm is the highest. This
is because the Kube algorithm only judges based on the image
and cannot take into account the distribution of the layer, so it
will bring a lot of wasted migration times.

Computation resources for different algorithms:
As shown in TABLE VII, we use torch.profiler [45] to
record the Random Access Memory (RAM), Video RAM
(VRAM), and execution time for different algorithms.
Greedy and Kube algorithms require the shortest execution
time because they are simple judgments and comparisons.
The computation resources and execution time required by
our proposed OCM algorithm and the RL-based baseline
algorithms are close, indicating that our improvements do
not bring additional execution overhead. Moreover, the
computation resources and execution time required by the
algorithms are within acceptable limits, demonstrating that our
algorithm has low complexity and can be applied in reality.

VI. DISCUSSION

From the experimental results, we can see the effectiveness
of our algorithms. However, the following issues deserve
further investigation.

Migration or routing: When a task is processed on the
origin edge node through routing, while it could potentially
reduce migration latency, it could lead to other issues:
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Fig. 11. Policy loss, network loss, and average total reward of the OCM algorithm.

1) Resource allocation: If the task is resource-intensive,
it might overburden the origin edge node, leading to
performance degradation for other tasks.

2) Load balancing: Keeping the task on the origin node
may result in an unbalanced load among the edge nodes.
Migration can help balance the load.

3) Latency: If the users are closer to the target edge node,
it might be faster to migrate the task and process it there
despite the migration latency.

4) Energy efficiency: Different edge nodes may have vary-
ing energy efficiency levels. If the target node can
perform the task more energy-efficiently, it might make
sense to migrate the task there.

5) Reliability and robustness: If the origin edge node
already operates at high capacity, migrating the task to
a more reliable or less utilized node can reduce the risk.

In summary, although avoiding migration latency is an
important issue, it is just one of the important factors we
should consider. The overall performance, efficiency, and reli-
ability of the edge computing system often require the capa-
bility to migrate tasks between nodes as conditions change.

Ping-pong phenomenon: The ping-pong phenomenon, i.e.,
rapid and unnecessary migrations between two adjacent RSUs
due to small fluctuations in received signal strength, can intro-
duce high cost and degrade performance. Several strategies
can be implemented to avoid this: 1) Hysteresis threshold:
It sets a threshold that must be exceeded to trigger a migration.
2) Dwell timer: It is a time delay before a migration is
performed. 3) Predictive algorithms: If the algorithm predicts
that the user will return to the original RSU quickly, it might
decide to delay or avoid migration. 4) Cost-benefit analysis:
It considers migration costs against the benefits.

In this paper, we avoid the ping-pong phenomenon through
the following aspects:

1) System model: We have set a hysteresis threshold tho

as described in Section III-B. Moreover, the cost-benefit
analysis is conducted in Eq. (10).

2) Algorithms: Our OCM algorithm has considered the
global state at the current time and the continuous
rewards at the previous and current time slots. Frequent
migration will cause the long-term cumulative rewards
to decrease, so the RL-based algorithm we designed can
naturally prevent the ping-pong phenomenon.

It can be seen from Fig. 12 that the migration frequency of
our OCM algorithm is the smallest, which further illustrates

Fig. 12. Average migration frequency.

that our algorithm can effectively avoid the ping-pong phe-
nomenon. Future work will further consider dwell timers and
predictive algorithms.

Implementation method: The OCM algorithm can be
implemented on RSUs through the Kubernetes scheduling
framework [50]. The status of the vehicles can be sent to
the RSUs via C-V2X [7]. Prometheus collects and stores the
real-time resource load data, subsequently accessed via the
Kubernetes API [51]. The Kubernetes scheduling framework
allows for complete scheduling cycle customization, entailing
two steps: the Scheduling Cycle and the Binding Cycle. The
former selects an edge node for the container, while the latter
applies that decision to the RSUs. These two cycles collec-
tively form a “scheduling context” featuring multiple extension
points, including Filter, Score, Reserve, Bind, etc. A scheduler
plugin must be implemented to enact a custom scheduling
algorithm, with several extension points registered [50]. Once
the scheduler plugin is completed, it can be deployed through
Kubernetes, with the application scheduler specified as our
custom scheduler.

Nevertheless, this comprehensive deployment process
necessitates a substantial amount of engineering code. Addi-
tionally, using RL demands interaction between the training
and decision-making processes, implicating RL and the
Kubernetes API, which makes system implementation more
complex. As this paper primarily focuses on the schedul-
ing algorithm, the performance of the algorithm has been
evaluated through large-scale simulations rather than imple-
mentation in Kubernetes. Currently, our team is working on
deploying a custom scheduler into the Kubernetes system.
This endeavor has surfaced many new challenges, guiding our
future work.

VII. CONCLUSION

We proposed a multi-user layer-aware online container
migration algorithm in edge-assisted vehicular networks.
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Firstly, we modeled the OCM problem comprehensively, con-
sidering the initialization latency, computation latency, and
migration latency. Then, a feature extraction method based on
self-attention and LSTM was proposed to extract the multi-
user layer-sharing information. Finally, an OCM algorithm
based on policy gradient RL was proposed for migration
decisions. The experiments were conducted with real-world
data traces, and the experimental results demonstrated that our
proposed algorithm can outperform the baseline algorithms up
to 53% in total latency. Future work will consider the joint
optimization problem of layer-based container placement and
migration and implement it in the Kubernetes system.
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