
IEEE INTERNET OF THINGS JOURNAL 1

QoS-aware Energy-efficient Multi-UAV Offloading
Ratio and Trajectory Control Algorithm in

Mobile Edge Computing
Jiajie Yin, Zhiqing Tang, Member, IEEE, Jiong Lou, Member, IEEE, Jianxiong Guo, Member, IEEE,
Hui Cai, Member, IEEE, Xiaoming Wu, Tian Wang, Senior Member, IEEE, Weijia Jia, Fellow, IEEE

Abstract—Multiple Unmanned Aerial Vehicle (UAV)-assisted
Mobile Edge Computing (MEC) leverages UAVs equipped with
computational resources as mobile edge servers, providing flexi-
bility and low-latency connections, especially beneficial in smart
cities and the Internet of Things (IoT). Maximizing Quality of
Services (QoS) while minimizing energy consumption necessitates
developing a suitable offloading ratio and trajectory control
algorithm for UAVs. However, existing research on UAV control
algorithms overlooks significant challenges like the heterogeneity
of User Equipments (UEs) and offloading failures. Furthermore,
there is a dearth of experimental validation in large-scale UAV-
assisted MEC scenarios. To bridge these gaps, we introduce
a QoS-aware Energy-efficient Multi-UAV Offloading ratio and
Trajectory control algorithm (QEMUOT). Specifically, 1) A
composite UE mobility model is proposed to enhance system
heterogeneous modeling, encompassing models for high-speed,
low-speed, and fixed UEs. 2) QEMUOT is devised using multi-
agent reinforcement learning algorithms to determine offloading
ratio and trajectory control decisions. To tackle sparse reward
space and offloading failures, we employ expert demonstrations
for pretraining and enhance reward mechanisms. 3) Experimen-
tal simulations illustrate that our algorithm outperforms baseline
algorithms in user QoS with reduced energy consumption and
demonstrates superior scalability in scenarios with numerous
UAVs and UEs.

Jiajie Yin is with Faculty of Arts and Sciences, Beijing Normal University,
Zhuhai 519087, China and also with Institute of Artificial Intelligence and
Future Networks, Beijing Normal University, Zhuhai 519087, China. (E-mail:
jiajieyin@mail.bnu.edu.cn)

Zhiqing Tang is with Institute of Artificial Intelligence and Future Net-
works, Beijing Normal University, Zhuhai 519087, China, and also with
Key Laboratory of Computing Power Network and Information Security,
Ministry of Education, Qilu University of Technology (Shandong Academy
of Sciences), Jinan 250014, China. (E-mail: zhiqingtang@bnu.edu.cn)

Jiong Lou is with Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai 200240, China. (E-mail:
lj1994@sjtu.edu.cn)

Jianxiong Guo and Weijia Jia are with Institute of Artificial Intelligence
and Future Networks, Beijing Normal University, Zhuhai 519087, China and
also with Guangdong Key Lab of AI and Multi-Modal Data Processing,
BNU-HKBU United International College, Zhuhai 519087, China. (E-mail:
{jianxiongguo, jiawj}@bnu.edu.cn)

Hui Cai is with School of Computer Science, Nanjing University of
Posts and Telecommunications, Nanjing 210023, China. (E-mail: caro-
linecai@njupt.edu.cn)

Xiaoming Wu is with Key Laboratory of Computing Power Network and
Information Security, Ministry of Education, Shandong Computer Science
Center, Qilu University of Technology (Shandong Academy of Sciences), Ji-
nan 250014, China, and also with the Shandong Provincial Key Laboratory of
Computer Networks, Shandong Fundamental Research Center for Computer
Science, Jinan, China. (E-mail: wuxm@sdas.org)

Tian Wang is with Institute of Artificial Intelligence and Future Net-
works, Beijing Normal University, Zhuhai 519087, China. (E-mail: tian-
wang@bnu.edu.cn)

(Corresponding author: Zhiqing Tang.)

Index Terms—Mobile Edge Computing, Multi-agent Deep Re-
inforcement Learning, Unmanned Aerial Vehicle, Heterogeneous
Mobility Pattern

I. INTRODUCTION

MOBILE Edge Computing (MEC) emerges as a promis-
ing solution in smart city and Internet of Things (IoT)

by decentralizing computational resources to the network
edge, thereby enhancing the Quality of Services (QoS) within
the radio access network (RAN) [1]. Fixed-edge MEC en-
counters challenges such as single-point failure [2] and high
deployment costs, necessitating redundancy [3]. In contrast,
Unmanned Aerial Vehicle (UAV)-assisted MEC, using UAVs
as mobile edge servers, offers flexible deployment in dynamic
scenarios [4]. UAVs establish Line of Sight (LoS) communi-
cation links at elevated altitudes for low-latency connections
and enhance robustness through dynamic path planning.

In UAV-assisted MEC systems, scheduling UAV clusters is
a crucial issue. Achieving load balance across each UAV and
ensuring comprehensive service coverage for all users demand
sophisticated trajectory control for UAVs [5]. Furthermore,
given the constrained computing resources [4], UAV control
involves managing not just the trajectory but also utilizing
UAVs as airborne relay stations. These UAV stations offload
computational tasks exceeding their capabilities to ground base
stations (BS), hence necessitating control of the offloading
ratio [6]. When UAVs fly along different routes, they will be
connected to different User Equipments (UEs) and receive var-
ious computing requests. This will affect communication de-
lays and energy consumptions, resulting in different outcomes
with the same offloading ratio. Therefore, to improve QoS and
reduce energy consumption, it is essential to address trajectory
and offloading ratio control decisions simultaneously.

Unlocking the full potential of UAVs in MEC can effectively
provide users with higher QoS. However, several challenges
need to be addressed. The first challenge is how to accu-
rately model the mobility of UEs, considering the dynamically
changing UE distribution. UE’s high mobility leads to frequent
changes in the location, resulting in varying feasibility in the
allocation of communication and computation resources over
time [7]. Consequently, this poses significant challenges to
MEC systems [8]. In practical smart city and IoT scenarios,
UEs demonstrate heterogeneous mobility characteristics [9].
Some UEs are highly mobile, such as smart vehicles and lo-
gistics robots, while others have limited mobility, like wearable

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 2

Extended Reality (XR) devices used by pedestrians. Addition-
ally, some UEs remain stationary, such as smart furniture.
Ignoring the varied mobility patterns of UEs in design as-
sumptions disconnects from real-world situations. Developing
algorithms based on inaccurate UE mobility models presents
significant challenges [10] and can compromise the reliability
of algorithm validation experiments. It is essential to integrate
realistic UE mobility models into algorithm design to ensure
their practicality and adaptability in real-world environments.
Moreover, offloading failure (i.e., offloading interruption) is a
typical issue due to the mobility of UEs [11], [12]. UEs need
to ensure a stable communication link with the server while
offloading within the coverage area. Otherwise, interruptions
in the connection can cause offloading failures, resulting in
significant wastage of computational resources and a decline
in QoS [13].

Limited attention has been given to studying the diverse
movement patterns of the UE and offloading failures in UAV-
MEC research. To address these gaps, we have enhanced our
model by introducing a composite UE motion model and
redesigning the reward function in our algorithms, as explained
in the next paragraph. This improvement not only enhances
connection stability but also decreases decision-making costs
for users, resulting in significant QoS improvements.

Another challenge is how to make offloading and tra-
jectory decisions for each UAV. In dynamic environments
with real-time information, traditional optimization algorithms
like Successive Convex Approximation [14], [15] and Block
Alternating Descent [16] are impractical due to their high
computational complexity. As a result, researchers have in-
creasingly turned to Multi-Agent Reinforcement Learning
(MARL) as a promising alternative [5], [17]. To address this
complex non-convex optimization problem, we convert it into
a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP). To tackle this challenge, we introduce a QoS-
aware Energy-efficient Multi-UAV Offloading ratio and Trajec-
tory control algorithm (QEMUOT) based on the Multi-Agent
Twin Delayed Deep Deterministic Policy Gradient (MATD3)
framework [18], where each UAV is treated as an intelligent
agent.

However, the widespread adoption of IoT has led to an
increasing demand for the number of UAV servers in MEC
systems [19]. This causes the joint action space and state
space of MARL to expand exponentially with the number
of agents [20], forming a more complex and reward-sparse
environment. Traditional exploration methods easily become
trapped in low-reward regions, posing challenges in collecting
effective policy experiences with high rewards [21]. This
results in low training efficiency and difficulties in convergence
to the optimal solution. To address this challenge, we draw
inspiration from imitation learning to enhance the pretraining
process of the QEMUOT algorithm. This is achieved by
leveraging an expert algorithm which combines the Sailfish
optimization algorithm [22] with a greedy algorithm.

In this paper, we present a novel composite UE mobility
model aimed at addressing the diverse mobility patterns of
users. We propose the QEMUOT algorithm, which leverages
MATD3 for making joint offloading ratio and trajectory con-

trol decisions. To expedite the training process, we integrate
expert demonstrations into the algorithm using a novel ex-
pert strategy. Furthermore, We introduce a modified reward
mechanism to prevent offloading failures by penalizing actions
that lead to such failures. Through a series of experiments,
we evaluate the performance of the QEMUOT algorithm,
demonstrating its superior convergence speed and effectiveness
in catering to high mobility and diverse UEs. The algorithm
shows an increase in reward of up to 62% compared to baseline
algorithms. Moreover, it proves to be applicable in larger-scale
experiments and exhibits stability over baseline approaches.
The key contributions of this paper can be summarized as
follows:

1) We classify UEs into 3 categories according to UEs’
different mobility abilities and patterns of movement:
High-speed UEs along city road network, Low-speed
UEs not along city road network and Fixed UEs. Then
we propose a composite UE mobility model to better
manage the heterogeneous of edge devices.

2) To optimize offloading ratio and trajectory control deci-
sions, we introduce the QEMUOT algorithm within the
MATD3 framework. To tackle the challenge of sparse
rewards, we integrate expert demonstrations for pretrain-
ing. Additionally, the reward mechanism is improved by
introducing a penalty for offloading failures.

3) Experimental results show that, compared to traditional
scheduling strategies, the QEMUOT algorithm demon-
strates superior convergence speed and effectiveness in
addressing the requirements of high mobility, diverse
UEs, and large-scale UAV-assisted MEC networking
scenarios.

The remainder of the paper is organized as follows. In Sec-
tion II, the related work of our topic is illustrated. The system
model and problem formulation are described in Section III
and then reformulated as a Dec-POMDP process in Section IV.
QEMUOT algorithm is proposed in Section V. Performance
is evaluated by experiment in Section VI. In Section VII,
several issues are further discussed. Finally, Section VIII gives
a conclusion of the paper and some possible future research
directions.

II. RELATED WORK

A. Mobility Model

Current research has not extensively explored the high mo-
bility of UEs and the differentiation among different mobility
patterns. Many models operate under the premise of UEs
being stationary and their positions being constant, thereby
overlooking their mobility or considering all UEs as uniform
entities [5], [6], [16], [29], [30]. Various mobility models
for individuals in urban environments have been put forth in
previous studies.

1) Mathematical model:
• Random Walk (RW) [31]: It aims to simulate the unpre-

dictable stochastic movement characteristics of individu-
als. In [32], UEs are initialized at random positions within
a rectangular area and commence random walks.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 3

TABLE I
COMPARATIVE ANALYSIS OF RELATED WORKS.

Reference No. of UAVs Mobility of UEs Offloading Decision QoS-aware Energy-efficient Algorithm
[23] 1 Single mobile UE Ratio ✓ ✗ Analytical (Closed-form)
[14] 1 Fixed No decision ✗ ✓ Heuristic (SCA)
[16] 1 Fixed Binary ✗ ✓ Heuristic (BAD)
[15] 3 Fixed Binary ✓ ✗ Heuristic (SCA)
[24] 10 Fixed Binary ✗ ✓ Meta-heuristic (FCM)
[25] 1 Fixed Binary ✓ ✗ Meta-heuristic (D-WOA)
[26] 4 Markovian mobility model Binary ✓ ✗ RL (Q-learning)
[27] 1 Gauss-Markov model Binary ✓ ✓ RL (Double DQN)
[5] 4 Fixed Binary ✗ ✓ MARL (MADDPG)

[28] 9 Fixed No decision ✓ ✓ MARL (MADDPG)
[29] 4 Fixed Binary ✓ ✓ MARL (Nash Q-learning)
[30] 2 Fixed or Random walk model Ratio ✓ ✓ MARL (MATD3)
[6] 3 Fixed Ratio ✓ ✓ MARL (IPPO)

Proposed 8 ∼ 14 Heterogeneous mobility patterns Ratio ✓ ✓ MARL (QEMUOT)

• Random WayPoint (RWP) [33]: Widely used to simulate
user mobility in wireless cellular networks, involving
individuals alternating between staying put and moving
towards a random destination. The RWP-Ci model is
an enhancement of RWP based on urban street maps,
offering a more accurate simulation of the movement
trajectories of urban users in real scenarios [34].

• Gauss-Markov [35]: It assumes that an individual’s ve-
locity is correlated over time and is modeled with a
Gaussian-Markov process, which has been utilized in
several recent MEC models [36].

• Individual Mobility (IM) [37]: It proposes an enhance-
ment to the RW model by introducing two human-specific
mobility mechanisms. The single-hop mobility under the
IM model is assessed in [38], examining the practicality
of simulating UE mobility in 5G small-cell network
scenarios.

2) Traffic simulation software: In MEC scenarios, some
researchers have started using traffic simulation software such
as SUMO [39] to generate UE trajectories for simulation
experiments [40].

3) Real-world data: Leveraging real-world data, such as
GPS trajectory data from mobile devices or traffic data from
cities, offers insights into genuine scenarios [41], [42].

To enhance the transition of models from the lab to practical
applications, real data grounding is crucial. However, the
scarcity of datasets with varied UE mobile trajectories and
real-time upload records poses a challenge for data collec-
tion. While simulation software can mimic real-world results,
its complex algorithms require substantial computational re-
sources and time [43]. Therefore, this paper focuses on intro-
ducing a composite UE motion model. This model, despite its
lightweight design, exhibits strong simulation capabilities for
a range of UE movements.

Hence, considering their simplicity, flexibility, and inter-
pretability, mathematical models are widely applied in the field
of communications. However, some of the existing mathemati-
cal models often only excel at simulating certain types of UEs.
Therefore, our work focused on proposing a composite UE
motion model. This model, while maintaining a lightweight
structure, also demonstrates robust simulation performance for
diverse UE movements.

B. MARL for UAV-assisted MEC

In Table I, we present a comparative analysis of our work
against key related studies on UAV-assisted MEC systems.
The comparison includes the number of UAVs scheduled (No.
of UAVs), consideration of UE mobility, type of offloading
decisions, optimization objective of the algorithms, and the
method employed.

In the realm of UAV-assisted MEC systems, various studies
have investigated the use of MARL methods to address
scheduling and offloading decisions faced by drones. Wang
et al. [5] utilize the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm to improve fairness in serving
user devices while reducing device energy consumption. How-
ever, this approach prioritizes QoS while neglecting the energy
consumption of the entire MEC system. The MADDPG algo-
rithm is employed in [28], demonstrating superior convergence
properties compared to traditional single-agent algorithms
and heuristic methods. Gao et al. [28] emphasize simulation
realism by considering three-dimensional UAV movement and
obstacle avoidance in urban scenarios but overlook the mobil-
ity of UE. Lee et al. [6] use an Independent Proximal Policy
Optimization (IPPO)-based algorithm but do not compare it
with other MARL algorithms. Furthermore, their experimental
evaluation lacks generalizability. Zhao et al. [30] employ the
MATD algorithm, providing comprehensive considerations for
system models and optimization objectives. Ning et al. [44]
adopt the MADDPG algorithm with a Prioritized Experience
Replay (PER) technique. However, their experiments only
assess the scheduling of 2-3 UAVs, failing to explore larger-
scale networking scenarios.

Furthermore, Uchendu et al. [45] conduct a study on MARL
utilizing Behavior Cloning (BC) pretraining. They highlight
that initializing the critic network randomly could result in
the loss of a well-performing initial policy by the end of
pretraining, leading to a notable decline in actor network
performance. Traditional expert demonstrations commonly in-
volve offline learning with datasets. Qiu et al. [46] introduce
a demonstration method in algorithmic form and integrated
it with MADDPG. Their experimentation in a classic multi-
agent particle environment notably enhance sample efficiency
and policy performance in cluster control. However, they did

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 4

Fig. 1. Overall system model architecture in smart city IoT scenario.

not experiment with more advanced MARL algorithms such
as MATD3, and the application of this pretraining technique
in the UAV-assisted MEC field remains unexplored.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-UAV MEC network operating in discrete
time, comprising a set of UAVs U, a set of UEs M, and a
set of BS K. As shown in Fig. 1, UAVs take off from the
base station, establishing a network. The UEs are randomly
distributed in the square-shaped area with a side length s,
while multiple UAVs fly over this region and directly commu-
nicate with UEs to provide MEC services. UEs are classified
into three categories based on their motion characteristics: H
for High-speed UEs, L for Low-speed UEs, and F for Fixed
UEs, where M = H ∪ L ∪ F. In each time slot t, every UE
m ∈ M generates a computation-intensive task Wm(t) that
needs to be offloaded. Dm(t) and Cm(t) denote the size of
task data and the number of CPU cycles required for each bit
of data, respectively. QoS refers to the overall performance
of a network or a network service, as perceived by the end
users. High QoS ensures that the network provides satisfactory
service to its users by meeting specific performance metrics.

A. UE Mobility Model

(1) High-speed UEs along city road networks. Examples
include vehicles and devices mounted on them. These UEs
utilize a RWP-Ci model [33], which integrates an exploration
mechanism and a return mechanism. They move at a constant
speed Vh on city streets. UE h ∈ H selects a destination and
moves to it following the shortest path. Upon reaching the
destination, h remains at the current location for a specified
time th, after which it selects another destination, repeating
this process.

• Exploration Mechanism: The UE h may choose an
intersection point that has never been reached as the
destination with the probability Pnew = ρhn

−ψ
S , where

nS is the number of reached points, ρh ∈ (0, 1], and
ψ > 0.

• Return Mechanism: The UE h selects an intersection
point that has been reached before as the destination with
a probability of Pold = 1− Pnew.

(2) Low-speed UEs not along city road networks. Exam-
ples include pedestrians carrying user devices and intelligent
robots. This category of individuals utilizes the Gauss-Markov
model [47] to capture their movement patterns, which are not
dependent on road networks. For UE l ∈ L, the velocity at
time t is denoted as vl(t), and vl (t+ 1) is calculated as
follows:

vl (t+ 1) = αvl(t) + (1− α)vl + σl
√
1− α2wl(t), (1)

where wl(t) ∼ N
(
0, σ2

w

)
. α, vl, and σl represent the memory

level, asymptotic mean, and standard deviation of velocity,
respectively. Then, the coordinates of user l at time t, pl(t) =
[xl(t), yl(t)], are updated as pl(t + 1) = pl(t) + vl(t)∆t,
where ∆t is the time interval. To constrain UEs from leaving
the specified area, if the calculated pl(t + 1) is outside the
area, the UE maintains its current position.
(3) Fixed UEs. Examples include smart furniture, where
individuals are randomly distributed within the region and
remain stationary.

B. UAV Mobility Model

It is assumed that UAVs fly at a fixed altitude Z with a
maximum speed of Vmax. The motion of UAV u at time t is
represented by the tuple (vu(t), θu(t)), where vu(t) ∈ [0, Vmax]
and θu(t) ∈ [−π, π] are the constant velocity of uniform flight
and direction angle within the time slot (t, t+∆t), respectively.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 5

The flight distance is ∆du(t) = vu(t)∆t. The propulsion
power is obtained as [48]:

P pro(V) = P0

(
1 +

3V 2

Vtip
2

)
+ Pi

√
1 +

V 4

4v04
− V 2

2v02

 1
2

+
1

2
d0ρrssdV

3,

(2)

where P0 is blade profile power in hovering and Vtip is the
tip speed of rotor blade. Pi and v0 denote induced power and
the mean rotor induced velocity under the hover condition. As
for parasite power, d0, ρ, rs, and sd denote the fuselage drag
ratio,air density,rotor solidity, and rotor disc area, respectively.

C. Communication Cost

(1) Offloading transmission from UEs to UAVs. At time t,
the coordinates of UAV u, denoted as Xu(t), are expressed as
(xu(t), ym(t), Z). The position of UE m, denoted as Xm(t),
is represented as (xm(t), ym(t), 0), and the position of BS
k is given by (xk, yk, 0). The service area of the UAV is
characterized by a circular region [49]. The coverage radius of
a UAV at work is rc = Z

tan(Θ) , where Θ denotes the maximum
coverage angle. The elevation angle between UAV u and UE m
at time t is denoted as θum(t). The probabilities of establishing
LoS and non-LoS (NLoS) connections can be expressed as:

PLoSum =
1

1 + a exp (−b [θum(t)− a])
, (3)

PNLoSum = 1− PLoSum , (4)

where a and b are constants determined by the communication
environment.

The channel gain between u and m during offloading is
obtained as:

gn(t) =
1

K0 (PLoSum µLoS + PNLoSum µNLoS)
[
Z2 + dum

2(t)
] ,
(5)

where K0 = (4πfc/c)
2, 1/K0 represents the channel power

gain at the reference distance d0 = 1m, fc is the carrier
frequency, c is the speed of light, µLoS and µNLoS are the
attenuation factors for LoS and NLoS links. dum(t) is the
horizontal distance between u and m.

The offloading data rate is calculated as:

Rum(t) =
(
BU/N

M
u (t)

)
log2

[
1 + gum(t)PM/σU

2
]
, (6)

where BU is the bandwidth of the UAV, NM
u (t) is the number

of UEs offloading computational tasks to u in time slot t.
We assume that the bandwidth is equally shared among all
UEs. PM is the transmit power of the UE. σ2

U is the additive
Gaussian white noise power for UAV communication.

The transmission delay and energy consumption are ob-
tained as:

T transum (t) = Dm(t)/Rum(t), (7)

Etransum (t) =
[
PM + P rU/N

M
u (t)

]
T transum (t), (8)

where P rU is the receiving power of UAVs. A UAV can only
provide offloading services to UEs within its coverage area,

i.e., dum(t) < r, and at one time slot, a UE can only offload
tasks to one UAV.

An offloading indicator variable ξum(t) is defined, where
ξum(t) = 1 when UE m is served by UAV u, and ξum(t) = 0
otherwise. Assuming that each UE can be served by at most
one UAV at any given time, satisfying

∑|U|
u ξum(t) ∈ {0, 1}.

0 indicates that the UE is currently in the coverage blind spot
of the UAV. Thus, there is no UAV available for offloading
computational tasks, and 1 otherwise. The UE selects the
offloading UAV û with the minimal transmission delay when
it is within the overlapping coverage zone of multiple UAVs:
û = argmin {T transum (t)} ,m ∈ Um, where Um is the
available UAVs set of UE m.

(2) Offloading transmission from UAVs to BSs. The data
rate of the wireless link between UAV u and BS k at time t
is calculated as follows:

Ruk(t) = Bk log2
[
1 + guk(t)P

t
U/

(
NK
u (t)σK

2
)]
, (9)

where P tU represents the transmission power of UAV, and
NK
u (t) denotes the quantity of tasks that u intends to offload

to the BS during time slot t. It is assumed that the BS can
provide a connection bandwidth BK to the UAV.

Each UAV has a finite capacity ϵmax. A task queue model
is employed following a First-In-First-Out (FIFO) policy.
When the incoming tasks surpass ϵmax, the UAV must offload
them to the nearest BS. Furthermore, UAV retains the option
to either process the tasks or offload them entirely to the
BS. In each time slot, the UAV makes an offloading ratio
decision, denoted as δu(t) ∈ [0, 1]. Let ϵu(t) denote the
number of tasks in the task queue of UAV u in the current
time slot. Define the indicator variable βum(t) for UAV u
deciding whether to offload Wm(t). In time slot t, UAV u
processes the first νu(t) tasks locally in its queue, βum(t) is
set to 1. The subsequent tasks are offloaded to the BS and
βum(t) = 0, νu(t) = ⌊ϵu(t) [1− δu(t)]⌋. The transmission
delay is determined by:

T transumk (t) =
[1− βum(t)]Dm(t)

Rmk(t)
, (10)

Etransumk (t) =
P tM
NK
u (t)

T transumk (t). (11)

D. Computation Cost

(1) Computation at UAVs. In the conventional FIFO
queue, tasks are typically executed in a sequential manner.
However, this sequential execution approach, when applied to
MEC servers, can result in timeouts for subsequent tasks. In
our pursuit of equitable service provision for each user, we
propose the incorporation of a parallel processing mechanism
in UAV-MEC. This mechanism allows tasks in the queue to
be executed in parallel to a certain extent.

Given that tasks do not actually arrive simultaneously at
UAV-MEC, this assumption may introduce some degree of er-
ror. We have conducted an analysis of this error, as depicted in
Fig. 2. Notably, the transmission delay of tasks is significantly
smaller than the computation delay, exhibiting a difference of
approximately 3 orders of magnitude. Consequently, this error

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 6

Fig. 2. Kernel Density plot for the transmission delay and computation delay
of tasks.

can be deemed negligible and falls within an acceptable range.

The total computing resources, denoted as FU , are equitably
distributed among all tasks presently in progress. The compu-
tation delay and energy consumption for UAV u are obtained
as [41]:

T compum (t) =
βum(t)Dm(t)Cm(t)

fum(t)
, (12)

Ecompum (t) = κfum(t)3T compum (t), (13)

where κ = 10−26 is a hardware related constant and fum(t)
is the computing resource allocated by the UAV to the task.
Due to the assumption of fair distribution of total computing
resources, fum(t) = FU/N

M
u (t).

(2) Computation at BSs. The UAV always offloads to the
BS k̂ with the minimum transmission delay, i.e., the closest
BS in horizontal distance: k̂ = argmin {duk(t)} , k ∈ K.
The BS computation delay for UE m’s task can be calculated
by T compumk (t) = βum(t)Dm(t)Cm(t)/FK , where FK is the
computing resources allocated by the BS to each task.

E. Problem Formulation
We aim to maximize QoS while minimizing energy con-

sumption. In our work, maximizing QoS involves addressing
three critical aspects: maximizing service coverage, minimiz-
ing delay, and reducing offloading failure. In time slot t, UAV
u’s energy consumption can be calculated as:

Etasku (t) =
|M|∑
m=1

ξum
[
Etransum (t) + Etransumk (t) + Ecompum (t)

]
,

(14)
Eprou (t) = ∆P pro (vu(t)) , (15)

where Etasku (t) and Eprou (t) denote the task-processing
and propulsion energy consumption, respectively. The total
energy consumption is Eu(t) = Etasku (t)+Eprou (t). The total
computation delay on UAV u at time t is expressed as:

τu(t) =

|M|∑
m=1

ξum
[
T transum (t)

+max{T compum (t), T transumk (t) + T compumk (t)}
]
.

(16)

The weighted sum of Eu(t) and τu(t) is represented as
the system cost Cu(t) = ω1Eu(t) + ω2τu(t), where ω1 and
ω2 are weights signifying the relative importance of energy
consumption and execution delay, respectively. By simultane-
ously optimizing UAV’s mobility decisions (vu(t), θu(t)) and
offloading ratio δu(t), the optimization problem is formulated
as follows:

min
vu(t),θu(t),δu(t)

|T|∑
t=1

|U|∑
u=1

Cu(t) (17)

s.t. ω1 + ω2 = 1 (18a)
(0, 0) ≤ (xu(t), yu(t)) ≤ (s, s)), ∀u ∈ U (18b)

(xu(0), yu(0)) ∈ V, ∀u ∈ U (18c)
(xk, yk) ∈ V, ∀k ∈ K (18d)

duu′(t) ≥ Dmin, ∀u, u′ ∈ U, u ̸= u′ (18e)
dum (t+ τn(t)) ξum(t)βum(t) ≤ r, ∀u ∈ U, m ∈M

(18f)

where Dmin in Eq.(18e) is defined as the minimum flying
distance established to prevent collisions among UAVs, and
V in Eq.(18d) denotes the set of vertices within the specified
square area, coinciding with the location of BSs. As defined in
Eq.(18c) and Eq.(18b), UAVs initiate their operation from the
BS position and are mandated to remain within the predefined
area. To prevent offloading failures, Eq.(18f) guarantees the
UE stays within the service range of the UAV during the
transmission of computing results. Each UAV naturally serves
as an agent, rendering it highly suitable for exploration within
the framework of MARL.

IV. POMDP FORMULATION

The joint optimization of the UAV-assisted MEC
system can be formulated as a Dec-POMDP process:
⟨N,S,A,P,R,O, n, γ⟩ [50], where N is the set of agents, S
is the set of states, A is the set of actions, P is the transition
function of state, R is the reward function shared by all the
agents, O is the set of observations, n is the amount of the
agents and γ is identified as the discount factor. The details
are as follows:

1) Agent: Each UAV serves as an agent and N is a finite
set of n = |U| agents.

2) State: The state at time t includes the location informa-
tion, motion state, and connection status of all UAVs and UEs,
denoted as s(t) ∈ S.

3) Action: UAV decisions encompass both mobility strat-
egy and task offloading ratio. At time slot t, the action for UAV
u is represented as au(t) = {vu(t), θu(t), δu(t)}, au(t) ∈ A,
while the global action is represented as a(t) = {au(t) | ∀u ∈
U}.

4) Transition: When the agents interact with the envi-
ronment by performing actions a(t), the state transitions to
s(t+1) based on the transition function P(s(t+1)|s(t), a(t)).

5) Observation: The observation set is denoted as O. UAV
u’s local observation ou(t) ∈ O at time t is a partial
information obtained from s(t), including the relative positions
of all UEs and other UAVs with respect to u, the motion
states of all agents, and the offloading decision between all

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 7

UEs and u. Formally, ou(t) = {{Xu(t) − Xu′(t) | ∀u′ ∈
U}, {Xu(t)−Xm(t) | ∀m ∈M}, {ξum(t) | ∀m ∈M}}.

6) Reward: The reward function Ru(t) for UAV u is
defined as follows:

Ru(t) =


η1/Cu(t), if satisfying constraints,

− η2NC
u (t)−η3NF

u (t)− η4
[
|U|−

|U|∑
u=1

NM
u (t)

]
+ η5ϵu(t), otherwise,

(19)
where η1 represents the hyperparameter tied to the system
cost. On the other hand, η2 constitutes the collision constraint
that penalizes both UAVs if their distance falls short of the
predetermined safety parameters. In this equation, NC

u (t)
denotes the count of UAVs within the safety perimeter of u.
Specially, η3 is identified as the offloading failure constraint
where NF

u indicates the number of tasks on u subjected to
offloading lapses. Essentially, η3 serves as a deterrent against
offloading failures, aiming to prompt UAVs to dynamically
adjust to variations in UE locations. This, in turn, reduces
the occurrence of connection interruptions, ensuring the robust
execution of tasks on the UAV. As the equation progresses, η4
symbolizes the no-service constraint, which imposes a penalty
on all UAVs should any UEs be left unattended. Finally, η5
ascribes to the service compensation, offsetting the no-service
penalty in proportion with the current number of UEs attended
to by UAV u.

Therefore, induced by the expected reward of UAV agents,
the action-value function is defined as follows:

Qu(s(t), au(t)) = E

[∞∑
t=0

γtRu(t)|s(t), au(t)

]
, (20)

where γ ∈ [0, 1).

V. QEMUOT ALGORITHM

The QEMUOT algorithm strategically determines offload-
ing ratios and trajectory controls based on the MATD3
[18] architecture. Within the MADDPG algorithm framework,
each agent is equipped with an actor network (Policy func-
tion µu(o)) responsible for selecting actions to maximize
the expected return, and a critic network (Value function
Qu(s, a1, a2, ..., aU)) evaluating the future return expectancy
associated with specific actions. MATD3 adopts a dual-critic
mechanism, where each agent has an additional critic network
to reduce estimation bias, thereby enhancing training stability.
Following the Centralized Training with Decentralized Execu-
tion (CTDE) paradigm, in the QEMUOT algorithm, the critic
networks undergo centralized training, while actor networks
undergo decentralized training.

As stated in Algorithm 2, we first randomly initialized
the actor network µu(o) with weights θu, and critic net-
works {Qu,i(s, a1, a2, ..., aU)}i=1,2 with weights {ωu,i}i=1,2

for each agent u. The target networks, denoted as µ̂u and
{Q̂u,i}i=1,2, are initialized as copies of the actor and critic
networks, respectively. In order to enhance sample efficiency
and stabilize the training process, a replay buffer D with
a capacity of 105 is employed by each UAV. The target

Algorithm 1: Greedy-Sailfish Algorithm
Input: Global state s(t) and the function g(s(t), a(t)))
Output: Global action {au(t) | ∀u ∈ U}

1 for each agent u do
2 if ϵu(t) ̸= 0 then
3 Select mf , the UE farthest from u in u’s

offloading queue ;
4 Fly towards mf to prevent offloading failure of

mf ;

5 else
6 Select mc, the UE closest from m globally ;
7 Fly towards mc to improve mc’s QoS ;

8 Uitilize the Sailfish optimizer [51] for determining
{vu(t), δu(t) | ∀u ∈ U} ;

networks are gradually updated using a soft update mechanism
defined by the parameter τ . The soft update method ensures
that µ̂u and {Q̂u,i}i=1,2 manifest a delayed adaptation to
their learned network counterparts, and thus, their gradual
path towards synchronization preserves the balanced operation
of the learning system. The equation for network weights
updating can be summarized as follows:

ω′
u,i ← τωu,i + (1− τ)ω′

u,i, i = 1, 2, (21)

θ′u ← τθu + (1− τ)θ′u. (22)

The target networks not only facilitate smoother training
but also define the optimization target for the critic network
as follows:

yu = ru + γQ̂u,i(s(t+ 1), a1(t+ 1), a2(t+ 1), ...,

aU (t+ 1))|au(t+1)=µ′
u(ou(t))

.
(23)

As demonstrated in Fig. 3, the training of QEMUOT al-
gorithm can be divided into two phases: the pretraining phase
(Section V-B) and the exploration phase (Section V-C). During
the pretraining phase, we quickly improve the performance of
the action network to a fairly optimal level through expert
policy demonstrations, as shown in Section V-A. Meanwhile,
a “warm-up” period is implemented for the critic network to
prevent potential errors that may lead to a catastrophic de-
cline in training performance during the upcoming exploration
phase. As the algorithm transitions into the exploration phase,
our model diverges from the expert policy and autonomously
explores potentially superior decisions using an ϵ-greedy ex-
ploration strategy.

A. Expert Algrithom

Due to limited high-quality expert data, we propose an
expert algorithm named the Greedy-Sailfish Algorithm (GSF),
which combines the Sailfish optimization algorithm with a
greedy algorithm. Sailfish optimization is a currently popular
metaheuristic algorithm [22], and there have been many suc-
cessful applications in IoT and MEC scenarios, demonstrating
outstanding performance [52], [53]. Therefore, we chose it
as our expert algorithm.The greedy algorithm guides flight

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 8

Fig. 3. The framework of QEMUOT algorithm.

direction decision-making, while the subsequent decisions on
offloading ratio and flight speed are treated as a simplified
constrained optimization problem. We employ the Sailfish
algorithm to optimize these decisions.

As summarized in Algorithm 1, if ϵm(t) ̸= 0, u selects the
UE mf farthest from it in its offloading queue. Subsequently,
u fly towards mf at Vmax to prevent offloading failure for
mf . Conversely, if ϵm(t) = 0, u selects the no-service UE
mc that is closest to it globally, and fly towards mc. Given
{θu(t) | ∀u ∈ U}, the utilization of the Sailfish optimizer for
determining flight speed vu and offloading ratio δu involves re-
formulating the problem along with its associated constraints:

consider x = {vu(t), δu(t) | ∀u ∈ U}, (24)

Min. f(x) =
|U|∑
u=1

Cu(t), (25)

s.t. (18a)− (18f)

The global action execute function is represented as f(x) =
g(s(t), a(t)), where for a given state s(t) and global action
a(t), the function g returns the value of f(x) by stepping for-
ward and backtracking in the computer simulated experimental
environment.

B. Pretraining Phase

To tackle the challenge posed by training with randomly ini-
tialized network parameters in sparse reward spaces, Epretraining
episodes of pretraining are conducted in the initial stages of
training. As depicted in Algorithm 2, during the pre-training
phase, the expert policy GSF is utilized instead of the actor
network for decision-making. This process generates expert-
demonstrations experience samples, which are subsequently
stored in the buffer. Each iteration, a random mini-batch B
consisting of tuples (s(t), ou(t), au(t), ru(t), s(t + 1), ou(t +
1)) is sampled from D for updating the network.

Specifically, behavior cloning pretraining [45] is executed
on the actor network, with the learning objective aimed at
minimizing the disparity between the decisions made by the

policy network and those made by the expert policy. The loss
function for behavior cloning is defined as follows:

LBC(θu) = E
[
(µu(ou(t))− au(t))2

]
, (26)

The behavior cloning pretraining for actor network elimi-
nates the inefficiency of exploring better actions only through
random interactions with the environment when the policy
is poor. Instead, the policies rapidly attain a higher level by
imitating the expert algorithm, establishing a strong starting
point for learning and facilitating more effective exploration
in high-reward regions right from the outset.

Warm-up training is then conducted on the critic network to
mitigate excessively biased value estimates from an untrained
(cold start) critic network. Such biases could potentially result
in the forgetting of a well-performing policy [45]. The loss
function for warm-up training using expert-guided experience
is defined as follows:

LWarm-up(ωu,i) = E
[
(Qu,i(s(t), a1(t), a2(t), ..., aU (t))− yu)2

]
.

(27)

C. Exploration Phase

During this stage, the network training basically follows the
conventional online MATD3 algorithm. To achieve enhanced
performance through fine-tuning and to prevent overfitting to
the expert policy, we employ an decaying ϵ-greedy exploration
strategy. When the model chooses to explore, Gaussian noise
ξϵ ∼ clip

(
N

(
0, σ2

ϵ

)
,−c, c

)
is introduced to the output of the

policy network. The actions are computed as follows:

au(t) =

{
µu(ou(t)), with probability 1− ϵ,
µu(ou(t)) + ξϵ, with probability ϵ,

(28)

where the value of ϵ decays gradually as the number of training
iterations increases, meaning that the intensity of exploration
decreases as the network performance improves.

The expert policy is no longer utilized in this phase. Instead,
the QEMUOT algorithm captures experiences by interacting
with the environment using its own policy network µu(o).
Various methods are employed to reduce the overestimation

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 9

Algorithm 2: QEMUOT Algorithm
Input: Randomly Initialize Actor networks µu(o) with

weights θu and Critic networks
{Qu,i(s, a1, a2, ..., aU)}i=1,2 with weights
{ωu,i}i=1,2 for each agent u

Output: Target networks µ̂u(o) and {Q̂u,i}i=1,2 with
weights θ′u and {ω′

u,i}i=1,2 for each agent u
1 for e = 1→ E do
2 Initialize a random process ;
3 for t = 1→ T do
4 if e < Epretraining then
5 Get global state s(t) ;
6 Use expert policy (Algorithm 1) to

determine global action {au(t)|∀u ∈ U} ;

7 else
8 for each agent u do
9 Get observations ou(t) ;

10 Use Actor network µu(ou(t)) to select
action au(t) with ϵ-greedy noise ;

11 for each agent u do
12 Execute action au(t), get reward ru(t), and

new observation ou(t+ 1) ;
13 Store (s(t), ou(t), au(t), ru(t), s(t+

1), om(t+ 1)) in replay buffer D ;

14 Sample B batch of data from D ;
15 for each agent u do
16 if e < Epretraining then
17 Update the Critic network by

optimizing loss LWarm-up(ωu,i) ;
18 Update the Actor network by

optimizing loss LBC(θu) ;
19 Update target networks ;

20 else
21 Update the Critic network by

optimizing loss LE(ωu,i) ;
22 if t mod TD then
23 Update the Actor network by

computing gradient ∇θuJ(µu) ;
24 Update target networks ;

bias of the critic network, including the dual-critic mechanism
and adding noise to the predictions of the target actor network.
By taking the lower value from the outputs of the two critic
networks, the original optimization target for the critic network
yu is reshaped into y′u as follows:

y′u = ru + γ min
i=1,2

Q̂u,i(s(t+ 1), a1(t+ 1), a2(t+ 1), ...,

aU (t+ 1))|au(t+1)=µ′
u(ou(t))+ξr

,
(29)

where ξr ∼ clip
(
N

(
0, σ2

r

)
,−c, c

)
, serves as a regularization.

Therefore, the critic networks are optimized by minimizing

a specific loss function as follows:

LE(ωu,i) = E
[
(Qu,i(s(t), a1(t), a2(t), ..., aU (t))− y′u)

2
]
,

i = 1, 2.
(30)

It is worth noting that, despite the warm-up process during
pretraining, we cannot ensure that the current critic network
has achieved a sufficiently high performance level. Moreover,
the experiences utilized in the warm-up phase are generated by
the expert policy rather than the policy network itself, resulting
in different distributions. Consequently, during exploration, the
critic network might still offer erroneous guidance to the actor
network, leading to the degradation of the policy network. To
mitigate this issue, the QEMUOT algorithm adopts a delayed
updating strategy for the policy network, giving the trainer
time to wait for the critic network to stabilize. Specifically, as
depicted in line 22 of the Algorithm 2, after every TD updates
of the critic network, the actor network undergoes an update
based on the policy gradient defined as:

∇θuJ(µu) = E
[
∇θuµu(ou)∇auQu,1(s(t), a1(t), a2(t), ...,

aU (t))|au(t)=µu(ou(t))

]
.

(31)

D. Algorithm Analysis

First, we explore the computational complexity of the
expert algorithm we introduced. The worst-case complex-
ity of the greedy algorithm is O(|U||M|), where |U| is
the number of UAVs and |M| is the number of UEs.
Moreover, considering the population size Npop, the max-
imum iterations Miter, the function’s dimension Dob and
the complexity of evaluating fevl, the computational com-
plexity of the Sailfish Optimizer Algorithm (SFO) can be
estimated as O (Miter (Npopfevl +Dob)), while O(Dob) =
O(|U|) and O(fevl) = O(|U||M|). To sum up, the over-
all computational complexity of Algorithm 1 is approxi-
mately equal to that of SFO, which can be calculated as
O (Miter (NpopO(|U||M|) +O(|U|))).

According to the model, the decision-making process for
each UAV requires the current location information of all
UEs, and there is also the sharing of movement informa-
tion between UAVs. Therefore, the communication com-
plexity should be O(|U| + |M|). The critic and actor net-
works for each UAV are both DNN networks: the input
dimension for the Critic includes state and action informa-
tion, and the output is the Q value, with dimensions of
(|U|+ |M|+ (|U|+ |K|)|M|+ 3) and 1, respectively. Thus
the computational complexity of the critic network can be con-
sidered as O (|U|+ |M|+ (|U|+ |K|)|M|+ 3). The Actor’s
input and output dimensions are (|U|+ |M|) and 3, hence, its
computational complexity can be viewed as O(3(|U|+ |M|)).
Since CTDE paradigm is used, the overall system complexity
of Algorithm 2 is O(|U|(|U| + |M|)2). Additionally, the
training process complexity is also influenced by the batch
size and the number of episodes.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 10

Fig. 4. Visualization of simulation experiment environment.

VI. EXPERIMENT

A. Experimental Settings

As depicted in Fig. 4, the simulation area encompasses
a square with a side length of s = 250m. Each corner
hosts a BS, and a grid street network facilitates High-speed
UE movement within the area. 10 UAVs take off from the
BSs, then work with a flying height of Z = 100m and a
maximum speed of Vmax = 10m/s. In each random process,
the simulation iterates for 50 steps starting from the moment
the UAVs take off, denoted as T = 50. Due to multiple
UAVs taking off from the same starting point, and since
our experiment neglects the process of UAV ascent, collision
constraints are not considered in the first 5 steps, i.e., the value
of η2 is set to 0. The edge angle of the coverage area is set
to Θ = 50◦ [49]. There are 200 UEs with a ratio of 2:5:1 for
three types of UEs (|H|:|L|:|F|). The minimum safe distance
between UAVs is set to Dmin = 5m, and the propulsion
energy consumption parameters are referenced from [48]. See
Table II for all the main parameters of the simulation network
environment.

Fig. 4 illustrates the scenario where UAVs have just taken
off from the BSs, beginning to network and cover UEs in
the area. We assume our experimental environment is sym-
metrical, and each BS and UAV is homogeneous. Therefore,
we performed a simple fair allocation for the assignment of 10
UAVs to 4 BSs as follows: the BSs in the top-left and bottom-
left corners each host 3 UAVs, while the BSs in the top-right
and bottom-right corners each accommodate 2 UAVs. The
UAVs ”converge” from the four corners towards the center,
progressively diminishing the size of the unserviced area in the
center of the region, thereby augmenting the system’s service
coverage rate.

The simulations are performed using Python and PyTorch.
In both the actor and critic networks, we utilized four fully-
connected hidden layers, with [400, 800, 800, 400] neurons. All
the networks are trained with a learning rate of 10−5 and
updated using the Adam Optimizer. For the decaying ϵ-greedy

TABLE II
NETWORK ENVIRONMENT PARAMETERS.

Parameters Value

Side length of simulation area s 250m
Flying height of UAVs Z 100m
Maximum velocity of UAVs Vmax 10m/s
Minimum velocity of UAVs Vmin 0m/s
Elevation angle of UAVs Θ 50◦ [49]
Ratio of 3 types of UEs |H|:|L|:|F| 2 : 5 : 1
Minimum safe distance between UAVs Dmin 5m
Blade profile power in hover P0 79.86W
Induced power in hover Pi 88.63W
Tip speed of rotor spade Vtip 120m/s
Mean rotor induced velocity in hover v0 4.03m/s
Fuselage drag ratio d0 0.6
Tip speed of rotor spade ρ 1.225 kg/m3

Rotor disc area sd 0.503m2

Rotor solidity rs 0.05
Size of task data Dm N (8, 4)Mbits
Number of CPU cycles required for each bit

of data Cm(t)
N (150, 50)

cycles/bit
Constant velocity of H Vh 10m/s
Fixed stay time of H th 10 s
Exploration parameter of H ρh 0.2
Exploration parameter of H ψ 0.5
Memory level of L α 0.8
Symptotic mean of L’s velocity vl 2m/s
Standard deviation of L’s velocity σl 0.2
Maximum task capacity of UAVs ϵmax 10
Attenuation factors for LoS links µLoS 2 dB
Attenuation factors for NLoS links µNLoS 20 dB
Carrier frequency fc 3GHz
Bandwidth of UAVs BU 10MHz
Bandwidth of BSs BK 10MHz
Noise power for UAV communication σ2

U 100 dBm
Transmitting power of UEs PM 20 dBm
Receiving power of UAVs P r

U 100 dBm
Transmitting power of UAVs P t

U 100 dBm
Total computing resources of UAVs FU 20GHz
Computing resources for each task of BSsFK 30GHz

exploration strategy, ξϵ is initialized to 0.8 and decays with a
rate of 0.999. Additionally, σϵ and σr are set to 0.2 × c and
0.2, respectively. The policy update frequency TD is fixed at
5.

Five baseline algorithms are conducted:

• Random: In which each action is chosen randomly and
follows a uniform distribution.

• Naive-Greedy: The greedy algorithm, as discussed in
Section V-A, is employed for flight direction selection.
However, it’s important to note that the flight speed vu(t)
is consistently set to the maximum value Vmax, and the
offloading ratio δu(t) remains fixed at 50%.

• GSF: As illustrated in Section V-A. We set the initial
population Npop to 30. The algorithm process is repeated
for Miter = 500 iterations. And parameter values of ASF
and ϵSF are considered, 4 and 0.001, respectively [22].

• MARL: We also conduct training with conventional
MADDPG and MATD3 aproach. Furthermore, we main-
tain the same network structure, learning rate, optimizer,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 11

Fig. 5. Average system reward.

and epsilon exploration strategy as those used in the
QEMUOT algorithm, along with other main parameters
to ensure a fair comparison.

B. Experimental Results

1) Trainning performance of the MARL algorithms: Fig.
5 displays the training curves of the reinforcement learning
algorithms. The QEMUOT algorithm achieves a 36.62% and
62.47% improvement in reward compared to the conventional
MADDPG and MATD3 algorithms, respectively. Compared
to MATD3, QEMUOT only takes 36.59% of episodes in
pretraining to converge to the reward of Naive-Greedy al-
gorithm. When transitioning from the pretraining phase to
the exploration phase, the policy network experienced a
slight performance degradation, approximately 23.89% of the
previous training reward increments. It is noteworthy that
no further performance degradation occurred. Subsequently,
after only 1000 episodes, it quickly recovered to performance
comparable to that of the Naive-Greedy algorithm, and further
explored potentially superior solutions, surpassing all other
MARL algorithms in the baselines.

From an overall performance perspective, QEMUOT did
not achieve a higher average reward than GSF, our expert
algorithm. This gap is primarily due to the difference in
information input between the two. GSF utilizes the SFO meta-
heuristic algorithm, which requires knowledge of the objective
function and allows for repeated substitutions for optimization.
In other words, the GSF algorithm benefits from additional
environmental information for the next time slot, which is
unknown to QEMUOT. The policy network of QEMUOT must
make decisions based solely on the current state. Furthermore,
this discrepancy highlights the highly unpredictable environ-
mental changes in this scenario and the diverse behavior
patterns of UEs. Consequently, the observation space for the
agent becomes extremely complex, suggesting that there is still
room for improvement in our policy network structure.

2) Algorithm time cost comparison: It’s crucial to note
that, as depicted in the Table III, although the reward achieved
by the QEMUOT algorithm in the experiments did not surpass
that of our designed expert algorithm GSF, the QEMUOT
algorithm exhibits significant superiority in practical usability

TABLE III
AVERAGE DECISION TIME PER SYSTEM ITERATION PER AGENT (MS)

UEs Random Naive-Greedy GSF QEMUOT

200 5.04× 10−3 5.24× 10−2 1.03× 102 5.33× 100

400 5.04× 10−3 1.02× 10−1 1.74× 102 7.51× 100

600 5.04× 10−3 1.55× 10−1 2.68× 102 8.93× 100

800 5.04× 10−3 2.08× 10−1 3.53× 102 1.01× 101

1000 5.04× 10−3 2.53× 10−1 4.54× 102 1.25× 101

compared to GSF. Firstly, Table III presents a comparison of
the average time taken for each decision in the simulation
by the algorithms. It is evident that the decision time of
the QEMUOT algorithm remains within an acceptable range,
typically below 10 milliseconds, whereas the decision time re-
quired by GSF consistently exceeds hundreds of milliseconds.
Another fundamental reason is that GSF requires the objective
function to be known and can be repeatedly substituted for op-
timization. In the experimental simulation, we can repeatedly
substitute action decisions, i.e., the solution to the problem,
into the virtual environment for optimization by stepping
forward and backtracking to obtain the objective function
value. However, in practical applications, stepping forward
and backtracking is practically impossible. Therefore, this
algorithm lacks practical usability, which indirectly highlights
an advantage of MARL methods.

3) Performance with different numbers of UEs and UAVs:
Furthermore, we conduct experiments by varying the number
of UAVs and UEs, as depicted in Fig. 6 and Fig. 7. The simula-
tion results consistently demonstrate that our algorithm outper-
forms baselines across various metrics. Service Coverage Rate
refers to the proportion of users within UAV coverage, which
reflects UAVs’ basic network deployment and service coverage
capabilities. As observed, the service coverage of QEMUOT
exceeds 95%, reaching parity with GSF and surpassing all
other baseline algorithms. Notably, compared to traditional
MARL algorithms, QEMUOT demonstrates a distinct energy-
efficient advantage, consistently exhibiting the lowest system
energy consumption across all scenarios.

With an increase in the number of UEs, the energy con-
sumption of traditional MADDPG algorithms exceeds that of
the Greedy algorithm. In contrast, the energy consumption of
QEMUOT not only remains at a low level, but even surpassing
GSF by 5.26% in scenarios with 1000 UEs as shown in Fig. 6.
This energy efficiency translates to extended UAV endurance
and reduced operational costs.

QEMUOT’s performance is particularly noteworthy in re-
ducing offloading failure rates, which significantly contributes
to achieving the lowest average user latency performance.
Compared to MADDPG and MATD3 algorithm, it reduces
latency by 28.13% to 40.67% and offloading failure rates
by 22.23% to 44.74%, respectively. Fig. 8 shows the cu-
mulative distribution functions of the offloading failure rate
accumulated by all algorithms in the primary experimental
environment, with the dashed line indicating the mean value
of the offloading failure rate. It can be observed that the
QEMUOT algorithm ensures lower offloading failure rates at
more instances and achieves the lowest average offloading

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 12

Fig. 6. Performance with different numbers of UEs.

Fig. 7. Performance with different numbers of UAVs.

Fig. 8. Cumulative distribution of the offloading failure rate.

failure rate among all baseline algorithms. The reduction in
offloading failure is attributed to QEMUOT’s optimized task
scheduling and resource allocation mechanisms, which also
contribute to lower system energy consumption by minimizing
unnecessary task retransmissions.

It is important to note that although the offloading failure
rate of the Random algorithm is significantly lower than
that of the GSF expert algorithm, this does not necessarily
indicate that the random algorithm is more effective in avoid-
ing offloading failures compared to the GSF algorithm. This
phenomenon actually occurs because the premise of offloading
failure is the initiation of task offloading. As depicted in the
first diagrams on the left of Fig. 6 and Fig. 7, the Random
algorithm fails to achieve high user coverage, resulting in
the inability to connect to the UAV server initially, thus
avoiding offloading failure incidents altogether. In contrast,

the QEMUOT algorithm, which achieves high user coverage
comparable to the GSF algorithm, also ensures a low offload-
ing failure rate. This demonstrats the positive impact of our
designed reward mechanism, providing a compelling solution
for enhancing QoS and mitigating offloading failure issues.

4) Performance with different preferences for energy
consumption and QoS: Finally, the algorithm’s flexibility and
controllability are further demonstrated by the ability to fine-
tune the preference between energy consumption and QoS
through adjustments to the weights ω1 and ω2, as illustrated in
Fig. 9. For QEMUOT, by increasing ω1, the system’s energy
consumption can be decreased by an additional 20.55%, albeit
at the cost of sacrificing QoS. Conversely, increasing ω2 pri-
oritizes QoS improvement over energy savings, resulting in a
further 2.74% improvement in service coverage rate, a 10.16%
reduction in offloading failure rate, and an 11.24% decrease
in latency. This underscores the algorithm’s adaptability to
various optimization objectives and its capability to strike a
balance between conflicting performance metrics.

The fine-tuning capability of QEMUOT allows for the
optimization of system performance according to dynamic
environments and user demands. By adjusting ω1 and ω2

appropriately, operators can effectively manage the balance
between energy efficiency and service quality to meet diverse
application requirements. This flexibility positions QEMUOT
as an ideal solution for future MEC systems, where effective
resource management and excellent QoS are crucial.

VII. DISCUSSION

The effectiveness of our proposed algorithm is evident
from the experimental results. However, several issues require
further discussion and clarification.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 13

Fig. 9. Performance with different preferences for energy consumption and QoS.

1) Mitigating the ”Slippery Slope” at the start of explo-
ration: Upon detaching from the expert strategy’s guidance,
the reward mechanism shifts from behavior cloning to au-
tonomous exploration. During this phase, the critic network is
susceptible to significantly biased value estimations, leading
to poor reward signals that can cause the initially effective
strategy to be forgotten. This problem becomes apparent as
the training performance shows a ”slippery slope” when the
episode count hits 4000.

However, it is apparent that this decline was promptly miti-
gated. This improvement is attributed to the warm-up operation
applied to the critic network and the delayed updating process
in actor network training. These measures prevented further
catastrophic degradation of the network. This outcome high-
lights the effectiveness of the proposed pretraining algorithm.

2) Practical implementation: To deploy the system de-
scribed in our work in real-world scenarios, several critical
aspects must be considered:

• The system’s task offloading service follows the time slot
partition protocol, dividing operational time into distinct
slots. This method ensures organized task management,
efficient resource allocation, and improved system per-
formance.

• QEMUOT’s scheduling decisions rely on GPS position-
ing data for all UEs and the task offloading relationships.
UAV clusters exchange location and operational status in-
formation. Therefore, protocols such as MQTT or CoAP
can be used for efficient real-time communication [54].

• UAVs depend on LoS communication links to maintain
reliable connections, requiring optimal flight altitudes and
distribution. Currently, mature regulations on the density,
flight altitude, and communication coverage angle of ur-
ban drone clusters are lacking. Parameters from previous
studies can be used [49].

By addressing these gaps, our proposed algorithm can be
practically deployed, guiding our future work.

VIII. CONCLUSION AND FUTURE WORK

Our work focused on addressing challenges in Multi-UAV-
assisted MEC. We have introduced a composite UE mobility
model to refine system modeling and proposed an MDRL-
based algorithm, namely QEMUOT. Notably, the offloading
failure problem was tackled for the first time in UAV-assisted
MEC. Our study contends that due to the distinctive mobility
of UAVs, UAV-MEC systems leads to a paradigm shift from

conventional user-side offloading decision designs to the opti-
mization of server-side scheduling mechanisms. Experimental
simulations illustrated that the proposed QEMUOT algorithm
outperformed baseline algorithms in terms of QoS, energy
consumption reduction, and greater scalability in large net-
works. Our algorithm exhibited rapid convergence and low
overhead, highlighting its practical applicability. Future work
will consider using containers to virtualize UAV services
and further optimize offloading costs from the perspective of
the container layer. Furthermore, to address the challenge of
highly complex environment spaces in reinforcement learning
methods, replacing the policy network with a diffusion model
could be a promising research direction.

REFERENCES

[1] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of mec in the internet of
things,” IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–91,
2016.

[2] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 806–12 825,
2021.

[3] T. Pathirana and G. Nencioni, “Availability model of a 5g-mec system,”
in 2023 32nd International Conference on Computer Communications
and Networks (ICCCN). IEEE, 2023, pp. 1–10.

[4] Y. Yazid, I. Ez-Zazi, A. Guerrero-Gonzalez, A. El Oualkadi, and
M. Arioua, “Uav-enabled mobile edge-computing for iot based on ai: A
comprehensive review,” Drones, vol. 5, no. 4, p. 148, 2021.

[5] L. Wang, K. Wang, C. Pan et al., “Multi-agent deep reinforcement
learning-based trajectory planning for multi-uav assisted mobile edge
computing,” IEEE Transactions on Cognitive Communications and
Networking, vol. 7, no. 1, pp. 73–84, 2020.

[6] W. Lee and T. Kim, “Multi-agent reinforcement learning in controlling
offloading ratio and trajectory for multi-uav mobile edge computing,”
IEEE Internet of Things Journal, 2023.

[7] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware
joint task scheduling and resource allocation for cooperative mobile edge
computing,” IEEE Transactions on Wireless Communications, vol. 20,
no. 1, pp. 360–374, 2020.

[8] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5g mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.

[9] M. Dai, Y. Wu, L. Qian, Z. Su, B. Lin, and N. Chen, “Uav-assisted multi-
access computation offloading via hybrid noma and fdma in marine
networks,” IEEE Transactions on Network Science and Engineering,
vol. 10, no. 1, pp. 113–127, 2022.

[10] S. D. A. Shah, M. A. Gregory, S. Li, R. dos Reis Fontes, and L. Hou,
“Sdn-based service mobility management in mec-enabled 5g and beyond
vehicular networks,” IEEE Internet of Things Journal, vol. 9, no. 15, pp.
13 425–13 442, 2022.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 14

[11] C. Li, H. Wang, and R. Song, “Intelligent offloading for noma-assisted
mec via dual connectivity,” IEEE Internet of Things Journal, vol. 8,
no. 4, pp. 2802–2813, 2020.

[12] T. Tan, M. Zhao, and Z. Zeng, “Joint offloading and resource allocation
based on uav-assisted mobile edge computing,” ACM Transactions on
Sensor Networks (TOSN), vol. 18, no. 3, pp. 1–21, 2022.

[13] Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet
systems with intermittent connectivity,” IEEE Transactions on Mobile
Computing, vol. 14, no. 12, pp. 2516–2529, 2015.

[14] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a uav-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2049–
2063, 2017.

[15] S. Sun, G. Zhang, H. Mei, K. Wang, and K. Yang, “Optimizing multi-
uav deployment in 3-d space to minimize task completion time in
uav-enabled mobile edge computing systems,” IEEE Communications
Letters, vol. 25, no. 2, pp. 579–583, 2020.

[16] J. Ji, K. Zhu, C. Yi, and D. Niyato, “Energy consumption minimization
in uav-assisted mobile-edge computing systems: Joint resource alloca-
tion and trajectory design,” IEEE Internet of Things Journal, vol. 8,
no. 10, pp. 8570–8584, 2020.

[17] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,” IEEE
Transactions on Services Computing, vol. 12, no. 5, pp. 712–725, 2018.

[18] J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, “Reducing overes-
timation bias in multi-agent domains using double centralized critics,”
arXiv preprint arXiv:1910.01465, 2019.

[19] L. Zhang and N. Ansari, “Latency-aware iot service provisioning in
uav-aided mobile-edge computing networks,” IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 10 573–10 580, 2020.

[20] X. Lou, J. Zhang, Y. Du, C. Yu, Z. He, and K. Huang, “Leveraging joint-
action embedding in multi-agent reinforcement learning for cooperative
games,” IEEE Transactions on Games, 2023.

[21] B. Kang, Z. Jie, and J. Feng, “Policy optimization with demonstrations,”
in International Conference on Machine Learning (ICML). PMLR,
2018, pp. 2469–2478.

[22] S. Shadravan, H. R. Naji, and V. K. Bardsiri, “The sailfish optimizer:
A novel nature-inspired metaheuristic algorithm for solving constrained
engineering optimization problems,” Engineering Applications of Artifi-
cial Intelligence, vol. 80, pp. 20–34, 2019.

[23] S. Huang, J. Zhang, and Y. Wu, “Altitude optimization and task
allocation of uav-assisted mec communication system,” Sensors, vol. 22,
no. 20, p. 8061, 2022.

[24] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient
resource allocation in uav-enabled mobile edge computing networks,”
IEEE Transactions on Wireless Communications, vol. 18, no. 9, pp.
4576–4589, 2019.

[25] L. X. Nguyen, Y. K. Tun, T. N. Dang, Y. M. Park, Z. Han, and
C. S. Hong, “Dependency tasks offloading and communication resource
allocation in collaborative uav networks: A metaheuristic approach,”
IEEE Internet of Things Journal, vol. 10, no. 10, pp. 9062–9076, 2023.

[26] X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-uav
networks: Deployment and movement design,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 8036–8049, 2019.

[27] Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, “Path planning for
uav-mounted mobile edge computing with deep reinforcement learning,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5723–
5728, 2020.

[28] A. Gao, Q. Wang, W. Liang, and Z. Ding, “Game combined multi-
agent reinforcement learning approach for uav assisted offloading,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 12, pp. 12 888–
12 901, 2021.

[29] W. Lu, Y. Mo, Y. Feng, Y. Gao, N. Zhao, Y. Wu, and A. Nallanathan,
“Secure transmission for multi-uav-assisted mobile edge computing
based on reinforcement learning,” IEEE Transactions on Network Sci-
ence and Engineering, vol. 10, no. 3, pp. 1270–1282, 2022.

[30] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, and D. Niyato, “Multi-agent deep
reinforcement learning for task offloading in uav-assisted mobile edge
computing,” IEEE Transactions on Wireless Communications, vol. 21,
no. 9, pp. 6949–6960, 2022.

[31] M. Sánchez and P. Manzoni, “Anejos: a java based simulator for ad
hoc networks,” Future generation computer systems, vol. 17, no. 5, pp.
573–583, 2001.

[32] Y. Nie, J. Zhao, F. Gao, and F. R. Yu, “Semi-distributed resource man-
agement in uav-aided mec systems: A multi-agent federated reinforce-
ment learning approach,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 12, pp. 13 162–13 173, 2021.

[33] J. Kraaier and U. Killat, “Random direction or random waypoint?
a comparison of mobility models for urban environments,” European
Transactions on Telecommunications, vol. 19, no. 8, pp. 879–894, 2008.

[34] W. Li, X. Chen, and S. Lu, “Content synchronization using device-to-
device communication in smart cities,” Computer Networks, vol. 120,
pp. 170–185, 2017.

[35] B. Liang and Z. J. Haas, “Predictive distance-based mobility man-
agement for pcs networks,” in IEEE INFOCOM’99. Conference on
Computer Communications. Proceedings. Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies. The
Future is Now (Cat. No. 99CH36320), vol. 3. IEEE, 1999, pp. 1377–
1384.

[36] S. Zhang, L. Zhang, F. Xu, S. Cheng, W. Su, and S. Wang, “Dynamic
deployment method based on double deep q-network in uav-assisted mec
systems,” Journal of Cloud Computing, vol. 12, no. 1, p. 130, 2023.

[37] C. Song, T. Koren, P. Wang, and A.-L. Barabási, “Modelling the scaling
properties of human mobility,” Nature physics, vol. 6, no. 10, pp. 818–
823, 2010.

[38] X. Ge, J. Ye, Y. Yang, and Q. Li, “User mobility evaluation for 5g
small cell networks based on individual mobility model,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 3, pp. 528–541, 2016.

[39] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of sumo-simulation of urban mobility,”
International journal on advances in systems and measurements, vol. 5,
no. 3&4, 2012.

[40] L. Zhao, K. Yang, Z. Tan, H. Song, A. Al-Dubai, A. Y. Zomaya,
and X. Li, “Vehicular computation offloading for industrial mobile
edge computing,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 11, pp. 7871–7881, 2021.

[41] Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Multi-user layer-
aware online container migration in edge-assisted vehicular networks,”
IEEE/ACM Transactions on Networking, 2024.

[42] Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning schedul-
ing algorithms for containers in mobile edge computing,” IEEE Trans-
actions on Mobile Computing, 2022.

[43] T. Saber, C. Cachard, and A. Ventresque, “Ronin: a sumo interoperable
mesoscopic urban traffic simulator,” in 2020 IEEE 22nd International
Conference on High Performance Computing and Communications;
IEEE 18th International Conference on Smart City; IEEE 6th Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 2020, pp. 1104–1111.

[44] Z. Ning, Y. Yang, X. Wang, Q. Song, L. Guo, and A. Jamalipour, “Multi-
agent deep reinforcement learning based uav trajectory optimization for
differentiated services,” IEEE Transactions on Mobile Computing, 2023.

[45] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice,
C. Fu, C. Ma, J. Jiao et al., “Jump-start reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2023, pp.
34 556–34 583.

[46] Y. Qiu, Y. Jin, L. Yu, J. Wang, Y. Wang, and X. Zhang, “Improving
sample efficiency of multi-agent reinforcement learning with non-expert
policy for flocking control,” IEEE Internet of Things Journal, 2023.

[47] R. He, B. Ai, G. L. Stüber, and Z. Zhong, “Mobility model-based non-
stationary mobile-to-mobile channel modeling,” IEEE Transactions on
Wireless Communications, vol. 17, no. 7, pp. 4388–4400, 2018.

[48] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing uav,” IEEE Transactions on Wireless
Communications, vol. 18, no. 4, pp. 2329–2345, 2019.

[49] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-d place-
ment of an unmanned aerial vehicle base station (uav-bs) for energy-
efficient maximal coverage,” IEEE Wireless Communications Letters,
vol. 6, no. 4, pp. 434–437, 2017.

[50] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized
POMDPs. Springer, 2016, vol. 1.

[51] T. Nguyen, N. Tran, B. M. Nguyen, and G. Nguyen, “A resource usage
prediction system using functional-link and genetic algorithm neural
network for multivariate cloud metrics,” in 2018 IEEE 11th conference
on service-oriented computing and applications (SOCA). IEEE, 2018,
pp. 49–56.

[52] J. Deepa, S. A. Ali, and S. Hemamalini, “Intelligent energy efficient
vehicle automation system with sensible edge processing protocol in in-
ternet of vehicles using hybrid optimization strategy,” Wireless Networks,
vol. 29, no. 4, pp. 1685–1701, 2023.

[53] M. K. Rajoriya and C. P. Gupta, “Sailfish optimization-based controller
selection (sfo-cs) for energy-aware multi-hop routing in software defined
wireless sensor network (sdwsn),” International Journal of Information
Technology, vol. 15, no. 7, pp. 3935–3948, 2023.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 15

[54] E. Longo, A. E. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni,
“Mqtt-st: a spanning tree protocol for distributed mqtt brokers,” in ICC
2020-2020 IEEE International Conference on Communications (ICC).
IEEE, 2020, pp. 1–6.

Jiajie Yin is currently pursuing the B.Sc. degree
in data science from Beijing Normal University,
Zhuhai, China. His research interests include multi-
agent systems, deep learning, reinforcement learn-
ing, edge computing, Internet of Things and data
mining.

Zhiqing Tang received the B.S. degree from School
of Communication and Information Engineering,
University of Electronic Science and Technology of
China, China, in 2015 and the Ph.D. degree from
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China, in 2022. He is
currently an Assistant Professor with the Institute of
Artificial Intelligence and Future Networks, Beijing
Normal University, China. His current research in-
terests include edge computing, resource scheduling,
container scheduling, and reinforcement learning.

Jiong Lou received the B.S. degree and Ph.D. de-
gree in the Department of Computer Science and En-
gineering, Shanghai Jiao Tong University, China, in
2016 and 2023. Since 2023, he has held the position
of Research Assistant Professor in the Department
of Computer Science and Engineering, Shanghai
Jiao Tong University, China. He has published more
than ten papers in leading journals and conferences
(e.g., ToN, TMC and TSC). His current research
interests include edge computing, task scheduling
and container management. He has served as a

reviewer for CN, JPDC, IoT-J, and ICDCS.

Jianxiong Guo received his Ph.D. degree from
the Department of Computer Science, University of
Texas at Dallas, Richardson, TX, USA, in 2021,
and his B.E. degree from the School of Chemistry
and Chemical Engineering, South China University
of Technology, Guangzhou, China, in 2015. He is
currently an Associate Professor with the Advanced
Institute of Natural Sciences, Beijing Normal Uni-
versity, and also with the Guangdong Key Lab of
AI and Multi-Modal Data Processing, BNU-HKBU
United International College, Zhuhai, China. He is

a member of IEEE/ACM/CCF. His research interests include social networks,
wireless sensor networks, combinatorial optimization, and machine learning.

Hui Cai received her Ph.D. degree in Computer
Science and Technology from Shanghai Jiao Tong
University in 2020. She is currently an Assistant Pro-
fessor in College of Computer at Nanjing University
of Posts and Telecommunications, Nanjing, Jiangsu,
China. She has authored papers in research related
international conferences and journals, such as IEEE
INFOCOM, IEEE TPDS, IEEE/ACM IWQoS, El-
sevier Computer Networks. Her research interests
include data trading, incentive mechanism design,
mobile crowd sensing and game theory.

Xiaoming Wu received the M.Eng. degree in com-
puter science and technology from Shandong Uni-
versity, Jinan, China, in 2006, and the Ph.D. degree
in Software Engineering from Shandong University
of Science and Technology in 2017. Since 2006,
he has been with the Shandong Computer Science
Center, where he is currently a full professor. He
also serves as the director of the Faculty of Com-
puter Science and technology at Qilu University
of Technology (Shandong Academy of Sciences),
China. His research interests include cyber security,

industrial Internet, data security, and privacy protection.

Tian Wang (Senior Member, IEEE) received his
BSc and MSc degrees in Computer Science from
the Central South University in 2004 and 2007,
respectively. He received his PhD degree from the
City University of Hong Kong in Computer Science
in 2011. Currently, he is a professor with the Insti-
tute of Artificial Intelligence and Future Networks,
Beijing Normal University. His research interests
include the Internet of Things, Edge Computing,
and Mobile Computing. He has 27 patents and
has published more than 200 papers in high-level

journals and conferences. He has more than 14000 citations, according to
Google Scholar. His H-index is 68. He has managed 6 national natural science
projects (including 2 sub-projects) and 4 provincial-level projects.

Weijia Jia (Fellow, IEEE) is currently a Chair Pro-
fessor, Director of BNU-UIC Institute of Artificial
Intelligence and Future Networks, Beijing Normal
University (Zhuhai) and VP for Research of BNU-
HKBU United International College (UIC) and has
been the Zhiyuan Chair Professor of Shanghai Jiao
Tong University, China. He was the Chair Professor
and the Deputy Director of State Kay Laboratory of
Internet of Things for Smart City at the University
of Macau. He received BSc/MSc from Center South
University, China, in 82/84 and Master of Applied

Sci./PhD from Polytechnic Faculty of Mons, Belgium in 92/93, respectively,
all in computer science. From 93-95, he joined German National Research
Center for Information Science (GMD) in Bonn (St. Augustine) as a research
fellow. From 95-13, he worked at City University of Hong Kong as a professor.
His contributions have been recognized as optimal network routing and
deployment, anycast and QoS routing, sensors networking, AI (knowledge
relation extractions; NLP, etc.), and edge computing. He has over 600
publications in the prestige international journals/conferences and research
books, and book chapters. He has received the best product awards from the
International Science & Tech. Expo (Shenzhen) in 2011/2012 and the 1st
Prize of Scientific Research Awards from the Ministry of Education of China
in 2017 (list 2). He has served as area editor for various prestige international
journals, chair and PC member/skeynote speaker for many top international
conferences. He is the Fellow of IEEE and the Distinguished Member of CCF.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3452111

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 31,2024 at 01:48:37 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Mobility Model
	Mathematical model
	Traffic simulation software
	Real-world data

	MARL for UAV-assisted MEC

	System Model and Problem Formulation
	UE Mobility Model
	UAV Mobility Model
	Communication Cost
	Computation Cost
	Problem Formulation

	POMDP Formulation
	Agent
	State
	Action
	Transition
	Observation
	Reward

	QEMUOT Algorithm
	Expert Algrithom
	Pretraining Phase
	Exploration Phase
	Algorithm Analysis

	Experiment
	Experimental Settings
	Experimental Results
	Trainning performance of the MARL algorithms
	Algorithm time cost comparison
	Performance with different numbers of UEs and UAVs
	Performance with different preferences for energy consumption and QoS

	Discussion
	Mitigating the "Slippery Slope" at the start of exploration
	Practical implementation

	Conclusion and Future Work
	References
	Biographies
	Jiajie Yin
	Zhiqing Tang
	Jiong Lou
	Jianxiong Guo
	Hui Cai
	Xiaoming Wu
	Tian Wang
	Weijia Jia

