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Abstract—In Mobile Edge Computing (MEC), Internet of Things (loT) devices offload computationally-intensive tasks to edge nodes,
where they are executed within containers, reducing the reliance on centralized cloud infrastructure. Cluster software upgrades are
essential to maintain the efficient and secure operation of edge clusters. However, traditional cloud cluster upgrade strategies are
ill-suited for edge clusters due to their geographically distributed nature and resource limitations. Therefore, it is crucial to properly
schedule containers during edge cluster upgrades to minimize the impact on running tasks. This paper proposes a latency-aware
container scheduling algorithm for efficient edge cluster upgrading. Specifically: 1) We formulate the online container scheduling
problem for edge cluster upgrade to minimize the total task latency. 2) We propose a policy gradient-based reinforcement learning
algorithm that addresses this problem by considering the characteristics of MEC, including heterogeneous resources, image
distribution, and low-latency requirements. Subsequently, a location feature extraction method based on self-attention is designed to
fully extract and utilize edge node distribution. 3) Experiments based on simulated and real-world data traces demonstrate that our
algorithm reduces total task latency by approximately 30% compared to baseline algorithms.

Index Terms—Mobile edge computing, container scheduling, reinforcement learning, Internet of Things.

1 INTRODUCTION

N the era of the Internet of Things (IoT), Mobile Edge

Computing (MEC) has emerged as a promising technol-
ogy that brings computing and data storage closer to IoT
devices [1]. This approach significantly reduces latency and
bandwidth consumption associated with IoT devices and
data center communications, making it more suitable for
handling latency-sensitive tasks and services [2]. With the
evolution of MEC, containers and Kubernetes are increas-
ingly being used for service deployment [3]. Containers are
lightweight and portable, frequently employed in MEC to
deploy and manage applications while facilitating process
and resource isolation [4]-[6]. Kubernetes [7] is a renowned
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open-source platform that offers robust tools for deploying,
managing, and scaling containerized applications.

An edge cluster consists of a network of interconnected
edge nodes that collaborate with each other. Cluster up-
grades can be performed for various reasons, such as se-
curity patches or the introduction of new features [8]. Com-
mon cluster upgrade strategies include in-place upgrades,
canary upgrades, and rolling upgrades [9]. Such upgrades
are essential but may negatively impact the IoT device expe-
rience. Especially in edge clusters, upgrades may negatively
impact running containers due to geographical distribution
and limited resources. In large-scale systems, upgrades take
hours, or even much longer [10]. Considering that more
than 10,000 system updates are carried out in the production
environment per year [11], how to minimize the impact on
running tasks during cluster upgrades poses an issue.

General resource unavailability at run-time usually
refers to the exhaustion of computation or storage resources
on a node, which does not affect the tasks already running
on the node. However, during upgrades, a node cannot
accept new tasks and can also not run tasks. It is necessary
to reschedule them appropriately to guarantee the seam-
less execution of tasks during upgrades. This unavailability
differs from the traditional resource shortage and poses
significant challenges for scheduling policies. The default
scheduling policy, taking into account factors such as re-
source availability, user preferences, and other constraints
[12], does not meet the requirements of edge clusters in
certain situations. Therefore, the first challenge is how to
fully explore and utilize various information during edge
cluster upgrades to enhance scheduling decisions. Given the
limited storage and bandwidth resources at the edge, the
distribution of images has a substantial impact on schedul-
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ing. Many scheduling policies consider migrating tasks from
one edge node to another at run-time [13]-[15]. Most ignore
the node upgrade status, but the node upgrade will affect
its availability. For example, scheduling tasks to nodes that
have been upgraded instead of nodes that have not yet been
upgraded can reduce additional task migration latencies
caused by node upgrades. This aspect is often ignored in
traditional scheduling policies, which mainly focus on com-
putation and communication resources without adequately
considering the dynamic factor of node upgrades. However,
simply considering the distribution of images and upgrade
status is insufficient [16], the location information of the
nodes is also crucial. Scheduling containers to distant edge
nodes based solely on resource availability can lead to high
communication latency. Therefore, the self-attention-based
network is designed to extract the location information of
nodes and tasks. This network can better understand the
relative position relationship between edge nodes and tasks.

Another challenge lies in making online scheduling de-
cisions that yield long-term benefits regarding reduced total
task latency. Traditional scheduling algorithms primarily en-
compass rule-based, heuristic-based, or optimization-based
methods [17]-[19]. Nonetheless, these algorithms cannot
optimize long-term minimum latency in dynamic and di-
verse MEC environments. Recently, Reinforcement Learn-
ing (RL) algorithms have been widely applied to various
optimization problems [20]. The policy gradient-based RL
algorithm has exhibited promising outcomes for optimal
resource scheduling problems in MEC [6]. Consequently, a
policy gradient-based RL algorithm is proposed for making
online scheduling decisions.

In this paper, we first model the Online Container
Scheduling (OCS) problem for edge cluster upgrades to
minimize the latency of IoT tasks while accounting for
the geographic distribution, image locality, and limited
resources of edge nodes. Second, the self-attention-based
network is used to extract the location information of nodes
and tasks. The policy network and value function of the
RL agent are also meticulously designed. Then, we propose
a policy gradient-based OCS algorithm. Finally, we imple-
ment a set of MEC scenarios based on simulated and real-
world data to verify the effectiveness of the OCS algorithm
and compare it with existing scheduling algorithms. Exper-
imental results demonstrate that our proposed algorithm
significantly reduces latency and outperforms all baseline
algorithms.

In this extended version of our work [16], we focus on
enhancing the understanding and effectiveness of latency-
aware container scheduling in edge cluster upgrade scenar-
ios. Firstly, we refine the problem modeling. This modeling
is novel in that it fully considers the unique challenges of
scheduling containers during edge cluster upgrades. Sec-
ondly, we improve the algorithm. This algorithm uniquely
adapts to changing task locations, a feature not adequately
addressed in previous works. Furthermore, we expand the
scope of our experimental validation. These experiments not
only verify the effectiveness of our algorithm but also its
scalability and applicability in the real-world. Additionally,
we introduce a comprehensive discussion on the practical
deployment of our algorithm in a Kubernetes cluster. The
discussion innovatively highlights challenges and consider-

2

ations in practical implementation. In summary, the contri-
butions of this paper are as follows:

1)  We model the latency-aware container scheduling
problem in edge cluster upgrade scenarios for the
first time, including comprehensive motivations and
case studies, to minimize total task latency.

2) To fully consider the distribution of nodes and the
variation of task positions, a self-attention-based
method is designed to extract the location informa-
tion of nodes and tasks. Then, an OCS algorithm
is proposed based on the policy gradient RL that
continually makes online scheduling decisions. The
upgrade status and the distribution of images are
also taken into consideration.

3) We conduct large-scale experiments on simulated
and real-world data traces to evaluate the effec-
tiveness of the OCS algorithm. Our experimental
results demonstrate that our proposed algorithm
outperforms all baseline algorithms, reducing the
total task latency by about 30%.

The remainder of the paper is organized as follows.
Section 2 gives a brief overview of the related work and
motivation. Section 3 presents the system model and prob-
lem formulation. Section 4 describes the OCS algorithm. The
experimental settings and evaluation results are shown in
Section 5. Section 6 gives some discussions. Finally, Section
7 concludes the paper and discusses future directions.

2 RELATED WORK AND MOTIVATION
2.1 Container in Mobile Edge Computing

Containers are lightweight virtualization techniques that
allow for the efficient deployment of applications in MEC
environments [4]. As MEC continues to grow in popularity,
it becomes evident that containers will play a critical role
in enabling efficient and effective deployment at the edge.
For example, Tang et al. [21] propose a container migration
algorithm and architecture to support the fast migration
of tasks. Regarding the problem of service migration in
edge computing, Ma et al. [4] propose an edge computing
platform architecture that supports the seamless migration
of services. Lou et al. [13] introduce a method to jointly
determine container assignment and layer sequencing to
reduce container startup latency. Rossi et al. [22] present
a Kubernetes-based orchestration tool to solve container
deployment problems. Alameddine et al. [23] introduce a
logic-based Benders decomposition approach to solve the
complex dynamic task offloading and scheduling problem
efficiently. Ayoub et al. [24] propose a multi-objective Integer
Linear Programming (ILP) model and heuristic algorithms
for efficient online Virtual Machine (VM) migration.

2.2 RL-based Scheduling

RL has received substantial attention and has been exten-
sively employed in MEC for task scheduling. An RL agent
can guarantee optimal resource allocation and enhanced
system performance by perpetually learning from the envi-
ronment and refining its policy. For example, Wang et al. [5]
construct an RL-based microservice coordination scheme.
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TABLE 1: Comparison with existing technologies

Optimization

Resource

Paper  Research issue Background Lo Online  Distance e Methodology
objective availability
[23] Task offloading and scheduling  Low-latency IoT services Latency Benders decomposition
[15] Task assignment and migration ~ Datacenter energy-saving Energy v RL-based
[24] Virtual machine migration Datacenter disaster resilience Latency v v v Heuristic-based
[25] Virtual machine migration Datacenter upgrades Latency v RL-based
[16] Container scheduling Edge cluster upgrades Latency v v RL-based
Ours  Container scheduling Edge cluster upgrades Latency v v v RL-based, deep learning
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Fig. 1: An example of edge cluster upgrade.

Ho et al. [26] propose a MEC offloading framework that can
jointly accomplish server selection, cooperative offloading,
and handover. Aiming at the task migration problem in
MEC, Liu et al. [27] design a distributed task migration
algorithm based on the anti-fact multi-agent RL algorithm.
Liu et al. [28] propose a load-balancing aware networking
approach for efficient data processing in IoT edge systems
and use an RL model. Ning et al. [29] propose an RL-
based intent-driven traffic control system to optimize net-
work resource orchestration and improve profits. Tang et al.
[6] propose a layer dependency-aware learning scheduling
algorithm based on container technology in MEC. Lou ef al.
[15] introduce an energy-efficient task scheduling method
using RL for optimizing both task assignment and migration
in data centers. Chen et al. [25] present a method that
employs RL to optimize the scheduling of virtual machine
migrations during datacenter upgrades. The detailed com-
parison between our approach and existing techniques is
shown in TABLE 1.

2.3 Case Study

We model a one-round upgrade scenario for an edge clus-
ter. As illustrated in Fig. 1, computation-intensive tasks
from IoT devices are offloaded to edge nodes, where the
results are processed and returned. Tasks are executed in
containers, which require the corresponding image to be
pulled locally before execution. All edge nodes in the cluster
upgrade sequentially, with the edge node being upgraded
in green and the edge node not being upgraded in blue. All
containers on an edge node must be scheduled to another
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Fig. 2: Container scheduling in edge cluster upgrade.

node before upgrading to ensure uninterrupted service.
During the upgrade, new tasks are continuously offloaded
to edge nodes, requiring decisions to be made regarding
which node they are scheduled on. Meanwhile, resources
(i.e., CPU, memory, etc.) on edge nodes are limited, and
containers cannot be scheduled on nodes that do not meet
resource requirements. Additionally, the node being up-
graded is set as unschedulable. Different container images
and resource quotas may be required for various tasks, so
practical scheduling algorithms and resource management
policies must be designed.

Fig. 2 illustrates the container scheduling process in an
edge cluster upgrade scenario with four edge nodes. From
left to right, it shows the progression of edge node upgrades
over time. The green color represents an edge node currently
upgrading and in an unschedulable state. The blue color
represents an edge node that is not being upgraded, and
tasks with resource requirements can be offloaded to this
edge node to run in containers. Different colored rectan-
gles within the edge nodes represent different tasks being
executed. As can be seen from the figure, from time ¢, to
t1, edge node n; is upgrading. Container scheduling can
be divided into two situations: 1) The edge node does not
upgrade during task execution. T3 is the execution time of
a task offloaded from an IoT device to edge node n;. Due
to different geographical locations, image distribution, and
resource availability, offloading tasks to different edge nodes
can affect their execution time. 2) The edge node upgrades
during task execution. T is the execution time of a task
offloaded from an IoT device to edge node ny. At time
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t1, edge node n; completes its upgrade, and edge node
ny begins its upgrade. To ensure uninterrupted service, all
containers on the edge node must be scheduled to another
edge node that is not undergoing an upgrade before the
process begins. Therefore, the task is scheduled to the non-
upgrading edge node n; to continue execution, and 75 is
the execution time of this task on edge node n;. Therefore,
unreasonable scheduling decisions can increase the total
task latency and strain the bandwidth resources of edge
nodes. We aim to make rational scheduling decisions to
minimize the total execution time of all tasks, denoted as

iz T

3 SYSTEM MODEL AND PROBLEM FORMULATION
3.1 System Model

For ease of reference, the main notations used in this paper
are summarized in TABLE 2.

Edge Node. The set of edge nodes is defined as N =
{n1,n2,...,nn}, where | - | indicates the number of ele-
ments in the set, e.g., |N| represents the number of edge
nodes. The remaining CPU and memory resources in the
edge node n can be represented by C,, and M,. p; is
the upgrade status of the edge node n. Furthermore, the
CPU frequency of edge node n is denoted as F},, with the
bandwidth defined as B,,. Besides, the number of images
stored on the edge node is also influenced by the limitation
of the storage capacity of the edge node D,,.

Task. The set of tasks offloaded by different IoT devices
to the edge node is K = {k1, ko, ..., k|| }. Meanwhile, we
assume that the resources requested by the task are the same
as those occupied by the container. The CPU and memory
resources requested by task k are ¢,, and m,,. Moreover, the
data size of task k is dj,, the release time of task k is ¢;, and
the requested image of task % is gz.

Container. The set of containers is denoted as C =
{c1,¢2,...,¢c|}. The set of images is denoted as I =
{i1,42,... .45}, with each image associated with a con-
tainer. The difference between a container and an image is
only the writable container layer [30], so requesting a con-
tainer is equivalent to requesting the corresponding image.
The size of image ¢ is denoted by d;.

In MEC, each IoT device is connected to the edge node
via a wireless link, while the edge node is connected to the
remote cloud via a wired backhaul link [31]. The edge nodes
are designed to process incoming tasks from various IoT
devices quickly and efficiently through wireless. The image
is stored in the remote cloud center and connected to the
edge node through a wired connection. Therefore, the task
is transmitted to the edge node through a wireless link, and
the image is transmitted to the edge node through a wired
connection.

3.2 Latency

Communication latency. In the communication model,
the bandwidth allocation corresponds to the round-robin
scheduling discipline and stands for equal resource sharing
of these IoT devices associated with the edge node [32]. This
design facilitates parallel processing for communication.
In such a system, multiple tasks can be transmitted si-
multaneously, effectively eliminating transmission queuing

TABLE 2: Notations

Notation Definition

N Edge node set

n nt" edge node (n € N)

Cn(t) CPU resource of edge node n at time ¢
M, (¢) Memory resource of edge node n at time ¢
Dy (t) Storage capacity of edge node n at time ¢
F, CPU frequency of edge node n

B Bandwidth of edge node n

pn(t) Upgrade status of edge node n at time ¢
on Location of edge node n

K Task set

k kM task (k € K)

Ck CPU request of task k

my Memory request of task k

fr CPU frequency request of task k

qk Image request of task k

Sqp Size of the image request of task k

dy, Size of task k

tr Release time of task k

o (t) Location of task k at time ¢

En,k Uplink wireless transmission rate from task & to node n

I Image set

i it image (i € I)

d; Size of image 4

Teomm Communication latency for task k on edge node n
Tg:"]g”” Download latency for task k on edge node n
Ty Computation latency for task k on edge node n
Ttotal Total latency for task k on edge node n

Tieue Queuing download latency on edge node n

T, Whether image i is on edge node n

Yn,k Whether task k is executed on edge node n

latencies. The uplink wireless transmission rate &, j from
task k to node n is defined as [32]:

B, Pk hn k
= —log|(1l+—7—), 1
where B, is the bandwidth of edge node n, and U, is the
number of tasks transmitted to edge node n simultaneously.
pi is the transmission power, hj,; is the channel gain
between the IoT device and the edge node, and o represents
the power of Gaussian white noise.

Therefore, the communication latency of task k transmit-
ted to edge node n can be defined as follows:

comm __

d
k —_— .
" gn,k:

where dj, represents the size of the data required to execute
a task, which includes data files, configuration files, etc.
Furthermore, similar to many studies [33], [34], we ignore
the return communication latency of the result because the
result is small compared with the task itself.

Download latency. Download latency refers to image
download latency. Within Kubernetes, three different image-
pulling policies are recognized: IfNotPresent, Always, and
Never. Without a specified policy, IfNotPresent is the default.
This implies that the image will be pulled from the remote
repository if not stored locally. The download latency of the
task can be obtained as follows:

()

By,

where ¢, is the image requested by task k and s, is the size
of the image required to process task k. It should be noted

don Squ L
Tn,okum = g X ( + Tgueue) , (3)
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that dj, and s,, are distinct components; s, is specifically
the size of the image needed for task execution, while dj,
includes all the other data required for the task. z,, ; € {0,1}
is the binary variable to indicate whether image ¢ is on
edge node n. If z,; = 1, image 7 is on edge node n,
otherwise not on edge node n. Each edge node is associated
with a download queue, and the images in the queue are
downloaded sequentially [13]. In this case, each download
request will cause a queuing delay because it must wait for
the previous image download to be completed. T,7%““€ is the
queuing download latency on edge node n. Therefore, if the
image required to process the task is available locally, the
download latency is 0.

Computation latency. Different tasks are executed in
different containers, and all tasks are executed in parallel.
The computation latency can be calculated as follows:

Tcomp — & 4
n,k Fn7 ( )

where f}, is the CPU frequency requested by task k, and F;,
is the CPU frequency of edge node n.
In summary, the total latency of task k execution on node
n can be denoted as:
T]gotal _ Tff)]znm + Td,okwn + Tso}:nil. (5)

n

3.3 Problem Formulation and Analysis

Constraints. The containers need to be assigned certain
resources to execute the tasks, while the total amount of
resources on the edge node is limited. In instances where the
resource limit of an edge node is surpassed, the functionality
of the containers might be adversely affected. As a result, it
becomes crucial to impose a constraint on the total quantity
of resources allocated by the containers on an edge node.
The resource limits on the edge node can be denoted as:

Z Yn,k X Ck < Cn, Z Yn,k X Mg < Mrm vna (6)
keK keK

where the binary variable y,, ; € {0,1} indicates whether
task k is executed on edge node n. If y,, ;, = 1, the task k
is executed on edge node n. Otherwise, the task k is not
executed on edge node n.

Meanwhile, the storage space for the image on an edge
node is limited, which can be defined as:

an,i X di < Dn ) vn. (7)
icl

Furthermore, like the previous studies [6], [35], [36],
tasks are regarded as inseparable, so each task is scheduled
to only one edge node, which can be expressed as:

S yp=1, Vk. )

neN

Problem Formulation. We aim to minimize the average
total latency of the tasks during the edge cluster upgrade.
The target is to find the best policy to minimize the latency
while obeying the constraints. The problem is defined as:

5
Problem OCS.
minT =Y T,
kEK
s.t. Egs. (6) — (8), )

zn,; €{0,1}, Vn e N, Vi € 1,
Ynk € {0,1}, Vn € N, Vk € K.

The objective of the OCS problem is to minimize the
average total latency of the tasks during the edge cluster
upgrade. In the OCS problem, z,; and ¥,  are variables
indicating whether the image ¢ is at the edge node n
and whether the task k is scheduled to the edge node n,
respectively. The OCS problem is a more complex variant
of the bin-packing problem, where tasks must be scheduled
to edge nodes to minimize the total latency. This problem is
NP-hard, so the traditional algorithm may not get the opti-
mal solution in a reasonable time [37]. Traditional heuristic
algorithms fall short when dealing with the complexity
of the OCS problem, and they cannot find the optimal
solution in linear time. Meta-heuristic algorithms depend on
a higher level of strategy to guide the search for solutions,
but they struggle in the face of the unknown. In essence,
as the number of edge nodes and tasks increases, there is a
significant increase in the time required for these algorithms
to find an acceptable solution.

The first-order transition probability of task resource
requirements is an inherent property that is exploited in
the scheduling problem. It is observed to remain quasi-
static over extended periods, meaning that the state of
the system changes is gradual and predictable over time
[38]. Moreover, the arrival of tasks and the updating of
the environment can be modeled as memoryless processes.
Therefore, this problem can be modeled as an MDP [21].
This property simplifies the scheduling problem by re-
ducing the dimensionality of the information needed for
decision-making. RL is a powerful method that has proven
effective in dealing with MDP problems [39]. Applying RL
in container scheduling can offer significant improvements
over traditional approaches.

4 ALGORITHMS
4.1 Algorithm Settings

In this subsection, the settings in the RL algorithm are
introduced, including state, action space, and reward.

State. The state s; contains several parties, including
node, task, and location states. Among them, the node state
includes the resource and upgrade states. The resource state
includes the CPU, memory, and storage capacity of the edge
node at time ¢, as well as the CPU frequency and bandwidth
of the edge node, which can be defined as:

S?Ode’r = {Cn(t)a Mn(t)a Dﬂ(t)v F, B}
:{Cl(t)v CQ(t)v R C\N\(t)a Ml(t)v MQ(t)a )

M\N\(t)a Dl(t)7 DQ(t)7 s aD\N‘<t)7

F17F27‘"7F‘|N|7BlaBQa"'7B|N|}'
(10)
The upgrade status of the node n at time ¢ is denoted
by the variable p,(t) € {0,1,2}. p,(t) = 0 indicates that
edge node n has not been upgraded at time ¢, p,(t) = 1
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indicates that edge node n is being upgraded at time ¢, and
pn(t) = 2 indicates that edge node n has been upgraded at
time ¢. Then, the upgrade state of nodes can be denoted as:

st = {Pou(t)} = {p1(1), p2(8), oo (D). (A1)
Finally, the state for all edge nodes is defined as follows:

(12)

S?ode — S?Ode,r U S;wde,u.

The task state includes the requested resources and the
status of the images requested to execute the task on each
edge node, which can be denoted as:

task,r

Sy ={ck, M, fr, ks qr },
ki
Stas ‘= {Xn,qmtn,qk} = {xlv‘wagv‘bw RN

: ’t|N|7f1k}=

(13)
TN g Ul,qn s t2,q50 - -

where t,, 4, is the download time of the image in each edge
node and can be calculated by Eq. (3).
Thus, the task state can be denoted as follows:

task,r task,i
task __ U s it

s =8 (14)

The location state s°¢ is a matrix sized L x W, where L

and W denote the length and width of the selected edge
region, respectively. Within this matrix, the value of the
location of the edge node is 1, the value of the location of
the task is 2, and the value of the other locations is 0.

In summary, the state at time ¢ is defined as:

task U Sioc.

5 = spode U st (15)

Action space. The container used to execute tasks is
scheduled by the scheduler. The OCS algorithm needs to
determine which edge node to schedule. Therefore, the
action space is the set of all edge nodes as follows:

ar€ A=1{1,2.. . |N[}. (16)

Reward. Defining a proper reward is crucial in the RL al-
gorithm. Since different tasks require different computation
power, the completion time of tasks may vary by different
orders of magnitude. Therefore, to improve the stability
and effectiveness of the policy gradient algorithm, both the
expected and actual latencies of the task are included in the
reward, which can be defined as follows:

ry = T¢ — Tt 17)

where Ty = Ifj—’“ represents the expected total latency of

the task, and F:L denotes the minimum value of the edge
node CPU frequency. If the task is completed earlier than
expected, the reward is positive, with the completion time
being inversely proportional to the reward. Conversely, the
reward is smaller. From a long-term perspective, the cumu-
lative reward is R; = ZtT:O ~tr;, where v is the discount
factor with a value ranging between [0, 1].

4.2 Online Container Scheduling

Overview. The framework of the OCS algorithm is depicted
in Fig. 3. Specifically, the node, task, and location states
can be observed from the environment. After obtaining the
features, they are embedded, concatenated, and fed into the
policy network to make the corresponding scheduling deci-
sions. The reward is subsequently obtained from the action

6

taken. Finally, the policy gradient-based algorithm updates
the policy network and value functions. Further specifics of
these processes will be described in the following.

Feature Encoding. Feature encoding mainly comprises
three components: node feature embedding, task feature
embedding, and location feature encoding. Node and task
feature embeddings are designed to map their respective
features onto two distinctive embedding vectors.

The location feature is a two-dimensional matrix that
can be interpreted as a single-channel image. The Vision
Transformer (ViT) [40] is an application of the Transformer
[41] architecture to the field of computer vision. ViT can
directly capture the global dependencies between different
areas of the image through the self-attention mechanism
[40], which can help us to obtain the positional relationships
between individual nodes, and between nodes and tasks.

The original location feature necessitates patch embed-
ding. First, the location feature is segmented into /N pieces
of the shape (p,p, ¢), called “patch”, where p is a predeter-
mined parameter and c indicates the number of channels.
Next, the patches thus obtained are flattened via a linear
layer to condense the dimensions. Subsequently, a trainable
position encoding is added to the final patches.

Following patch embedding is the stage of feature ex-
traction. The output from patch embedding is used as
the initial input to the stacked transformer encoders for
global attention computation and feature extraction. The
encoder is composed of two sublayers. The structure of
the first sublayer comprises a Multi-Head Self-Attention
(MSA) sublayer, a Layer Normalization (LN), and a residual
connection. This first sublayer can be represented as:

zy = MSA (LN (z¢—1)) + z¢—1, £=1...L, (18)

where z, denotes the features of transformer layers. The
MSA sublayer exists in each encoder, an extension of Self-
Attention (SA). It is crucial to note that (), K, and V are
obtained by multiplying the input z with three different
trainable matrices. The computation of SA can be expressed
as follows:

SA(z) = softmaz (QKT> v, (19)

Ver
where ey, represents the embedding dimension of K, and
the dot-product is actively scaled by 1/,/ej to standardize
the variance of () and K to 1.

MSA is the parallel computation of multiple self-
attentions, termed “heads”. Each head concentrates on a dif-
ferent aspect of the input and is subsequently concatenated.
Using multi-head allows for a more nuanced extraction of
features from different heads. Despite the overall computa-
tional workload being equivalent to that of a single head, the
multi-head setup yields superior feature extraction results
[41]. MSA can be computed as follows:

MSA(z) = [SAI(2); SA1(2); ... SA(2)] Wo,

where W denotes a trainable matrix. Following this, the
output from the first sublayer is fed into the second sublayer.
The structure of the second sublayer consists of a Multi-
Layer Perceptron (MLP), an LN, and a residual connection,
which can be represented as follows:

z¢ = MLP (LN (z})) + 2,

(20)

¢=1...L. 1)
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Fig. 3: Overview of the OCS algorithm.

Subsequently, we acquire the location feature encoding
and concatenate it with the node and task feature embed-
ding. We obtain the encoded feature after reducing the
dimensions via a linear layer.

Training. The OCS algorithm is based on policy opti-
mization. The policy gradient [42] is an RL algorithm that
optimizes the policy for an expected return. Here, 7y rep-
resents a policy with parameters 6. Supposing J(7p) is the
objective function of the policy gradient, and the gradient of
J(mp) is:

T
Vo (1) = TETQ ZV@ logmg (at | s¢) A™ (s¢,az)|
t=0

(22)
where 7 is a trajectory and A™¢(5t:%) is the advantage
function for the current policy.

While the policy gradient algorithm offers simplicity and
efficiency, it can encounter training instability in practical
scenarios. This instability often arises due to the indetermi-
nacy of the step sizes in the policy gradient algorithm, po-
tentially leading to suboptimal outcomes. The Trust Region
Policy Optimization (TRPO) [43] is introduced to address
this issue. The TRPO offers improved step size determi-
nation and policy updating, and the loss function can be
customized as:

mo(a | s)
s,anvmo,, | g, (a] )

LTEPO (0, 0) A% (s, a) (23)

The TRPO has been successfully applied to various
scenarios, but its computational complexity is substantial.
Later, the Proximal Policy Optimization (PPO) algorithm
[44] is proposed, which maintains effectiveness while signif-

icantly reducing computational complexity. Hence, the loss
is customized into:
K o (a ] s)
. L\, (a]s)
(WMalS),l_e,HE) Ao (M)ﬂ
7o, (a | )
(24)

where clip(x,y,z) = max(min(z,z),y) is a clip function
to limit « to the range of [y, z] and € is a hyperparameter

LEPO(0,.,0) = A" (s,a),

that represents the range of clips. Besides, PPO adopts the
Generalized Advantage Estimator (GAE) [45] to compute
the advantages, which can be calculated by:

Ap =6+ (PN)pg1 + o+ + (N oy, (25)

where ) is the GAE parameter, 6; = ri+7V (s¢41)—V (s¢) is
the TD-error at time ¢. V' is an approximate value function.

The OCS algorithm is presented in Algorithm 1. In each
time slot, if IoT devices offload tasks to the edge cluster,
their scheduled nodes need to be determined. Moreover, if
an edge node starts upgrading in a certain time slot, the
nodes for rescheduling all containers on that node also need
to be determined sequentially. The replay memory D is first
initialized for each episode. As shown in Lines 3 - 15, for
each time slot t, the observation state s; of the current time
slot ¢ is first obtained, then the action a; is selected according
to the policy, and the reward r; is calculated. In addition,
nodes that do not meet the scheduling requirements need
to be filtered when selecting actions, e.g., upgrading or
resources are insufficient. Afterward, the next state s;11
is obtained. Finally, the transition is stored in the replay
memory D. As shown in Lines 18 - 25, for each training step
k, the advantage estimation A}, is first computed based on
the collected set of trajectories. Then, the stochastic gradient
ascent algorithm with Adam [46] is used to maximize the
objective function to update the policy. Finally, the results
are output after all episodes are completed.

4.3 Computational Complexity Analysis

The OCS algorithm can be primarily divided into four parts:
state observation, action selection, reward computation, and
network update. The computational complexity of each part
is analyzed in the following.

First, the state is shown in Eq. (15), and the complex-
ity of this part can be calculated to be O(|N]||I|), where
IN| and |I| represent the number of nodes and images,
respectively. Second, action selection involves sequentially
traversing all nodes. Therefore, action selection is a loop
whose complexity can be represented as O(|N|). Following
this is the reward calculation. The reward is calculated ac-
cording to Eq. (17). The complexity of the reward calculation
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Algorithm 1: The OCS Algorithm

Input: Initial policy parameters 6, initial value
function parameters ¢, clipping threshold e
Output: a;
1 for episode <— 0,1,2,... do

2 | Initialize replay memory D = 0 ;

3 for time slot < 0,1,2,... do

4 Get the current state s; ;

5 Initialize the filtered set A’ = {);

6 for edge node n < 1,2,3,... do

7 if p,(t) = 1 or the resources of the node are

insufficient then
8 Add the node to the filtered set:
A~ A'u{n}
9 end if
10 end for
11 Select action a; from A \ A’ according to
A e(at | St) ;

12 Execute action a; and obtain the reward r; ;
13 Get the next state s¢y1 ;
14 Store transition (s¢, at, r¢, S¢11) in D;
15 end for
16 Compute the cumulative reward:

T
Ry =307
17 | Compute the value function V;(s;) for each state
St;
18 for training step < 0,1,2,... do

19 Compute the policy raAtio pe(0) = % ;

20 Estimate advantages A; by Eq. (25) ;

21 Compute and update the policy update by
Eq. (24);

22 Compute the value function loss ues MSE
function: L, (¢) = 3|[Vs(s:) — Re||%

23 Update the value function parameters:
Pr41 < Ot

24 end for

25 end for

does not change with the number of nodes or tasks, so its
complexity can be represented as O(1). The node and task
information is mapped through fully connected layers. Let
there be L; number of hidden layers with G' neurons per
layer. The complexity of this part can be calculated to be
O(IN||I| x G + Ly x G?) [47].

As for the ViT, it includes several parts, of which the
MSA operation has the highest computational complexity.
Let D be the embedding dimension and NN be the number
of patches. The computational complexity of the MSA can
be calculated as O(N2D + N D?) [40], [48]. Here, the first
term corresponds to the computation of self-attention, i.e.,
the calculation of the query, key, and value, and the second
term corresponds to concatenating the outputs of the MSA.
Assuming that the ViT contains Ly layers, the complexity
can be calculated as O(Ly x (N2D + ND?)).

For other parts, such as adding residual connections,
performing layer normalization operations, and computing
activation functions, their impact is generally much less than
the parts mentioned above, so the computational complexity

TABLE 3: Hyperparameter Settings

Type Hyperparameter Value

Actor  Hidden layers 2 Full connection (128,64)
Learning rate le-4

Critic  Hidden layers 2 Full connection (128,64)
Learning rate 3e-4
Loss Function MSELoss

ViT Input dimension LxW
Hidden dimension 768
Output dimension 10

Other  Discount factor 0.98
GAE parameter A 0.95

Clipping threshold ¢ 0.2

Batch size 32
Activation function ReLU
Optimizer Adam

of these operations can be negligible. Hence, the total com-
plexity is O(|N||I| x G + L1 x G* + Ly x (N?D + ND?)).

5 EVALUATION
5.1 Experimental Settings

Parameter settings. Similar to [32], [49], we set the trans-
mission power p = 23dBm and the noise power spectrum
density 0 = —174dBm/Hz. According to the physical
interference model [50], the channel gain between the IoT
device and the edge node h, is d, %, where d,, j, is the
distance between the IoT device and the edge node and « is
the path loss factor. The communication bandwidth between
the IoT device and the edge node is [100, 200] Mbps.

The area of the selected edge region is L x W, where L
and W are the length and width of the selected edge region,
respectively. The area of the selected edge region increases
as the number of edge nodes increases, and the default
area is 100m x 100m. All edge nodes are heterogeneous
and randomly distributed, and the default number of edge
nodes is 15. The CPU capacity of the edge node is set
between [80,120] cores. The CPU frequency is set between
[15,35] GHz, and the memory is set between [70,130] GB.
The task is randomly generated in the selected edge region,
and the task sizes are set from 10 KB to 10 MB. The types
of requested images adhere to a normal distribution. If the
requested image is not present on the assigned edge node,
it must be downloaded from a remote repository, with the
image size ranging from 300 MB to 1.5 GB. Initially, a specific
number of tasks are carried out on each edge node, and the
images corresponding to these tasks are also available on
the edge nodes. The neural network input is scaled to the
same order of magnitude. The hyperparameters of the OCS
algorithm are listed in TABLE 3.

In addition to simulated data, real-world data traces
are also used to increase the credibility of our experiment.
The task data comes from the Alibaba Cluster Trace [51],
which is collected from a large production cluster. After
deleting missing values, filtering unreasonable values, and
other preprocessing, 156,456 tasks are retained. The average
CPU and memory of the task are 3.93 cores and 4.21GB,
respectively, and the arrival times of the tasks are randomly
generated. The container data is crawled from DockerHub
[52], including 155 of the most commonly used images, with
image sizes ranging from 1.84MB to 2.03GB.
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Baselines. We compare the OCS algorithm with several
baseline algorithms to demonstrate the effectiveness of our
proposed algorithm:

1) EQ (EqualPriority): This algorithm sets the weight
of all nodes to 1, treating them as equal in priority
for scheduling tasks. It does not consider any spe-
cific features of the nodes, such as resource avail-
ability or image locality.

LA (LeastAllocated): This is a scheduling policy
related to the resource usage of the node. It se-
lects the node with the least allocated resources for
scheduling tasks, ensuring that nodes with more
available resources are prioritized for new tasks.
RO (RO-min) [24]: This is a heuristic approach that
performs migration and minimizes overall network
resource occupation and optimizes online virtual
machine migration for disaster resilience.

RV (Revan) [25]: This is an RL-based scheduler
designed to minimize the total migration time of
virtual machines during datacenter upgrades by
adaptively choosing the best destination physical
machine for each virtual machine migration.

DRL [16]: DRL algorithm is the PPO algorithm
based on the actor-critic framework and contains no
location information.

2)

5)

Among them, (1)-(2) are built-in scheduling policies in
Kubernetes [12]. Moreover, LA is a greedy algorithm that
selects nodes with more resources. By comparing the OCS
algorithm with these baselines, we can demonstrate the ad-
vantages of our proposed algorithm in terms of minimizing
total task latency.

5.2 Experimental Results

To validate the effectiveness of the OCS algorithm, a series of
experiments are performed comparing its task latency per-

formance against several baseline algorithms under varying
conditions. Subsequently, the training process of the OCS
algorithm is evaluated in detail.

Performance with different numbers of nodes. Fig. 4
shows the average task latency obtained through various
container scheduling algorithms as the number of nodes
increases, including communication latency, download la-
tency, computation latency, and total latency. The average
task latency decreases with an increasing number of nodes
across all algorithms because more nodes provide more
scheduling options, allowing containers to be allocated to
more suitable nodes, like those closer or with more re-
sources, thereby reducing the average total task latency.

Specifically, Fig. 4(a) illustrates the communication la-
tency of tasks. As shown in the figure, the communica-
tion latency of tasks from various container scheduling
algorithms decreases as the number of nodes increases
due to more scheduling options that favor closer nodes
or those with higher network bandwidth. Unquestionably,
the OCS algorithm, which considers location information,
outperforms the others, decreasing communication latency
by approximately 50% compared to the least efficient EQ
algorithm.

Fig. 4(b) illustrates the download latency. The disparity
in download latency among different algorithms is more
significant than the variations observed in other latencies.
As inferred from this figure, the RO scheduling algorithm
significantly reduces download latency compared to other
algorithms. This is because the RO algorithm accounts for
the size of the image to be downloaded. Moreover, the
download latencies for the DRL and OCS algorithms are
less than the LA, RV, and EQ algorithms.

Fig. 4(c) depicts the computation latency. The disparity
in computation latency among different algorithms is less
pronounced than download and communication latencies.
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This is because containers executing distinct tasks operate
independently on the node, precluding interference among
tasks. The OCS algorithm continues to deliver superior
performance, whereas the EQ and RO algorithms, which
disregard the actual resources of the nodes, perform poorly.

Fig. 4(d) presents the total latency of tasks. In our ex-
periments, the OCS algorithm consistently outperformed
regardless of the number of nodes in the environment. In
summary, as the number of nodes increases, the total latency
sorting is OCS < DRL < RO < RV < LA < EQ. More
specifically, the average total latency for varying numbers
of nodes reduces by 45%, 35%, 22%, 30%, and 6% when
compared to the EQ, LA, RO, RV, and DRL algorithms, re-
spectively. Hence, the OCS algorithm demonstrates superior
performance, irrespective of the number of nodes.

Performance with different numbers of tasks. The
variation of average task latency as the number of tasks
increases is illustrated in Fig. 5. We analyze and present the
variation in communication latency, download latency, and
computation latency for different numbers of tasks in Figs.
5(a) - 5(c). In these figures, as the number of tasks increases,
the influence of download latency gradually becomes dom-
inant, emerging as the primary factor affecting the overall
task latency. In contrast, the changes in communication
latency and computation latency are relatively minor. This
occurs because as the number of tasks increases, there is
a greater demand for different types of images. Hence, in
the design of the container scheduling algorithm, particular
attention should be given to optimizing download latency to
enhance the efficiency and performance of task scheduling.
Additionally, The OCS algorithm has the lowest communi-
cation and computation latency, while the RO algorithm has
the lowest download latency.

As illustrated in Fig. 5(d), the total latency of the task
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is determined by considering the above latency in concert.
As the number of tasks increases, the relative performance
among different algorithms, in terms of total latency, follows
the sequence: OCS < DRL < RO < LA < RV < EQ. In
particular, in comparison to the DRL, RV, RO, LA, and
EQ algorithms, the OCS algorithm reduces total scheduling
latency by 5%, 41%, 19%, 39%, and 46%, respectively.
Performance with different bandwidth. It can be seen
from Fig. 6 that the total latency decreases as the band-
width increases. The main reason for this reduction is the
decrease in download latency, which is directly influenced
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by bandwidth. As bandwidth increases, the time required
to download the container images is significantly reduced,
thereby decreasing total latency. Overall, OCS outperforms
all other algorithms in minimizing total task latency. In
particular, OCS reduces total task latency by approximately
30% compared to the baseline algorithms.

Performance with different CPU frequency. Fig. 7
shows the total latency of different algorithms with the CPU
frequency change. The results indicate a decrease in total
task latency as the CPU frequency increases. This decrease
can be attributed to the accelerated task execution resulting
from the increased CPU frequency. Our OCS algorithm can
maintain the best performance when the edge node CPU
frequency changes.

Performance with real-world data traces. This exper-
iment is completely based on real-world data traces. We
separately calculate the total latency of various algorithms
with changes in the number of nodes, the number of tasks,
bandwidth, and CPU frequency, as shown in Fig. 8. As can
be seen from the figure, when using real-world data traces,
the total task latency obtained by container scheduling
through the OCS algorithm is relatively low.

Fig. 8(a) illustrates the change in total task latency as the
number of nodes increases. The results of all algorithms are
similar when the number of nodes is small. As the number
of nodes increases, the gap between the OCS algorithm and
the baselines gradually widens. The reason is that as the
number of schedulable nodes increases, the baseline algo-
rithm may be unable to make optimal scheduling decisions.

Fig. 8(b) shows the change in total task latency as the num-
ber of tasks increases. As the OCS algorithm can schedule
tasks requesting the same image to the same node, it does
not lead to a significant increase in total latency. Fig. 8(c) and
Fig. 8(d) represent the change in total task latency with the
variation in bandwidth and CPU frequency, respectively. As
node resources increase, any scheduling policy will result in
a decrease in total task latency. However, the OCS algorithm
almost consistently outperforms the baseline algorithm.

In summary, the OCS algorithm delivers the lowest
total latency under different conditions and outperforms
other algorithms. Specifically, the OCS algorithm reduces
the total latency than EQ, LA, RO, RV, and DRL algorithms
by 39%, 29%, 32%, 27%, and 5% on average, respectively.
These results demonstrate that our proposed algorithm can
perform well in real production clusters.

Statistical analysis. TABLE 4 shows the statistical results
of the paired t-test that determine the significance level of
the proposed algorithm compared with other algorithms
regarding total latency. Specifically, the table provides the
mean and standard deviation (SD) of the baseline algo-
rithms, alongside the t-statistic and corresponding p-value.
Our null hypothesis is: “There is no significant difference
in the performance between the OCS algorithm and the
baseline algorithm”. [53] The table shows a meaningful
difference between the OCS algorithm and baselines, while
the p-value is lower than 0.05 in all cases. There is statis-
tically significant evidence at the 5% significance level to
suggest that the proposed container scheduling algorithm
performs better than the baseline algorithm. Thus, the null
hypothesis is rejected, which proves the fact that differences
are significant.

TABLE 4: Statistical comparison of the OSC algorithm with
other baselines

Metrics EQ LA RO RV DRL
Mean 1423 13.56 1252 12.50 11.27
SD 1.01 0.91 1.07 0.84 0.69
T-statistic -8.59 -7.51 -4.40 -5.21 225
P-value 1.79x10~6 7.08x10~% 8.61x10~*% 218x10~* 0.043

Convergence of the OCS algorithm. Fig. 9 shows the
training process of the OCS algorithm. As the training steps
increase, both the policy network loss and value function
loss decrease rapidly and eventually fluctuate near a specific
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value, indicating that the algorithm has converged. Fig.
9(a) illustrates the policy network loss. The change initially
decreases and then increases, mainly because the policy
network outputs relatively random policies in the early
training phase, but with continued training, it learns more
rational policies and stabilizes around a specific value.

Fig. 9(b) depicts the fluctuation of the value function
loss. During the initial stages, the difference between the
predicted and true values of the value function network is
significant, resulting in a high-value function loss. However,
after the 100-th episode, the value function network learns
a more accurate value, resulting in a rapid decrease and
subsequent stabilization of the loss. Fig. 9(c) illustrates the
reward, indicating an initial sharp increase followed by a
plateau. The algorithm identifies a promising policy and
fine-tunes the policy network and value function. Occa-
sional declines in reward during training may be due to the
exploration of novel environments, making the current pol-
icy ineffective, but the algorithm quickly recalibrates, restor-
ing normal function over time. Overall, the convergence rate
of the OCS algorithm is remarkably rapid, suggesting its
ability to learn optimal policies within a brief timeframe.

CDF of total latency. Fig. 10 presents the Cumulative
Distribution Function (CDF) of total latency. The OCS algo-
rithm shows a higher proportion of tasks with shorter total
latency when compared to other algorithms. These results
enhance the potential of our OCS algorithm as a promising
solution for container scheduling in edge cluster upgrades.

Computation resources for different algorithms. As
shown in TABLE 5, we use torch.profiler [54] to record
the Random Access Memory (RAM), Video RAM (VRAM),
and execution time for different algorithms. EQ and LA
algorithms require the shortest execution time because they
are simple judgments and comparisons. The introduction
of the ViT network improves the performance of the OSC
algorithm, although the cost is to increase the execution
time. However, the computation resources and execution
time required by the OCS algorithms are within acceptable
limits, demonstrating that our algorithm has low complexity
and can be run in real-time. Furthermore, it can be clearly
discerned that the execution time does not increase signifi-
cantly with the number of tasks.

TABLE 5: Computation resources of different algorithms

Algorithm  Tasks RAM VRAM Execution Time
EQ 1000 - - 0.92ms
LA 1000 - - 1.24ms
RO 1000 - - 4.01ms
RV 1000 315.50Kb 787.23Kb 1.93ms
DRL 1000 588.04Kb 630.00Kb 3.78ms
OCS 1000 1177.60Kb  1259.52Kb 17.93ms
OCs 2000 1064.00Kb  1265.00Kb 19.40ms
OCS 3000 1373.45Kb  1567.01Kb 20.98ms
OCSs 5000 | 2644.99Kb  2922.50Kb 21.27ms

6 DISCUSSION
6.1 Feasibility of deployment

In this section, we discuss the feasibility of deploying the
OCS algorithm in Kubernetes cluster. A Kubernetes cluster
generally comprises one master node and multiple worker
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nodes. The master node, usually equipped with superior
processing capabilities, is responsible for managing the
overall cluster. Meanwhile, the worker nodes are respon-
sible for executing the tasks.

We can implement the OCS algorithm through the
scheduling framework of Kubernetes. First, we need to
program the OCS scheduler using the Go programming
language. Next, we should package the scheduler files into
a container image and push the image to a repository to
ensure the consistency of the custom scheduler in different
environments. Then, we should define a Deployment for the
scheduler, which determines how the OCS scheduler runs
in the edge cluster. When deploying the custom scheduler,
it is necessary to write related Kubernetes configuration
files, and set the correct resource quotas, permissions, and
environment variable configurations. Finally, we should
deploy the OCS algorithm in the master node and install
Prometheus for monitoring. This setup allows the algorithm
to receive various information (e.g., remaining resources,
image locality) collected by Prometheus from each worker
node. The algorithm makes scheduling decisions by process-
ing this aggregated data and utilizes the Kubernetes API to
schedule tasks.

Our proposed OCS algorithm is based on RL. Due to the
large amount of coding work required to achieve interaction
between RL and Kubernetes, we are currently striving to
develop relevant code. However, additional effort is still
needed to achieve comprehensive integration between RL
and Kubernetes, which will be the focus of our future work.

6.2 Feasibility of real-time running

In this section, we discuss the feasibility of real time running
of the OCS algorithm.

The OCS algorithm is an online algorithm. This design
considers the dynamics and unpredictability of the tasks
generated by IoT devices. The algorithm continuously re-
ceives and processes data, making real-time decisions with-
out batch processing or waiting for a complete dataset. To
ensure the efficiency and accuracy of our algorithm in real-
time scenarios, we can first train our model using historical
data. Using historical data in training enables it to handle
various scenarios and variations in task generation. Once
trained, the algorithm utilizes the learned model parameters
to schedule in actual environments. The online nature of our
algorithm, combined with its initial training phase, ensures
that it can handle the randomness of tasks generated by
IoT devices well. This algorithm ensures performance even
in highly dynamic and unpredictable environments, as the
algorithm constantly interacts with the environment.

For the real-time performance of the algorithm, please
refer TABLE 5. The average task arrival time in the Alibaba
Cluster Trace [51] is approximately 581ms, much longer than
the time required to execute our algorithm. It reinforces our
position that the interval between arriving tasks is greater
than the execution time of the algorithm. Moreover, the
number of tasks running concurrently is limited due to the
resource capacity of the data center. Therefore, the proposed
algorithm can run in real-time.
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7 CONCLUSION

This paper proposes a latency-aware container scheduling
algorithm for IoT services in edge cluster upgrades. First,
we comprehensively model the OCS problem, considering
communication, download, and computation latency. Sec-
ond, a location feature extraction method based on ViT
has been proposed, utilizing the distribution information
of edge nodes. Then, a policy gradient-based RL algorithm
is proposed to make online scheduling decisions, which
fully considers the distinctive features of MEC. Finally,
experiments are conducted on the simulated edge cluster,
and the experimental results demonstrate that our algorithm
achieves approximately 30% lower total latency than the
baseline algorithm. The RL algorithm employed in our
study, while effective in decision-making, requires extensive
historical data to train the neural network. The algorithm
may perform poorly in practical applications without insuf-
ficient training data. Besides, our validation relies mainly on
simulations and real-world data traces, but more complex
and variable factors in real environments may affect the
performance of the algorithm. In future work, we will
further consider the impact of real-time decision-making
on algorithm performance and deploy this algorithm in the
Kubernetes cluster.
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