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Abstract—Containers have gained popularity in Edge Computing (EC) networks due to their lightweight and flexible deployment
advantage. In resource-constrained EC environments, overbooking container resources can substantially improve resource utilization.
However, existing work overlooks the complex interplay between resource provisioning and container scheduling, which may result in
performance degradation or inefficient resource utilization due to highly dynamic resource heterogeneity in EC. To address this issue,
this paper presents a novel joint Resource Overbooking and Container Scheduling (ROCS) algorithm. Our approach accounts for
resource heterogeneity and the geographical distribution of edge nodes, and we formulate the ROCS problem to consolidate various
costs and revenues into a single profit metric for service providers. To enhance resource utilization and maximize the profit of the
service providers, we develop an efficient algorithm that operates within a hybrid action space scheme by leveraging soft actor-critic
reinforcement learning. Furthermore, we introduce a risk assessment mechanism to mitigate overbooking risks. Large-scale
simulations with real-world data traces demonstrate the efficacy of our proposed ROCS algorithm, validating its advantage of improving
resource utilization within EC networks.

Index Terms—Resource overbooking, container scheduling, edge computing, soft actor-critic reinforcement learning
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1 INTRODUCTION

In Edge Computing (EC), edge nodes with limited com-
puting resources are positioned closer to users at the net-
work edge, effectively supplementing mobile users’ com-
puting resources and providing lower latency compared
to cloud data centers [1]. Additionally, containers have
become prevalent in EC for deploying applications to han-
dle user tasks due to their lightweight and easy-to-deploy
features [2], [3]. To manage large-scale edge nodes and
container clusters, various platforms, such as Kubernetes
and KubeEdge, have been developed [4], [5].

When deploying containers in edge nodes, resources are
managed based on requests rather than actual usage [5].
However, many containers do not fully utilize requested re-
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sources, leading to significant resource waste. For example,
studies of Google’s production clusters reveal disparities
of about 53% for CPU and 40% for memory [6]. Actual
CPU usage ranges between 20%-35%, and memory usage
between 20%-40% [7]. Due to Kubernetes scheduling limita-
tions, these resources cannot be reallocated even if they are
under-utilized, which is particularly unfavorable in EC [8].
Resource utilization can be improved through overbooking
[7], [9], allowing containers to execute using idle resources
from existing containers. This technique has been exploited
in cloud data centers at various levels, e.g., the kernel [10],
the hypervisor [11], and the container cluster scheduler. For
example, OpenShift [12] and Mesos [13] schedulers perform
overbooking decisions with a static threshold. Besides, re-
searchers have also proposed effective overbooking schemes
for cloud data centers [7], [14]–[17]. In EC, overbooking
is in its preliminary stage, with several current studies
focusing on designing overbooking methods like auction
mechanisms [18], [19] and pricing models [20], [21].

It is a complicated yet technically challenging task to
determine different overbooking thresholds for each edge
node at every moment while considering the resource het-
erogeneity, geographical distribution of edge nodes, and the
impact of different types of tasks. Existing studies often
establish a static threshold for resource usage and then over-
book resources as many as possible within this constraint
[7], [14], [16]. Researchers have attempted to overbook
resources dynamically by predicting resource usage [20].
However, these studies have largely overlooked that the
heterogeneity and geographical distribution of edge nodes
can result in increased overbooking risks with an ill-suited
threshold. For example, if a static threshold is set as in
typical overbooking schemes [16], then nodes with fewer
computing resources face a significantly higher overbook-
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ing risk. Moreover, due to the geographical distribution
of edge nodes, different nodes may receive burst resource
requests at varying times, such as sudden traffic accidents
at specific locations [20], [22]. Inappropriate thresholds may
exacerbate overbooking risks in these cases. Moreover, a too-
low threshold fails to utilize resources fully. As a result, a
key challenge lies in dynamically adjusting the overbooking
threshold for each edge node to utilize resources while
minimizing the overbooking risks optimally.

Furthermore, exploring how to jointly make resource
overbooking and container scheduling decisions with a
long-term view presents a significant challenge. From a
global and long-term perspective in EC, the relationship
between resource overbooking and container scheduling is
intricate, given the trade-off between risk (e.g., the number
of container evictions) and resource utilization. On the one
hand, dynamic thresholds effectively reduce overbooking
risks, such as the number of container evictions. However,
they do not globally optimize task completion time. On
the other hand, existing container scheduling studies make
decisions based on various resource constraints (e.g., CPU,
memory, and storage) [3], [23], [24]. However, these con-
straints may no longer be valid when resources are over-
booked, significantly increasing risks. For instance, when
the number of requests rises in a specific area in EC, or
running containers request more resources during peak
hours [20], [25], the threshold should be lowered to avoid
scheduling additional containers to these nodes, thereby
reducing risk. Furthermore, container scheduling influences
edge node resource utilization, affecting the adjustment of
dynamic overbooking thresholds for these nodes.

These challenges are not easily addressed by designing
heuristic or auction algorithms [18], [20]. In contrast, Rein-
forcement Learning (RL) algorithms can fully consider the
impact of continuous decisions [26]. The heterogeneity of
EC and long-term benefits can be considered through state
and reward functions. Moreover, joint resource overbooking
and container scheduling decisions can be implemented by
modifying the RL action space to a hybrid action space [27].
Therefore, RL-based algorithms are well-suited for decision-
making in EC. A soft actor-critic-based RL algorithm is
proposed to jointly make efficient resource overbooking and
container scheduling decisions.

To the best of our knowledge, there exist few studies
investigating the joint Resource Overbooking and Container
Scheduling (ROCS) problem in EC to maximize the overall
profit for the service provider. We first extract features
such as resource usage and task requests and consider
the resource heterogeneity and geographical distribution
of edge nodes. Then, the ROCS problem is modeled as a
profit maximization problem that considers both the cost
and revenue of containers. To tackle the abovementioned
challenges, we propose a ROCS algorithm based on the soft
actor-critic algorithm [28] and design a hybrid action space
to determine the overbooking threshold and jointly make
container scheduling decisions. The reward function allows
for proper consideration of long-term profit. Lastly, we de-
sign a risk check mechanism to reduce the overbooking risk
by evaluating the scheduling decisions and evictions. We
conduct experiments with a large-scale real-world dataset
from Alibaba [8] to demonstrate the effectiveness of our

algorithm.
The contributions of this paper can be summarized as

follows.

1) We formulate the joint resource overbooking and
container scheduling problem in a heterogeneous
EC environment, considering resource limitations
and heterogeneity while unifying different costs into
the profit of the service provider.

2) We propose the ROCS algorithm based on soft actor-
critic RL with a hybrid action space to adjust the
overbooking threshold and make container schedul-
ing decisions jointly. Furthermore, a risk check
mechanism is designed to reduce the overbooking
risk further.

3) Our algorithm is assessed based on a large-scale
real-world data trace. Compared to the baseline
approaches, our ROCS algorithm achieves up to a
75% increase in profit with varying task numbers
while significantly reducing the overbooking risk
and enhancing resource utilization.

The remainder of the paper is organized as follows. In
Section 3, we describe the system model and problem for-
mulation. Next, the ROCS algorithm is proposed in Section
4. Then, performance evaluation is presented in Section 5
and some issues are discussed in Section 6. Finally, we
conclude the paper and discuss future directions in Section
7.

2 RELATED WORK AND MOTIVATION

2.1 Container Scheduling in Edge Computing

Containers have been widely used in EC to deploy vari-
ous applications because of their lightweight and easy-to-
deploy features. Pan et al. [3] study the retention-aware
container caching problem in serverless EC and propose
an online algorithm to reduce the overall cost. Hu et al.
[2] propose a containerized edge computing framework for
dynamic resource provisioning. They also study the joint
service request scheduling and container retention problem
and propose an online co-decision scheme to minimize the
long-term system cost [29]. Gu et al. [24] study a layer-
aware microservice placement and request scheduling at
the edge to increase the throughput and number of hosted
microservices. Tang et al. [4] propose a layer-aware con-
tainer scheduling algorithm based on policy optimization
to reduce the deployment cost in EC. Container migration
problems in EC have also been studied [30].

However, due to the nature of containers, resources that
have already been allocated cannot be reallocated even if
they are not used. Therefore, none of the above studies have
well considered the resource overbooking problem during
container scheduling. To solve this issue, Trimaran [31] is
proposed to make the scheduler aware of the gap between
resource allocation and actual resource utilization, which
is a collection of load-aware scheduler plugins. However,
Trimaran can only set static overbooking thresholds and
only considers CPU usage, not other resources such as
memory, hard disk, etc., so it can still cause many problems.
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2.2 Resource Overbooking in Edge Computing
Resource overbooking has been widely used in cloud com-
puting while still in its infancy in EC. In cloud computing,
various schedulers [10]–[13] and researchers [7], [14]–[17]
have considered resource overselling and proposed differ-
ent solutions. In EC, Zhang et al. [21] propose a novel
pricing-based dynamic resource allocation model through
an overbooking mechanism to overbook as many idle re-
sources as possible with high QoS satisfaction. Tang et
al. [20] propose an overbooking mechanism, including a
cancellation policy and a resource prediction method to
meet the needs of different users in EC. Liwang et al. [18]
introduce a novel computing resource provisioning mecha-
nism empowered by overbooking, which is formulated as a
multi-objective optimization problem that aims to maximize
the expected utilities of end-users, edge, and cloud. Besides,
they also adopt overbooking and propose a hybrid mar-
ket unifying futures and spot to facilitate resource trading
among an edge server and multiple smart devices [19].
Zanzi et al. [32] propose an end-to-end network slicing
orchestration solution that allows requesting network slices
on-demand and displays the achieved multiplexing gain
through overbooking. Gao et al. [33] overbook the backup
virtual machine to improve resource utilization in mobile
edge computing effectively.

All of the above researches set an overbooking threshold
and overbook the resources according to the threshold.
However, they all set a static threshold, and none of these
studies considers the dynamic adjustment of overbooking
thresholds or the interplay between resource overbooking
and container scheduling. To better illustrate the motivation
of this paper, we give an example of motivation as follows.

2.3 Motivation Example
Tasks are scheduled to edge nodes and processed by differ-
ent containers. Service providers generate revenue by offer-
ing limited edge node resources. To maximize the revenue,
resources can be overbooked [20]. To illustrate more clearly
the interplay between resource overbooking and container
scheduling, we present the flow of the ROCS problem in Fig.
1. The different colors in Fig. 1 represent different tasks. And
different shapes in Fig. 1 represent task usage, task request,
and task eviction, respectively. act and art represent the con-
tainer scheduling decision and the overbooking threshold
of the corresponding node, respectively. Starting from time
t = 2, in chronological order, we draw the resource usage of
the selected node (i.e., the node where the task is scheduled)
at each time in turn. For example, when t = 2, ac2 = 1,
indicating that the current task is dispatched to node 1, so
we draw the resource usage of node 1. Besides, ar2 = 0
indicates that no resources are overbooked when t = 2.

Subsequently, when t = 7, ar7 = 0.6, signifying that
resources are overbooked. When t = 8, the total resource
utilization of node 5 is already at a relatively high level.
Thus, scheduling to node 5 may not be a good choice at
this point. We need to either adjust the scheduling of the
container or adjust the resource overbooking threshold of
node 5 to avoid possible resource over-utilization situations.
When t = 9, trade-off between container scheduling and
node resource overbooking threshold is not good, resulting
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Fig. 1. Overview of the ROCS problem

in container eviction since there are not enough available
resources. As a result, container scheduling and resource
overbooking need to be jointly considered to use as many
idle resources as possible while avoiding container evictions
as much as possible. In this paper, we aim to make joint de-
cisions on container scheduling and overbooking thresholds
to maximize benefits.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the EC system model in
Section 3.1. Next, we define the cost in Section 3.2. Finally,
we formulate and analyze the problem in Section 3.3.

3.1 System Model

We define edge node, container, and task as follows. For
ease of reference, the main notations used in this paper are
summarized in TABLE 1.

Edge node: A set of edge nodes, represented by N =
{n1, n2, ..., n|N|}, is deployed at the network edge to pro-
vide computing resources. For each node n ∈ N, CPU and
memory capacities are denoted as cn and mn, respectively.
At time t, CPU and memory usages are denoted as cun(t)
and mu

n(t), respectively. Each node maintains a running
container list Pn(t). Furthermore, ln represents the location
of node n.

Container: A container is the smallest unit in which
a task runs. The container set is denoted as P =
{p1, p2, ..., p|P|}. Each container p ∈ P has a requested CPU
crp and requested memory mr

p. Real-time CPU and memory
usage are denoted as cup(t) and mu

p(t), respectively. Gener-
ally, a container’s resource requests match the requests of
the task running within it. For example, if container p is
created to process task k, resource requests are set to match
task k’s requests.

Task: A set of tasks, represented by K =
{k1, k2, ..., k|K|}, is generated by users and scheduled to
various edge nodes for processing. For each task k ∈ K,
the arrival time and expected finish time are denoted as tk
and dk, respectively. The data size is zk. CPU and memory
requests are denoted as crk and mr

k, respectively. Upon task
k completion, a value vk is obtained, which is inversely
proportional to completion time if finished without eviction;
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otherwise, the value is 0 [34]. Moreover, each task has a QoS
level ok ∈ {oG, oB}, divided into two types: Guaranteed oG

and Best Effort oB [17]. To manage overbooking effectively,
the CPU management strategy adopts a static strategy [5],
where CPU resources requested by Guaranteed tasks cannot
be overbooked. For Best Effort tasks, shared CPUs are
allocated and can be overbooked.

To manage overbooking more properly, the CPU man-
agement strategy is set to static strategy [35]. Specifically, the
dedicated CPUs are allocated for Guaranteed tasks (i.e., the
allocated containers). Moreover, for other tasks, the shared
CPUs are allocated. Shared CPUs can be overbooked, and
container evictions occur when CPU resources are insuf-
ficient. Each node has an eviction threshold thevic. When
a node’s remaining resources are insufficient, eviction is
conducted based on the QoS level and eviction cost to free
up resources. The above information related to the resources
of tasks and nodes is available in the dataset, the details of
which are in Section 5. Also, a discussion of how to obtain
this data in a real system can be found in Section 6.

3.2 Modeling of Revenue, Cost, and Profit

To facilitate a more convenient overbooking evaluation, all
costs are unified as the sum of the profit [20], [34].

Revenue: The revenue for all nodes can be calculated as
follows:

I =
∑
n∈N

∑
k∈K

xk,n × vk × yk, (1)

where xk,n = 1 indicates that task k is scheduled to node n.
Otherwise, xk,n = 0. Variable yk represents whether task k
was evicted, with 0 denoting no eviction and 1 denoting
eviction. Eviction implies that the task is not completed,
which naturally results in zero revenue [34].

Cost: The cost for all nodes can be calculated as follows:

C =
∑
n∈N

∑
k∈K

xk,n × Ck,n, (2)

where
Ck,n = Cbn + Ctk,n + Cck,n + Csk,n. (3)

In Eq. (3), Cbn represents the node booting cost, which is
proportional to the booting time of the node. Additionally,
Csk,n denotes the container startup cost on node n. The trans-
mission cost from task k to node n, Ctk,n, can be calculated
as [30], [36], [37]:

Ctk,n = ωt
zk
(
|lxk − lxn|2 + |l

y
k − lyn|2

)1/2
bn

, (4)

where lk = {lxk , l
y
k} and ln = {lxn, lyn} represent the locations

of task k and node n, respectively. ωt is a weight that con-
trols the relationship between the cost and transmission time
[36], [37]. bn denotes the bandwidth of node n. Parameter
Cck,n refers to the computation cost, which can be calculated
based on the expected processing time and the extent of
resource overbooking [20], [38]:

Cck,n =

ωc × (dk − tk)

min

(
cn−con(t)∑

p∈{ok=oG|k∈Pn(t)} crk
,

mn−mo
n(t)∑

k∈{ok=oG|k∈Pn(t)} mr
k
, 1

) , (5)

TABLE 1
Notations

Notation Description
N Set of edge nodes
n n ∈ N is an edge node
cn CPU capacity of edge node n
mn Memory capacity of edge node n
cun(t) CPU usage at time t
mu

n(t) Memory usage at time t
Pn(t) Running container list
ln location of edge node n
P Set of containers
p p ∈ P is a container
crp CPU request of container p
mr

p Memory request of container p
cup (t) Real-time CPU usage
mu

p (t) Real-time memory usage
K Set of tasks
k k ∈ K is a task
tk Arrival time of task k
dk Expected finish time of task k
zk Data size of task k
crk CPU request of task k
mr

k Memory request of task k
vk Value of task k
ok QoS level of task k
thevic Eviction threshold
I Revenue for all nodes
xk,n A variable indicating if task k is scheduled to node n
C Cost for all nodes
Cb
n Node booting cost

Cs
k,n Container startup cost on node n

Ct
k,n Transmission cost from task k to node n

Cc
k,n Computation cost of task k on node n

con(t) Overbooked CPU resource
mo

n(t) Overbooked memory resource
P Total profit of the service provider
th Overbooking threshold
dk,n Distance between task k and node n
st State
at Action
act A discrete action for the container scheduling
art A continuous action for the overbooking threshold
r Reward function
Cevic
t Eviction cost of the evicted containers

π Policy
H(π(·|s)) Entropy to indicate the randomness of the policy π
V (st) Value function
Lπ(θ) Loss function

where con(t) and mo
n(t) are the overbooked CPU and mem-

ory resources of node n, respectively. Parameter ωc controls
the weight of the cost and computation time. In Eq. (5),
cn − con(t) denotes all CPU resources except those that are
overbooked, and

∑
p∈{ok=oG|k∈Pn(t)} c

r
k denotes all CPU

resources requested by tasks whose QoS level is Guaran-
teed. When cn − con(t) ≥

∑
p∈{ok=oG|k∈Pn(t)} c

r
k, it means

that the resource overbooking does not affect the normal
tasks. Otherwise, it means there are too many overbooked
resources, which leads to an increase in the running time of
the task. We can use cn−con(t)∑

p∈{ok=oG|k∈Pn(t)} crk
to calculate the

increase in task time due to overbooking [20].

Profit: According to the above definitions, the total profit
of the service provider can be calculated as:

P = I − C. (6)
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3.3 Problem Formulation

This subsection introduces the constraints, problem formu-
lation, and problem analysis.

Constraints: To avoid the risk of excessive overbooking,
a threshold th is set. If the threshold is exceeded, some
containers must be evicted to release the resources such that
the available resources are sufficient to deal with the burst
requests. The overbooking constraint can be defined as:

cun(t) + con(t) < th,mu
n(t) +mo

n(t) < th,∀n ∈ N. (7)

In addition, when the total resource requests of the node
reach a threshold, container eviction will also be performed
to avoid risks, which can be denoted as:

cn −
∑

p∈Pn(t)

crp > thc
evic,mn −

∑
p∈Pn(t)

mr
p > thm

evic,∀n ∈ N,

(8)
where thc

evic and thm
evic are the container eviction thresh-

olds.
Moreover, each task should be scheduled to only one

edge node, which is represented as:∑
n∈N

xk,n = 1,∀k ∈ K. (9)

Problem Formulation: Our objective is to maximize the
overall long-term profit, as defined in Eq. (6). The goal
is to identify the optimal strategy that maximizes profit
while adhering to the constraints. Consequently, the ROCS
problem is formulated as follows:

Problem 1. maxP = I − C,

s.t. Eqs. (7), (8), (9),
xk,n ∈ {0, 1},∀n ∈ N,∀k ∈ K.

Problem Analysis: Problem 1 is a sophisticated variant
of the bin-packing problem, which is NP-hard and can be
addressed using heuristic approaches. In this problem, the
revenue I and the cost C can be expressed as the summation
of It and Ct at each time t, respectively, i.e., I =

∑
t It,

C =
∑

t Ct. Consequently, the profit P follows a first-
order Markov process. Moreover, the first-order transition
probability of resource demands remains quasi-static over
extended periods and non-uniformly distributed, provided
the time slice duration is appropriately chosen [39]. This
observation makes RL algorithms suitable for this problem
[40].

Among various RL algorithms, on-policy algorithms
such as the Proximal Policy Optimization (PPO) algorithm
[41] exhibit low sample efficiency. In contrast, off-policy
algorithms such as Deep Deterministic Policy Gradient
(DDPG) and extensions demonstrate higher sample effi-
ciency [42]. However, they are sensitive to hyperparameters
like learning rates and exploration constants. Furthermore,
the integration of off-policy learning and neural networks
poses significant challenges regarding stability and conver-
gence in EC [43]. To address these issues, the soft actor-critic
algorithm combines the stochastic policy advantages of PPO
with the sampling efficiency of the DDPG algorithm [28].
This approach offers enhanced exploration capability and
robustness in dynamic EC environments. Therefore, we pro-
pose an algorithm based on the soft actor-critic algorithm.

4 ALGORITHMS

In this section, we first introduce the algorithm settings, fol-
lowed by the proposal and analysis of the ROCS algorithm.

4.1 Algorithm Settings
The RL agent is responsible for making decisions. The state,
action, reward, and policy must be defined to train an agent.

State: A state st provides a comprehensive description
of the EC environment, primarily consisting of two com-
ponents: the edge nodes and the arriving task. Firstly, the
CPU usage cun(t), memory usage mu

n(t), and location of each
edge node n are crucial, as they represent the resource usage
and geographical distribution of edge nodes. Secondly, for
each task, the requested CPU rck and memory rmk play a sig-
nificant role in decision-making. Additionally, the distance
dk,n =

(
|lxk − lxn|2 + |l

y
k − lyn|2

)1/2 between task k and edge
node n substantially influences the task’s completion time.
Consequently, the state st can be defined as:

st = {cu1 (t), ..., cu|N|(t),m
u
1 (t), ...,m

u
|N|(t),

l1, ..., l|N|, r
c
k, r

m
k , dk,n} ∈ S,

(10)

where S is the set of all states.
Action: To optimize resource overbooking and container

scheduling decisions from a global perspective, the action at
each time t is defined as at = {act , art} ∈ A, where act ∈ N
represents a discrete action corresponding to the container
scheduling decision, art ∈ [0, 1] denotes a continuous action
indicating the dynamic overbooking threshold associated
with edge node act , and A refers to the action space.

Reward: The reward function rt is of critical importance.
The agent’s objective is to maximize the reward, and our
goal is to maximize profit; thus, the reward can be ob-
tained as rt = Pt. Moreover, containers may be evicted.
Consequently, the final reward at each time is modified to
rt = Pt − Cevict , where Cevict represents the eviction cost
determined by the evicted containers.

Entropy: As introduced in Section 3.3, the proposed
algorithm is based on the soft actor-critic to enhance the
policy’s robustness in adapting to the complex EC environ-
ment by incorporating entropy. Entropy is a measure of the
randomness of a random variable. If X is a random variable
and its probability density function is P , its entropy H is
defined as [44]:

H(X) = Ex∼P [− logP (x)] (11)

In RL, H(π(·|s)) can be employed to indicate the ran-
domness of the policy π in state s. The concept is not
only to maximize the cumulative reward but also to render
the policy more random [44]. In this manner, an entropy
regularization term is added to the RL objective:

π∗ = argmax
π

Eπ

[∑
t

r(st, at) + αH(π(·|st))
]
, (12)

where α is a regularization coefficient that controls the
significance of entropy. Entropy regularization increases the
exploratory nature of the RL algorithm. A more significant
α value enhances exploration, facilitating accelerated policy
learning and reducing the likelihood of the policy becoming
trapped in suboptimal local optima.
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Fig. 2. Overview of ROCS algorithm

Policy: A policy is a rule used by the agent to decide
what actions to take, typically denoted by π, i.e., at ∼
π(·|st). To enhance the policy, the soft Bellman equation is
required, defined as [28]:

Q(st, at) = r(st, at) + γEst+1
[V (st+1)] , (13)

where γ represents the discount factor, and the value func-
tion V (st) is calculated as follows:

V (st) = Eat∼π [Q(st, at)− α log π(at|st)]
= Eat∼π[Q(st, at)] +H(π(·|st)).

(14)

To jointly optimize resource overbooking and container
scheduling decisions, the container scheduling decision act
is assumed to primarily depend on the state st, while
the overbooking threshold is more influenced by both the
state st and the scheduling decision act , i.e., π(at|st) =
π(act |st)π(art |st, act). This is because container scheduling
primarily relies on resource utilization, and the overbooking
threshold of an edge node can only be determined appro-
priately after making the container scheduling decision, as
introduced in Section 1. Therefore, H(π(·|st)) in Eq. (14) is
modified to the joint entropy:

H (π (act , a
r
t |st)) = αcH (π (act |st))

+ αr
∑
ac
t

π (act |st)H (π (art |st, act)) , (15)

where αc and αr are the weights. In EC, it is advantageous
to assign different weights, as there would be a risk of one of
these two entropies overshadowing the other, which could
negatively impact exploration [27].

In accordance with Eq. (13), the soft policy evaluation
can converge to the soft Q function of the policy π. The
policy can be enhanced as follows.

πnew = argmin
π′

DKL

(
π′(·|s),

exp
(
1
αQ

πold(s, ·)
)

Zπold(s, ·)

)
, (16)

where DKL(·) denotes the Kullback-Leibler (KL) divergence.
Zπold(s, ·) normalizes the distribution. Generally, it does not
contribute to the gradient and can be disregarded [28].

The soft policy iteration algorithm consists of two steps:
soft policy evaluation based on Eqs. (13) and (16) and soft
policy improvement, which has been shown to converge to
an optimal maximum entropy policy regardless of the value
of α [28]. The soft actor critic algorithm uses function ap-
proximators to approximate the Q-function and policy and
optimizes the network parameters by stochastic gradient
descent. So the soft actor critic algorithm also has good
convergence [28]. In this paper, we also further prove the
convergence of the algorithm in experiments.

4.2 ROCS Algorithm

Overview: The ROCS algorithm is presented in Algorithm
1. The input consists of the weights θ, ω1, ω2 for the actor
network and the two critic networks, respectively, while
the output includes the policy π. As depicted in Lines 1
to 3, the weights ω̄1 and ω̄2 for the target networks and
the replay memory D are initialized. The replay memory D
stores training tuples. The initial state s0 is then obtained,
as shown in Line 5. As illustrated in Lines 6 to 14, for
each time t, the action at is selected, and the overbooking
risk is assessed by Algorithm 2. Actions of the first epoch
are randomly selected to enhance the exploration of action
selection. The reward rt is computed, and the subsequent
state st+1 is observed. Then, as shown in Lines 15 to 22,
network training is performed at the end of each epoch. The
gradients are calculated, and the networks are updated. The
details of the gradient step are provided in the following.

As depicted in Fig. 2, the ROCS algorithm employs two
critic networks Q (with parameters ω1 and ω2) and an actor
network π (with parameters θ) [28]. ROCS utilizes two Q
networks, e.g., Qω1

(st, at) and Qω̄1
(st, at), for each critic

network but selects the one Q network with a smaller Q
value at each time [45], thus mitigating the issue of Q value
overestimation. The container scheduling decision ac and
the overbooking threshold ar are determined according to
the actor network. These decisions are then input to Algo-
rithm 2 to verify and reduce the overbooking risk. Finally,
the scheduling decisions are made, and the EC environment
is updated accordingly.
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Algorithm 1: ROCS
Input : ω1, ω2, θ
Output: π

1 Initialize Qω1(s, a), Qω2(s, a), and πθ(s);
2 Copy weights ω̄1 ← ω1, ω̄2 ← ω2;
3 Initialize replay memory D ← ∅;
4 for epoch← 1, 2, ... do
5 Get initial state s0;
6 for t = 1→ T do
7 if epoch = 1 then
8 Randomly select the action at = {art , act} ;
9 else

10 Select the action at = {art , act} ∼ πθ (st);

11 Call Algorithm 2 for risk check;
12 Calculate the reward rt;
13 Get the next state st+1 ∼ p (st+1|st, at);
14 D ← D ∪ {(st, at, rt, st+1)};

// Network Training
15 for each gradient step do
16 Sample {(si, ai, ri, si+1)}i=1,...,N ;
17 Calculate yi by Eq. (21);
18 Update ω1 and ω2 by Eq. (22);
19 Update θ by Eq. (18);
20 Update αr and αc by Eq. (20);
21 Update target networks by Eq. (23);

22 end

Loss: Losses are required to train the networks. The loss
function of any Q function can be defined as [27], [28]:

LQ(ω)

=E(st,at,rt,st+1)∼D

[
1

2
(Qω (st, at)− (rt + γVω̄ (st+1)))

2
]

=E(st,at,rt,st+1)∼D,at+1∼πθ(·|st+1)

[
1

2

(
Qω (st, at)

−
(
rt + γ

(
min
j=1,2

Qω̄j
(st+1, at+1)

−
∑
ac
t+1

π
(
act+1|st+1

) (
αc log π

(
act+1|st+1

)
+αrπ

(
act+1|st+1

)
log π

(
art+1|st+1, a

c
t+1

)))))2
]

(17)
where D denotes the replay memory [46]. The target net-
work Qω̄ is utilized to enhance the training stability [45].

For the continuous action, specifically the resource over-
booking decision, traditional soft actor-critic algorithms
output the mean and standard deviation of the Gaussian
distribution. However, it is not differentiable to sample
actions according to the Gaussian distribution. To solve
this issue, the Beta distribution with shape parameters α
and β is employed [47]. The Beta distribution has finite
support and avoids the boundary effects associated with
the Gaussian distribution. Consequently, it is bias-free and
converges faster, leading to a quicker training process and
higher performance. Furthermore, it is compatible with on-

policy and off-policy algorithms such as soft actor-critic RL.
The policy’s loss function can be reformulated as follows:

Lπ(θ) =Est∼D,at∼πθ

[
α log (πθ (fθ (at;αθ(st), βθ(st)) |st))

− min
j=1,2

Qωj
(st, fθ (at;αθ(st), βθ(st)))

]
,

(18)
where fθ (·) is a neural network transformation. With Py-
Torch, the reparameterization trick for the Beta distribution
can be used to enable gradient computation [48].

Automating entropy adjustment: Different weights of
entropy are required in various states. In a state where the
optimal action is uncertain, the entropy value should be
larger; otherwise, it should be smaller. To automatically ad-
just the entropy, the RL objective is altered as a constrained
optimization problem, i.e., maximizing the expected return
while constraining the mean of entropy to be greater than
H0.

max
π

Eπ

[∑
t

r (st, at)

]
s.t. E(st,at)∼ρπ

[− log (πt (at|st))] ≥ H0

(19)

In EC, the parameter H0 is divided into Hc
0 and Hr

0 for
container scheduling and resource overbooking decisions,
respectively. To adjust the entropy automatically, the losses
of αc and αr can be computed as follows.

Lc(α) =Est∼D,at∼π(·|st)
∑
ac
t

π(act |st) [−αcHc
0

−αc log π (act |st)] ,
Lr(α) =Est∼D,at∼π(·|st)

∑
ac
t

π(act |st) [−αrHr
0

−αrπ(act |st) log π (art |st, act)] .

(20)

Network training: With the loss and automating entropy
adjustment, the networks can be trained. As shown in Lines
12 to 20 in Algorithm 1, several training tuples are first
sampled for each gradient step. Then, yi is computed as:

yi =ri + γ min
j=1,2

Qω̄i
(si+1, ai+1)

−
∑
ac
i+1

πθ(a
c
i+1|si+1)

(
αc log πθ

(
aci+1|si+1

)
+αrπθ

(
aci+1|si+1

)
log πθ

(
ari+1|si+1, a

c
i+1

))
,

(21)

where ai+1 ∼ πθ (·|si+1). And ω1 and ω2 are updated as:

L =
1

N

N∑
i=1

(
yi −Qωj (si, ai)

)2
. (22)

Finally, the target networks are also updated as follows.

ω̄1 ← τω1 + (1− τ)ω̄1,

ω̄2 ← τω2 + (1− τ)ω̄2,
(23)

where τ is the weight that controls the update rate.

4.3 Risk Check

A risk check algorithm is proposed to address potential
burst resource request situations to mitigate the overbook-
ing risk further. As shown in Algorithm 2, the risk check
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Algorithm 2: Risk Check
Input : k, act , a

r
t ,N

Output: act , r
a, rc

1 i← 1, n← act , r
a ← 0, rc ← 0, j ← 1,Nt ← N;

// Action Check
2 Sort Nt in descending order according to the action

probability;
3 while cun(t) + rck > art cn do
4 Select the next node n from Nt and the

corresponding threshold art ;
5 i← i+ 1;
6 if i > |N| then
7 n← act , r

a ← 1;
8 break;

// Container Eviction
9 Sort Pn(t) in descending order according to Cevicp (t)

and op as P′
n(t) = {p′1, ..., p′|P|};

10 while rck + cun(t) > thc
eviccn or

rmk +mu
n(t) > thm

evicmn do
11 Evict the container p′j ;
12 rc ← rc + r′j , j ← j + 1;
13 Update the available resources of the edge node;

14 act ← n;
15 end

algorithm primarily includes action check and container
eviction.

Action check: First, the plausibility of the action is as-
sessed, as illustrated in Lines 2 to 7 in Algorithm 2. Then, the
feasibility of scheduling the container on this edge node is
evaluated for the selected action act , i.e., the edge node n. If it
is not feasible, another edge node n′

i is selected based on the
action’s probability. If all nodes are infeasible, the initially
selected node is retained, and a significant negative reward
is returned, i.e., ra ← 1 indicates a substantial negative
reward.

Container eviction: Subsequently, to ensure the resource
availability of each edge node, the remaining resources
based on the resource requests on the node are periodically
inspected. As illustrated in Lines 8 to 12, the running con-
tainers are sorted according to the eviction cost Cevicp (t) =
Tp × (0.6 × cup(t) + 0.4 × mu

p(t)) [49] and QoS level op,
where Tp represents the container’s running time. In other
words, if the remaining requestable resources fall below the
threshold, containers with QoS level oB are evicted first,
based on the eviction cost. If resources remain insufficient,
containers with QoS level oG are then evicted. Additionally,
a negative reward r′j is added, and the available resources
for the edge node are updated.

4.4 Computational Complexity Analysis

The computational complexity analysis is as follows. The
primary process of the ROCS algorithm consists of Algo-
rithm 1 and Algorithm 2. First, as depicted in Algorithm
1, the state is obtained by Eq. (10), and the complexity is
O(|N|). Then, the action is selected according to the policy
πθ . The time complexity of the networks is only related

to the network size, which can be considered a constant
time Ot. Thus, the complexity of action selection is O(Ot).
The training complexity can be expressed in floating-point
operations (FLOPs) [50]. The training complexity does not
affect the decision-making complexity of the network, so
it can be considered polynomial time. Next, as depicted in
Algorithm 2, the time complexities of the action check and
container eviction are O(|N|) and O(|Pn(t)|), respectively.
These steps are executed sequentially, allowing them to be
completed in polynomial time.

Moreover, to evaluate the complexity of the network
training, a theoretical analysis of the computational com-
plexity of the neural networks based on FLOPs is per-
formed, which is widely used to measure the computational
complexity of deep learning models [4]. As shown in Fig. 2,
the ROCS algorithm contains four critic networks with the
same structure and one actor network. The actor network
contains three hidden fully-connected layers and two output
layers, for five fully-connected layers. Assuming that the
input and output dimensions of the j-th layer are Hj

i and
Hj

o , respectively. Then the total FLOPs for the actor network
are

∑7
j=1(2H

j
i −1)Hj

o [51]. Each critic network contains two
fully-connected layers, so the FLOPs for each critic network
are

∑2
j=1(2H

j
i − 1)Hj

o . Usually, a linear layer is followed
by a non-linear activation function, such as a ReLU or a
Softmax [52]. It is common not to count these operations,
as they only take up a tiny fraction of the overall time. For
example, a ReLU is just y = max(x, 0). On a fully connected
linear layer with Hj

o output neurons, the ReLU uses Hj
o

of these computations, i.e., it has Hj
o FLOPs. Compared

with matrix multiplies and inner products, the FLOPs of
the activation function can be ignored.

To summarize, our algorithm yields results in polyno-
mial time. Moreover, our experiments also demonstrate that
the execution time of the ROCS algorithm is acceptable, as
shown in Section 5.2.

5 EVALUATION

In this section, the performance of the proposed algorithm
is evaluated. First, the experimental settings are introduced,
followed by the presentation and analysis of the results.

5.1 Experimental Settings
Data preprocessing: The real-world trace used in the ex-
periments is collected from a large production cluster on
approximately 1800 machines in Alibaba’s artificial intelli-
gence platform, spanning July and August 2020 [8]. Accord-
ing to the dataset, the edge node CPU capacities are set to 64
or 96 cores, and memory capacities are set to 512 or 1024 GB.
Node locations are randomly generated following a uniform
distribution, with coordinates in the range [0, 1] unit. To
generate tasks, specific task features are extracted from
the dataset, including start time, end time, requested CPU,
requested memory, real-time CPU usage, real-time memory
usage, and task data size [53]. The expected processing time
of a task is obtained by subtracting the start time from the
end time. Task locations are also randomly generated within
the [0, 1] range, and QoS levels are randomly assigned. Tasks
arrive randomly, and the distance between tasks and nodes
is calculated using the Euclidean distance formula.
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Fig. 3. Performance with different number of tasks
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Fig. 4. Performance with different number of nodes

0 100 200 300 400 500
Epoch

0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Po
lic

y 
Lo

ss

1e3

DRL-ST-0.8
DRL-ST-0.9

ROCS w/o rc
ROCS

(a) Policy Loss

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Cr
iti

c 
Lo

ss

1e6

DRL-ST-0.8
DRL-ST-0.9

ROCS w/o rc
ROCS

(b) Critic Loss

0 100 200 300 400 500
Epoch

14
12
10

8
6
4
2
0

lo
g

c

DRL-ST-0.8
DRL-ST-0.9

ROCS w/o rc
ROCS

(c) logαc

0 100 200 300 400 500
Epoch

0.8
0.6
0.4
0.2
0.0

lo
g

r

DRL-ST-0.8
DRL-ST-0.9

ROCS w/o rc
ROCS

(d) logαr

Fig. 5. Losses of the ROCS algorithm

Baselines: To compare performance, several baselines
are employed. The action spaces of these algorithms are
identical to that of the ROCS algorithm. The details are as
follows.

1) LB: Load Balancing (LB) is a load-balancing algo-
rithm that selects a node with the most available
resources [50].

2) OBF: Overbooking Factor (OBF) is a
traditional overbooking algorithm [11]. Each
time, a node is selected according to an
overbooking factor defined as OBF =

min

( ∑
p∈Pn(t) c

r
p−cun(t)

min(cn,
∑

p∈Pn(t) c
r
p)
,

∑
p∈Pn(t) m

r
p−mu

n(t)

min(mn,
∑

p∈Pn(t) m
r
p)

)
.

3) Auction [20]: It is an auction-based pricing algo-
rithm to determine the overbooking threshold.

4) DQN [26]: Deep Q-Network (DQN) is a value-based
RL algorithm.

5) DRL-ST-0.9: Deep Reinforcement Learning with
Static Threshold th = 0.9 (DRL-ST-0.9) is a DRL
algorithm based on soft actor-critic [28]. The over-
booking threshold is static and set to 0.9.

6) DRL-ST-0.8: Deep Reinforcement Learning with
Static Threshold th = 0.8 (DRL-ST-0.8) [28].

7) ROCS w/o rc: ROCS algorithm without risk check

(ROCS w/o rc) is an algorithm without Algorithm 2
risk check based on the ROCS algorithm.

Parameter settings: The target entropyHr
0 andHc

0 are set
to −0.25 and 0.25, respectively. The weights αr and αc are
automatically adjusted during training. The learning rates
for the actor and critic networks are set to 1 × 10−4. The
discount factor γ is set to 0.9, and the target network update
parameter τ is set to 0.1. CPU and memory resource capac-
ities are scaled into (0, 1] using the min-max normalization
method. The batch size is set to 256. Three fully-connected
layers are used for the actor network, with dimensions of
1024 and 512. A beta distribution is employed to describe the
probability density distribution of the overbooking thresh-
old, with its two parameters, α and β, represented by 512-
dimensional fully connected networks. Each critic network
consists of two fully connected layers with a dimension of
1024. The actor network is updated at the end of each epoch.
Following the approach in [34], vk is set to a value inversely
related to computation time, e.g., 900 − cck,n. The eviction
cost is set as Cevict =

∑
p∈Pevic(t) Cevicp (t), where Pevic(t)

is the set of evicted containers at time t. Additionally, to
minimize the number of evictions, an additional penalty
term Cevict × (1 + |Pevic(t)|) is added.

Simulator setup: The EC simulation environment is im-
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plemented with Python, which mainly includes the classes
of edge node, task, scheduler, etc. The main classes are as
follows.

1) Node. Each node has a node ID. The features of a
node include the CPU capacity, memory capacity,
location, bandwidth, available CPU, available mem-
ory, and a list of running tasks.

2) Task. The task class includes the task ID, data size,
CPU request, memory request, start time, end time,
location, QoS level, etc.

The EC environment is created based on these classes to
return the reward, state, etc. Moreover, the environment is
updated online according to the action the agent selects. The
simulation is run in NVIDIA DGX A100 with AMD EPYC
7742 CPU. And the operating system is CentOS 7.

5.2 Experimental Results

Multiple sets of experiments are conducted and analyzed to
demonstrate the ROCS algorithm’s effectiveness.

Performance with the different number of tasks: The
reward, latency cost, computation cost, and container evic-
tion cost with varying task numbers are presented in Fig. 3.
As depicted in Fig. 3(a), the ROCS algorithm consistently
outperforms other baselines under different numbers of
tasks. Moreover, the ROCS algorithm has increased profit
by 75%, 59%, 44%, 27%, 74%, 45%, and 16% compared with
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Fig. 8. CPU and memory usage with different task numbers

the LB, OBF, Auction, DQN, DRL-ST-0.9, DRL-ST-0.8, and
ROCS w/o rc algorithms, respectively.

As shown in Fig. 3(b), regarding latency, the ROCS
algorithm is comparable to the algorithms with static thresh-
olds and outperforms the LB and OBF algorithms. The
computation cost is shown in Fig. 3(c). The ROCS algo-
rithm significantly reduces computation costs since the state
contains the resource status of each node. As illustrated in
Fig. 3(d), since the ROCS algorithm automatically adjusts
the overbooking threshold, the eviction cost is significantly
lower than other baselines, especially for the DRL algo-
rithms with static thresholds. This highlights the advantages
of the ROCS algorithm’s hybrid action space and the risk
check mechanism, which can fully consider the impact
of overbooking and container scheduling while effectively
reducing the eviction number.

Performance with the different number of nodes: As
illustrated in Fig. 4(a), the rewards of different algorithms
exhibit an overall increasing trend as the number of edge
nodes increases. This is because, with more edge nodes, the
total computing resources increase, leading to a decrease
in container evictions, as shown in Fig. 4(d). Furthermore,
as depicted in Figs. 4(b) and 4(c), the ROCS algorithm’s
latency cost and computation cost remain superior to the
LB and OBF algorithms. Overall, when the number of nodes
changes, the reward of the ROCS algorithm is, on average,
69%, 46%, 78%, 41%, and 16% higher than the LB, OBF, DRL-
ST-0.9, DRL-ST-0.8, and ROCS w/o rc baseline algorithms,
respectively.

Performance of the training process: Fig. 5 displays
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TABLE 2
Execution resources and execution time for different algorithms

Algorithm RAM VRAM Execution Time (s)
LB - - 4.23× 10−5
OBF - - 5.27× 10−5
Auction - - 1.81× 10−4
DQN 155Kb 90Kb 4.51× 10−4
DRL-ST-0.8 67Kb 109Kb 1.28× 10−3
DRL-ST-0.9 67Kb 109Kb 1.29× 10−3
ROCS w/o rc 59Kb 70Kb 1.31× 10−3
ROCS 59Kb 70Kb 1.34× 10−3

the different losses of ROCS, DRL-ST-0.9, DRL-ST-0.8, and
ROCS w/o rc algorithms. It can be seen from Figs. 5(a) and
5(b) that these algorithms have reached convergence after
training for approximately 100 epochs. This illustrates the
good convergence performance of the ROCS algorithm. In
addition, the change of α also determines the performance
of the algorithm. A larger α generally leads to a more
random strategy and vice versa. Figs. 5(c) and 5(d) show
logαc and logαr , respectively. As the number of training
epochs increases, logαc and logαr decrease, consistent with
common sense. Because as the training process gradually
converges, the randomness of the policy decreases, and the
action selection tends to choose better actions. This further
illustrates the effectiveness of our algorithm. Moreover, the
rewards of different algorithms are shown in Fig. 6. It can
be seen that the ROCS algorithm has reached convergence
when the training is fewer than 100 epochs, and the per-
formance of the subsequent epochs is stable. Overall, the
ranking of algorithm performance is ROCS > DQN > ROCS
w/o rc > Auction > DRL-ST-0.8 > OBF > LB > DRL-ST-0.9.

Moreover, to further verify the convergence of the pro-
posed ROCS algorithm, we conduct comparison experi-
ments with different initial values for α. As can be seen
in Fig. 7, when α takes a smaller value, the algorithm is
more effective and converges faster. When α becomes larger,
such as α = 0.85, the reward is smaller, but the algorithm
still reaches convergence in about 200 epochs. In our ROCS
algorithm, we have taken α = 0.25, which is a value that
allows the algorithm to converge faster and perform better.
In short, Fig. 7 further shows that our ROCS algorithm has
good convergence.

CPU and memory usage: Fig. 8 presents the resource
usage of edge nodes. As the number of tasks increases, the
CPU usage of the ROCS algorithm becomes higher. Since
the LB algorithm does not consider overbooking and polls
for each node, it has low CPU and memory utilization. The
DQN algorithm does not consider the joint decision-making
of overbooking thresholds and container scheduling well,
and training and updating based on the maximal Q intro-
duces a large error, so it has a relatively low performance.
The OBF algorithm considers container scheduling based
on overbooking but does not adjust thresholds dynamically
well, so the CPU utilization is low. Compared with the LB
and OBF algorithms, CPU usage is significantly improved
by 339% and 10%, respectively. In Fig. 8(b), the memory
usage of the ROCS algorithm is also maintained at a high
level. Memory usage is improved by 373% and 3%, re-
spectively, compared with the LB and OBF algorithms. For
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Fig. 9. Locations and rewards with real-world physical distribution for
edge nodes. (a) The area of the United Kingdom (0.9km × 0.9km
bounded by the coordinate pairs [−0.135, 51.500] and [−0.127, 51.509])
with 719 nodes (crimson starts) [54]. (b) Generated random edge nodes
with uniform distribution.

other algorithms, the CPU and memory utilization are closer
to the ROCS algorithm but perform worse in other met-
rics, e.g., the transmission, computation, and eviction costs.
Therefore, overall, our proposed ROCS is the most effective
algorithm in all aspects combined. This fully demonstrates
the necessity of overbooking and the effective enhancement
of resource usage through overbooking.

Computational complexity and execution resources: To
further demonstrate the computational complexity of the
algorithm, we have executed the algorithms 5000 times,
and the results of the average decision-making time are
presented in TABLE 2. As observed from TABLE 2, the
algorithms with the least execution time are LB and OBF
due to their lack of complex neural network reasoning
processes. The ROCS algorithm requires 1.34×10−3 seconds
for a single decision within acceptable limits. Moreover,
compared with the DRL-ST-0.8 and DRL-ST-0.9 algorithms,
the incremental decision-making time incurred by the neu-
ral network addition in the ROCS algorithm is virtually
negligible. Hence, we can conclude that the computational
complexity of the ROCS algorithm is acceptable.

Moreover, we record the random access memory (RAM)
and video RAM (VRAM) required for the algorithms to
run in TABLE 2. The LB, OBF, and Auction algorithms
require minimal computation resources and are, therefore,
not recorded. We used the tool torch.profiler for docu-
mentation [55] for other algorithms. As shown in TABLE
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2, the DQN algorithm requires the most RAM for decision-
making, while our proposed ROCS algorithm requires the
least RAM and VRAM. Therefore, the ROCS algorithm
requires significantly less computation resources and can
run effectively in EC.

Performance with real-world distribution for edge
nodes. To further illustrate the performance of the proposed
ROCS algorithm, we use real-world edge node distribution
data located in the UK [54], as shown in Fig. 9(a). As a
comparison, Fig. 9(b) shows our randomly generated edge
nodes. Fig. 9(c) shows the experimental results based on the
distribution of real-world edge nodes. As can be seen from
Fig. 9(c), our ROCS algorithm achieves good results even
with real-world edge node distribution. Overall, the order
of effectiveness of the algorithms is ROCS > ROCS w/o rc
> LB > others.

6 DISCUSSIONS

From the experimental results, we can see the effectiveness
of our algorithms. However, the following issues deserve
further investigation.

Potential issues in EC: This paper introduces a joint
resource overbooking and container scheduling algorithm
based on soft actor-critic RL. This innovative approach
enhances the resource utilization efficiency of edge nodes
effectively. However, the algorithm’s design fundamentally
relies on centralized decision-making, which inadequately
addresses the network instability in EC, e.g., network con-
nection interruptions and recovery. This issue could be
mitigated by employing multi-agent RL, i.e., deploying a
decision-making agent at each edge node [56]. Furthermore,
data management and security are other significant consid-
erations in EC [57], [58], although they do not constitute the
focus of this paper.

Moreover, how to collect some necessary data in the ac-
tual EC system is also an important issue. First, the data size
of the task can be obtained either before the transmission or
after the transmission is completed. After obtaining the data
size and the requested resource information such as CPU
and memory, a prediction of the expected processing time
of the current task can be made based on the historical task
information [4]. In addition, since we focus on the approach
of centralized decision, the location information (e.g., lat-
itude and longitude) of each node can be transmitted to
the central node [36]. Generally, the further the distance
between two edge nodes, the corresponding network hop
count and delay are larger, so the delay between nodes can
be estimated from the distance [30].

Threshold-based overbooking method: The threshold-
based overbooking method offers several advantages: 1)
Simplicity and ease of implementation: It relies on setting
specific usage thresholds, e.g., CPU utilization, making the
management and monitoring processes more intuitive. 2)
Flexibility: Thresholds can be adjusted based on actual
needs, providing administrators with flexible resource man-
agement capabilities. 3) Responsiveness to changes in re-
source demand: When resource usage reaches or exceeds
the set thresholds, the system can quickly respond by
adding more resources or migrating workloads. 4) Cost-
effectiveness: Proper setting and management of thresholds

can maximize resource utilization while minimizing waste.
5) Reduced resource competition and conflicts: Appropriate
threshold settings can help avoid excessive competition
for limited resources, reducing the risk of performance
bottlenecks and service interruptions. 6) Adaptability: This
method is versatile and can be applied in various systems.
Therefore, many current studies are based on threshold-
based methods, as described in Section 2.

However, the threshold-based overbooking method also
has limitations, such as being unable to cope with sudden
changes in resource demands and a heavy reliance on the
accuracy of threshold settings. Therefore, in this paper,
we combine the threshold-based approach with container
scheduling and dynamically adjust the thresholds to realize
flexible and efficient resource management. Future work
will consider combining the threshold-based approach with
other approaches, such as prediction and prioritization, to
achieve more efficient resource management.

Implementation method: The ROCS algorithm can be
implemented on Kubernetes through the scheduling frame-
work [59]. During deployment, Prometheus collects and
stores the real-time resource load data of the edge clus-
ter, subsequently accessed via the Kubernetes API [60].
The Kubernetes scheduling framework allows for complete
scheduling cycle customization, entailing two steps: the
Scheduling Cycle and the Binding Cycle. The former selects
an edge node for the container, while the latter applies that
decision to the edge cluster. These two cycles collectively
form a ”scheduling context” featuring multiple extension
points, including PreFilter, Filter, PostFilter, PreScore, Score,
NormalizeScore, Reserve, Permit, PreBind, Bind, PostBind,
etc. To enact a custom scheduling algorithm, a scheduler
plugin must be implemented, with several extension points
registered [61]. Once the scheduler plugin is completed, it
can be deployed as a deployment through Kubernetes, with
the application scheduler specified as our custom scheduler
[62].

Nevertheless, this comprehensive deployment process
necessitates a substantial amount of engineering code. Ad-
ditionally, using RL demands interaction between the train-
ing and decision-making processes, implicating RL and the
Kubernetes API, which makes system implementation more
complex. As this paper primarily focuses on the scheduling
algorithm, the effect of the algorithm has been validated
through large-scale simulations rather than implementation
in Kubernetes. Currently, our team is working on deploy-
ing a custom scheduler into the Kubernetes system. This
endeavor has surfaced many new challenges, guiding our
future work.

7 CONCLUSION

We have considered the resource constraints, resource het-
erogeneity, and geographical distribution of edge nodes and
formulated the ROCS problem to investigate overbooking
in EC networks. An efficient algorithm based on soft actor-
critic reinforcement learning was proposed to explore a
hybrid action space for solving the ROCS problem. We also
introduced a risk check mechanism to mitigate potential
overbooking risks. The experimental results highlighted
the performance advantages of our ROCS algorithm in
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enhancing resource utilization in EC networks compared
to the existing schemes. In future work, we will examine
overbooking in cloud-edge collaboration scenarios, where
the cloud can effectively supplement the computing power
of edge nodes. Furthermore, we will consider the over-
booking of dependent tasks and investigate the impact of
constrained bandwidth in EC.
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