
Efficient Serverless Function Scheduling

in Edge Computing

Jiong Lou∗, Zhiqing Tang†, Xinyu Lu∗, Shijing Yuan∗, Jie Li∗, Weijia Jia†, and Chentao Wu∗

∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
†Institute of Artificial Intelligence and Future Networks, Beijing Normal University, China

lj1994@sjtu.edu.cn, zhiqingtang@bnu.edu.cn,{gale13,2019ysj,lijiecs}@sjtu.edu.cn,jiawj@bnu.edu.cn,wuct@sjtu.edu.cn

Abstract—Serverless computing is a promising approach for
edge computing since its inherent features, e.g., lightweight vir-
tualization, rapid scalability, and economic efficiency. However,
there are two challenges existing in serverless edge computing:
significant cold start latency and request blocking. Previous
studies have not successfully resolved these challenges, which
affect the Quality of Experience. In this paper, we formulate
the Serverless Function Scheduling (SFS) problem in resource-
limited edge computing, aiming to minimize the average response
time. To solve this intractable scheduling problem, we first
consider a simplified offline form of the SFS problem and
design a polynomial-time optimal scheduling algorithm. Inspired
by this optimal algorithm, we propose an Enhanced Shortest
Function First (ESFF) algorithm, including function creation
and function replacement. To avoid frequent cold starts, ESFF
selectively decides the initialization of new function instances
when receiving requests. To deal with request blocking, ESFF
judiciously replaces serverless functions based on the function
weight at the completion time of requests. Extensive simulations
based on real-world serverless request traces are conducted,
and the results show that ESFF consistently and substantially
outperforms existing baselines under different settings.

Index Terms—Serverless function scheduling, Edge computing,
Faas.

I. INTRODUCTION

In edge computing, computation resources are deployed

at the network edge to offer low-latency services [1]. How-

ever, the edge servers are still resource-limited compared

with cloud servers. Besides, the frequent mobility of users

generates highly dynamic workloads [2]. It is challenging to

offer high-quality services for dynamic requests with limited

edge resources. Serverless computing [3], a paradigm designed

for dynamic short-lived computations, is promising for edge

computing [4]. The serverless function is initialized on demand

to avoid resource wastage. Besides, it is economical for it only

charges for CPU time spent in request execution [5]. Fig. 1

depicts the overview of serverless edge computing, where

various requests are released by mobile users and processed

by edge servers.

Most of the current serverless platforms, e.g., OpenWhisk

[6], Lambda [7] and Azure [8], are designed for cloud comput-

ing, unsuitable to resource-limited edge computing. They scale

up serverless function instances when there is no idle instance

for waiting requests [5]. Though the waiting time for idle

(Corresponding author: Jie Li)

Fig. 1. The overview of serverless edge computing.

instances may be eliminated by initializing new instances, this

mechanism can easily bring function instance over-provision

[9] and frequent cold starts [10] (i.e., the process of initializing

a new function instance). These two problems result in delayed

response and largely affect the Quality of Experience. There-

fore, the response time of serverless edge computing should

be optimized.

Most of existing studies about the serverless edge computing

focus on data communication [11], function placement [12]–

[14] and function cache [15]. They cannot properly resolve

the severe problems of function instance over-provision and

frequent cold starts. Recently, two schedulers have been de-

signed to partially mitigate these problems, considering the

scheduling for each single function [16], [17]. The OpenWhisk

V2 is designed to separate the control flow and data flow [16].

LaSS [17] estimates the instance number for each function

to meet the individual deadline based on queue theory but

neglects the cold starts.

However, these studies still do not overcome the following

challenges, which greatly increase the response time: (1)

Due to the highly dynamic workloads and limited resources

in edge computing, the serverless function instances will

be frequently replaced, which prolongs the current request’s

response time and delays the future requests. (2) In resource-

limited edge computing, short serverless function requests are

easily blocked by long requests, which increases the average

response time. Moreover, request bursts are very common for

highly dynamic workloads in edge computing [18], making the

request blocking worse. These challenges make the serverless

function scheduling in edge computing much intractable and

result in poor performance of existing methods. The key

solutions for these two challenges are specifically designed

serverless function creation and replacement policies.

(a) OpenWhisk (b) OpenWhisk V2 (c) ESFF

Fig. 2. An illustrative scheduling example of OpenWhisk, OpenWhisk V2 and ESFF. The requests with the same color belong to the same function. Two
long requests r1, r2 of function f1 arrive earlier than there short requests r3, r4, r5 of function f2. ESFF achieves the shortest average response time.

In this paper, we first formulate the Serverless Function

Scheduling (SFS) problem in resource-limited edge comput-

ing, aiming to minimize the average response time, which

is proved to be NP-hard. To efficiently solve this intractable

scheduling problem, we first analyze a Simplified form of the

SFS (SSFS) problem: offline scheduling of requests on an edge

server that can execute a single function at once. Then, based

on the optimal scheduling algorithm of SSFS, we propose an

Enhanced Shortest Function First (ESFF) algorithm, consider-

ing the aforementioned challenges. ESFF consists of two sub-

policies: (1) Function Creation Policy (FCP). FCP selectively

initializes a new function instance at the request arrival time by

judging whether the average response time can benefit from

the function initialization. (2) Function Replacement Policy

(FRP). FRP replaces functions at the request completion time

according to the function weight, i.e., the scheduling urgency.

To the best of our knowledge, we are the first to formulate

the Serverless Function Scheduling problem, fully considering

the significant cold start latency and highly dynamic function

workloads in resource-limited edge computing. The contribu-

tions of this paper are summarised as follows:

1) Firstly, we analyze a simplified problem SSFS and prove

that the optimal scheduling of SSFS can be obtained in

polynomial time.

2) Secondly, we design a lightweight scheduling algorithm

to solve the SFS problem in an online manner. ESFF

judiciously prioritizes each serverless function based on

the execution time, the cold start time, and the number of

waiting requests. It initializes and replaces new function

instances based on function weights.

3) Finally, extensive simulations based on real-world

serverless request traces [19] show that ESFF substan-

tially and consistently outperforms existing baselines.

II. MOTIVATION

In Fig. 2, we give a simple example to illustrate the

motivation of serverless function scheduling. Fig. 2(a) and 2(b)

generated by different scheduling algorithms show the same

results. In Fig. 2(c), the proposed algorithm ESFF produces

the best scheduling in terms of the average response time.

In Fig. 2(a), OpenWhisk processes the requests in the central

queue based on the ascending order of their arrival time. As

a result, short requests r3, r4 and r5 are seriously blocked by

long requests r1 and r2. In a real edge environment, the request

bursts are very common [20], so many short requests will be

blocked by long requests with the scheduling of OpenWhisk.

In Fig. 2(b), OpenWhisk V2 maintains an individual queue

for each function. If there are requests waiting in the queue,

the required function instance will continue to process these

requests. This design still results in blocking. In Fig. 2(b),

when request r1’s execution is finished, request r2 has already

arrived at the edge server, waiting in the queue. Moreover, if

multiple requests of the function f1 arrive at the edge server

before finishing the request r2, the requests r3, r4, and r5 will

be blocked again, which is unreasonable and far from optimal.

In Fig. 2(c), ESFF also sends each request to its individual

function queue. It differs from OpenWhisk V2 in that after fin-

ishing a request, a function instance can be selectively replaced

by another function instead of processing the requests in its

queue. Therefore, short requests will not be largely blocked

by long ones, and ESFF achieves the best performance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Request Model: In this paper, the serverless function re-

quests are released by mobile users and arrive at the serverless

platform over time. A request is denoted as ri ∈ R, where R

is the set of requests. Request ri’s arrival time is denoted as

tai . The execution time of request ri is denoted as tei . Due to

the dynamic nature of edge computing, the arrival time and

execution time of each request are unknown in prior and hard

to predict [21]. The start execution time and the completion

time of the request ri are denoted as tsi and tci , respectively.

Serverless Function Model: The function set is denoted by

F = {f1, f2, . . . , f|F|}. The function of request ri is denoted

by li ∈ F. Before processing a request, the corresponding

function instance should be initialized, named cold start. For a

function fj , the cold start latency is defined as tlj . In this paper,

it is assumed that request execution cannot be interrupted.

kjo represents the o-th instance of fj , with two states: (1)

Idle state, state(kjo) = 0, when waiting for requests. (2)

Busy state, state(kjo) = 1, when processing a request. After

finishing a request, the function instance turns idle, waiting

for future requests. An idle function can be evicted to release

the resources. For a function fj , the eviction time is defined

as tvj . The set of initialized instances of function fj is defined

as K
j = {kj1, k

j
2, . . . , k

j

|Kj |}, which changes over time.

Edge Server Model: For simplicity, the serverless platform

is assumed to be deployed on a resource-constrained edge

server1. The resource capacity of the edge server is represented

by the maximum number of function instances that can be

executed concurrently, denoted as C.

1Multiple edge servers inter-connected by the ultra-low latency network can
be modeled as a powerful edge server for the neglectable transmission time.

Algorithm 1: Enhanced Shortest Function First

1 if A request ri arrives at the edge server then

2 Invoke Algorithm 2;

3 if A function instance kjo finishes execution then

4 Invoke Algorithm 3;

B. Problem Formulation

For each request ri, it cannot be processed before arriving,

i.e., tai < tsi . As each request’s processing cannot be inter-

rupted, therefore, tci = tsi + tei . Before processing a request

ri, an instance of the required function li should be initialized

and in the idle state.

At any time, the edge server can hold at most C function

instances. Each function instance can process one request of its

type at once [6]. When an instance of fj is initialized without

evicting any function instance, it requires tlj for cold start;

When it is initialized by evicting an instance of function fj′ ,

it requires tvj′ for eviction and tlj for cold start.

The response time of a request ri is tri = tci − tai , including

both the execution time and waiting time. The objective is to

optimize the average response time of all requests:

T =
1

|R|

∑

ri∈R

tri . (1)

The SFS problem is an online scheduling problem, i.e., making

scheduling decisions without future information.

Theorem 1. The SFS problem is NP-hard.

Proof. The theorem is proved in [22].

IV. SIMPLIFIED FORM OF SERVERLESS FUNCTION

SCHEDULING

Due to the NP-hardness of SFS, we consider a Simplified

form of SFS (SSFS) and design an optimal scheduling algo-

rithm, which can efficiently be extended for the SFS problem.

SSFS is simplified in the following aspects: (1) The edge

server is unary, i.e., holding at most one initialized function

instance at any time. (2) The requests of the same function

have identical execution time, i.e., tei = tei′ = tj if li = li′ =
fj . tj is the request fj’s execution time and also function fj’s

execution time. (3) All requests arrive at the edge server at time

0. (4) All functions’ request number, cold start time, eviction

time, and execution time are known before scheduling. The

request number of the function fj is denoted as nj .

Optimal scheduling algorithm of the SSFS problem

(OSSFS): Since the edge server is unary, the scheduling of

SSFS is equivalent to request ordering. Similar to shortest job

first, the OSSFS algorithm has two steps. (1) Each function is

associated with a weight, which is defined as wj = tj+
tlj+tvj
nj

.

(2) Each function’s requests are processed continuously and

processed in ascending order of function weights.

Theorem 2. The OSSFS algorithm generates the optimal

scheduling of the SSFS problem.

Algorithm 2: Function Creation Policy

Input: tlj , tvj , tej , nw
j , ri, qj , F, Kj

1 if nw
j = 0 and

∑
k
j
o∈Kj state(kjo) > 0 then

2 Process ri in fj’s idle instance;

3 else

4 if
∑

fj∈F
|Kj | < C then

5 Compute ne
j based on Eq. (2);

6 if ne
j > 0 then

7 Initialize an instance for function fj ;

8 else if
∑

fj∈F
|Kj | = C then

9 Compute S based on Eqs. (3) and (4);

10 if |S| > 0 then

11 fj′ = argmaxfj′∈S tej′ ;

12 Replace an idle instance of fj′ with fj ;

13 qj .join(ri);

Proof. The theorem is formally proved in [22].

V. ESFF ALGORITHM

Inspired by the OSSFS algorithm, the Enhanced Short-

est Function First (ESFF) algorithm is designed for online

scheduling by considering multiple function instances and

unknown future information. First, the average execution time

tej , average cold start latency tlj , and average eviction time tvj of

fj are computed according to the history. Then, the definition

of function weight is modified to adapt to the SFS problem.

As shown in Algorithm 1, ESFF consists of two sub-

policies: (a) Function Creation Policy (FCP), invoked when

a new request ri of function fj arrives. FCP decides whether

a new function instance should be initialized. (b) Function

Replacement Policy (FRP), invoked when a request ri is

finished by an instance of function fj . FRP decides whether

this instance should be replaced by other function instances.

At other time, each function instance continuously processes

the requests waiting in its queue.

A. Function Creation Policy

When a request ri of function fj arrives, FCP is invoked

to judge whether a new instance of fj should be initialized.

The total number of fj’s requests waiting in its queue qj at

ri’s arrival time is denoted as nw
j .

Algorithm 2 depicts the pseudocode of FCP. The key idea of

FCP is making scheduling decisions according to the current

state of the system. If nw
j = 0 (i.e., the queue qj is empty)

and there exists an idle instance of the function fj , the request

ri is directly sent to an idle function instance for execution.

In lines 4-7, if there is no idle function instance of fj and

there are enough resources for initializing a new function

instance of fj , FCP prefers to initialize a new function instance

with free resources than replace an idle function instance. It

assesses whether the total response time can benefit from the

function instance initialization, i.e., at least one request will be

Algorithm 3: Function Replacement Policy

Input: kjo, tej , tvj , Kj , tlj , nw
j′

1 Compute wj based on Eq. (5);

2 S = {fj′ |n
w
j′ > 0};

3 fx = fj , wx = wj ;

4 if |S| < 1 then

5 for j′ ∈ S do

6 Estimate ne
j′,j based on Eq. (3);

7 Compute wj′ based on Eq. (6);

8 if wj′ < wx then

9 wx = wj′ , fx = fj′ ;

10 if fx ̸= fj then

11 Replace kjo with a new instance of function fx;

12 else if nw
j > 0 then

13 kjo processes the first request in qj ;

14 else

15 state(kjo) = 1;

processed by the new function instance. The number of fj’s

waiting requests after the cold start latency tlj is estimated by:

ne
j = nw

j + 1−
tlj |K

j |

tej
. (2)

If ne
j > 0, then it is likely that at least one request will be

processed by the newly initialized function instance of fj ,

so a new instance will be initialized; Otherwise, no function

instance will be initialized. The request ri will join the queue

qj in this and the following conditions. In lines 8-12, if

there is no idle function instance of fj and the resources

are insufficient to initialize such instance, it assesses whether

the total response time can benefit from replacing an idle

function instance. The number of fj’s waiting requests after

fj′ ’s eviction time and fj’s cold start latency is estimated by:

ne
j,j′ = nw

j + 1−
(tlj + tvj′)|K

j |

tej
. (3)

The candidate set of functions with enough eviction time that

makes ne
j,j′ > 0 is computed by:

S = {fj′ |n
e
j,j′ > 0 and

∑

k
j′

o ∈Kj′

state(kj
′

o) > 0}. (4)

FCP chooses fj′ ∈ S with the largest tej′ and replaces an idle

instance of fj′ with a new instance of fj . If S is empty, no

function instance will be initialized.

B. Function Replacement Policy

When an instance kjo of the function fj finishes a request,

FRP is invoked to decide whether kjo should be replaced.

Similar to the OSSFS algorithm, the function fj is associated

with a weight to represent its scheduling urgency, defined as:

wj = tej +
tvj |K

j |

nw
j

. (5)

Fig. 3. The scheduling example of ESFF. FCP initializes a new function
instance for the request r2, and replaces the function instance for request r4.

The item tlj is removed from the numerator in Eq. (5) for the

function fj is already initialized.

Algorithm 3 shows the pseudocode of FRP. The prime idea

of FRP is trying to replace the existing function instance with

a more urgent function based on the comparison of function

weights. The scheduling decision made by FRP also depends

on the current state of the system as follows. In lines 1-9,

FRP finds the function that can benefit most from replacing

the instance kjo. Since the future information of requests

is unavailable, we only consider the current requests. The

candidate function set is S = {fj′ |n
w
j′ > 0}. It means that

there must exist requests waiting in the queue of candidate

functions; Otherwise, there is no need for initializing a new

function instance. Similar to Algorithm 2, the number of fj′ ’s

waiting requests, ne
j′,j , after evicting kjo and initializing a new

instance of fj′ is estimated based on Eq. (3). In line 7, the

weight of each function in the candidate function set is:

wj′ = tej′ +
(tlj′ + tvj′)(|K

j |+ 1)

ne
j′,j

. (6)

Finally, the function fj′ ∈ S with the smallest wj′ and wj′ ≤
wj is selected to replace the function instance kjo. In lines 12-

13, if there is no function satisfying the above requirements,

the function instance kjo will not be replaced. If there is any

request waiting in the queue qj , kjo processes the first request at

the head of the queue. Otherwise, kjo turns idle, state(kjo) = 1.

C. Scheduling Example

Fig. 3 is a scheduling example of ESFF. The edge server’s

capacity is two. Five requests of two functions arrive at the

edge server at different times. Requests r1, r2 and r3 are

of function f1 and requests r4, r5 are of function f2. The

request r1 incurs a cold start at the beginning. When r2
arrives, FCP decides to initialize a new instance of function

f1 to reduce r2’s waiting time. At the arrival time of r3, all

function instances are busy and the computation resources are

insufficient, so r3 joins the queue q1. When r1 is finished, FRP

decides to initialize a new instance of function f2 to replace

the instance of function f1 since w2 < w1 and nw
j′ > 0.

VI. EVALUATION

A. Setups

The ESFF algorithm, baseline algorithms, and the simula-

tion environment are implemented in Python 3.6 on a desktop

with an Intel Core i9-10900K 3.7 GHz CPU and 32GB RAM.

The serverless request traces are collected from a real cluster

of Azure, containing 2.2×106 requests during two weeks [19].

The function, completion time, and execution time of each

(a) Average Response Time (b) Average Slowdown (c) Average Cold Start Time

Fig. 4. Average response time, slowdown and cold start time under different edge server capacities.

(a) Average Response Time (b) Average Slowdown (c) Average Cold Start Time

Fig. 5. Average response time, slow down and cold start time under different workload intensity ratios.

request are recorded. Limited by the measurement precision,

some requests’ execution time is recorded as 0, and is set to

1ms in the following experiments. We choose the first 6×105

requests as the simulation dataset.

The default capacity of the resource-limited edge server is

set to 16. Each function’s cold start latency and eviction time

are randomly chosen from [0.5,1.5] according to [23], since

function details (e.g.,function codes and dependencies) are not

included in the request traces [19].

We select three most related serverless function scheduling

algorithms as baselines: (1) FaasCache [24]. It schedules

requests sequentially based on the arrival time. When there

is no idle function instance for the current request, FaasCache

tries to initialize a new instance or replace another instance. (2)

OpenWhisk V2 [16]. It makes requests of the same function

wait in an individual queue. When the request at the queue

head has waited for more than a fixed threshold (i.e., 100ms),

a corresponding function instance is initialized. (3) Shortest

Function First (SFF). The only difference between SFF and

OpenWhisk is that SFF schedules requests sequentially based

on the ascendant order of their average execution time.

The following two metrics are used to evaluate ESFF:

(1) Average response time, 1

|R|

∑
ri∈R

(tci − tai). (2) Average

slowdown, 1

|R|

∑
ri∈R

tci−tai
te
i

.

B. Comparison with Baselines

Impact of edge server capacity. In Fig. 4, ESFF is

compared against baselines with respect to different edge

server capacities. In Fig. 4(a), compared with the best baseline

SFF, ESFF substantially reduces the average response time by

18% to 40%. When the edge server capacity increases, the

function replacement times will be reduced for all scheduling

algorithms. Therefore, the average cold start time is also

reduced as shown in Fig. 4(c). Besides, with more resources,

(a) CDF of Response Time (b) CDF of Slowdown

Fig. 6. CDF of response time and slowdown.

the edge server can better handle the request bursts, and

then request blocking problem will be mitigated. FaasCache

and OpenWhisk V2 have very poor performance under very

limited resources since they are unaware of massive cold

starts and request blocking. Fig. 4(b) proves that by mitigating

the request blocking problem, ESFF successfully reduces the

response time of short requests and achieves the best fairness.

Impact of workload intensity. In Fig. 5, the workload

intensity ratio is defined to control the intervals between

requests. In Fig. 5(a), ESFF achieves the lowest average

response time under different workload intensity. With lower

workload intensity ratios, the improvement of ESFF is more.

In Fig. 5(b), we observe that the average slowdown of ESFF

increases as the workload intensity ratio increases from 1.0

to 1.4. The reason is that with longer intervals, the function

instances of short requests will be more likely replaced, which

brings more cold starts.

The cumulative distribution function (CDF) of response

time and slowdown is shown in Fig. 6. Compared with the

baselines, the CDF curve of ESFF is always closer to the left,

which means that the response time and slowdown of ESFF

are consistently better. In particular, the P95 and P99 response

time of ESFF are much better than other baselines.

0 50 100 150 200 250
Arrival Time (m)

0

100

200

300
Re

qu
es

t N
um

be
r

0 50 100 150 200 250
Arrival Time (m)

0

50

100

150

Av
g.

 E
xe

cu
tio

n
Ti

m
e

(s
)

0 50 100 150 200 250
Arrival Time (m)

0

200

400

Av
g.

 R
es

po
ns

e
Ti

m
e

(s
)

0 50 100 150 200 250
Arrival Time (m)

0

2500

5000

7500

Av
g.

 S
lo

wd
ow

n

Fig. 7. Detailed scheduling results of ESFF over request arrival time.

C. Further Analysis

In Fig. 7, we select 20000 continuous arriving requests to

show detailed results of ESFF on each minute. Three points

can be observed in this experiment: (1) It is obvious that with

longer execution time, the response time also increases. (2)

More request numbers further prolong the response time since

the longer waiting time (i.e., short requests are blocked by long

requests). (3) A large number of long requests not only affect

the current requests but also largely slow down the upcoming

requests. From these observations, we learn that the request

burst (i.e., request number and request size) leads to significant

response time. To deal with request bursts, offloading long

requests to the powerful cloud will be a better choice.

VII. CONCLUSION

In this paper, we formulated the SFS problem for resource-

limited edge computing. We proposed a polynomial-time op-

timal scheduling algorithm for a simplified offline form of

SFS. Then, we designed an Enhanced Shortest Function First

(ESFF) algorithm. To avoid wasteful cold starts, ESFF selec-

tively decides function instance initialization when requests

arrive. To deal with dynamic workloads, ESFF judiciously

replaces function instances based on function weights. Ex-

tensive simulations based on real-world traces show ESFF’s

substantial outperformance over existing baselines.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[2] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE

Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[3] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, no. 12, pp.
44–54, 2019.

[4] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: vision and challenges,” in Proceedings of the 2021

Australasian Computer Science Week Multiconference (ACSW), 2021,
pp. 1–10.

[5] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the 2018 USENIX

Annual Technical Conference (USENIX ATC), 2018, pp. 133–146.
[6] Apache openwhisk. [Online]. Available: https://openwhisk.apache.org
[7] Aws lambda. [Online]. Available: https://aws.amazon.com/lambda/
[8] Microsoft azure serverless functions. [Online]. Available: https:

//azure.microsoft.com/en-us/services/functions
[9] J. R. Gunasekaran, P. Thinakaran, N. C. Nachiappan, M. T. Kandemir,

and C. R. Das, “Fifer: Tackling resource underutilization in the serverless
era,” in Proceedings of the 21st International Middleware Conference

(Middleware), 2020, pp. 280–295.
[10] S. Wu, Z. Tao, H. Fan, Z. Huang, X. Zhang, H. Jin, C. Yu, and C. Cao,

“Container lifecycle-aware scheduling for serverless computing,” Soft-

ware: Practice and Experience, vol. 52, no. 2, pp. 337–352, 2022.
[11] C. Cicconetti, M. Conti, and A. Passarella, “Faas execution models for

edge applications,” arXiv preprint arXiv:2111.06595, 2021.
[12] A. Hall and U. Ramachandran, “An execution model for serverless

functions at the edge,” in Proceedings of the International Conference

on Internet of Things Design and Implementation (IoTDI), 2019, pp.
225–236.

[13] D. Bermbach, J. Bader, J. Hasenburg, T. Pfandzelter, and L. Thamsen,
“Auctionwhisk: Using an auction-inspired approach for function place-
ment in serverless fog platforms,” Software: Practice and Experience,
vol. 52, no. 5, pp. 1143–1169, 2022.

[14] A. Das, S. Imai, S. Patterson, and M. P. Wittie, “Performance optimiza-
tion for edge-cloud serverless platforms via dynamic task placement,”
in Proceedings of the 2020 20th IEEE/ACM International Symposium

on Cluster, Cloud and Internet Computing (CCGRID), 2020, pp. 41–50.
[15] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container

caching for serverless edge computing,” in Proceedings of the 41st

IEEE Conference on Computer Communications (INFOCOM), 2022,
pp. 1069–1078.

[16] Openwhisk future architecture. [Online]. Available: https://cwiki.apache.
org/confluence/display/OPENWHISK/OpenWhisk+future+architecture

[17] B. Wang, A. Ali-Eldin, and P. Shenoy, “Lass: running latency sensitive
serverless computations at the edge,” in Proceedings of the 30th In-

ternational Symposium on High-Performance Parallel and Distributed

Computing (HPDC), 2021, pp. 239–251.
[18] C. Zhang, H. Tan, G. Li, Z. Han, S. H.-C. Jiang, and X.-Y. Li,

“Online file caching in latency-sensitive systems with delayed hits and
bypassing,” in Proceedings of the 41st IEEE Conference on Computer

Communications (INFOCOM), 2022, pp. 1059–1068.
[19] Y. Zhang, Í. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. De-

limitrou, and R. Bianchini, “Faster and cheaper serverless computing
on harvested resources,” in Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles (SOSP), 2021, pp. 724–
739.

[20] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los, “Challenges and opportunities in edge computing,” in Proceedings of

the 2016 IEEE International Conference on Smart Cloud (SmartCloud),
2016, pp. 20–26.

[21] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in Proceedings of the 36st IEEE Conference

on Computer Communications (INFOCOM), 2017, pp. 1–9.
[22] Efficient serverless function scheduling at the net-

work edge. [Online]. Available: https://1drv.ms/b/s!
AvUGoCG3JpiugcZMFDFUFkSvUUDKzQ?e=sdH7Kc

[23] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and
H. Chen, “Characterizing serverless platforms with serverlessbench,” in
Proceedings of the 11th ACM Symposium on Cloud Computing (SoCC),
2020, pp. 30–44.

[24] A. Fuerst and P. Sharma, “Faascache: keeping serverless computing
alive with greedy-dual caching,” in Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2021, pp. 386–400.

