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Abstract—Integrating wireless-powered Mobile Edge Comput-
ing (MEC) with Unmanned Aerial Vehicles (UAVs) leverages
computation offloading services for mobile devices, significantly
enhancing the mobility and control of MEC networks. How-
ever, current research has not focused on customizing system
designs for Terahertz (THz) communication networks. When
dealing with THz communication, one must account for blockage
vulnerability due to severe THz wave propagation attenuation
and insufficient diffraction. The Intelligent Reflecting Surface
(IRS) can effectively address these limitations in the model,
enhancing spectrum efficiency and coverage capabilities while
reducing blockage vulnerability in THz networks. In this paper,
we introduce an upgraded MEC system that integrates IRS
and UAVs into THz communication networks, focusing on a
binary offloading policy for studying the computation offloading
problem. Our primary objective is to optimize the energy
consumption of both UAVs and User Electronic Devices, alongside
refining the phase shift of the IRS reflector. The problem is
a Mixed Integer Non-Linear Programming problem known as
NP-hard. To tackle this challenge, we propose a two-stage deep
learning-based optimization framework named Iterative Order-
Preserving Policy Optimization (IOPO). Unlike exhaustive search
methods, IOPO continually updates offloading decisions through
an order-preserving quantization method, thereby accelerating
convergence and reducing computational complexity, especially
when handling complex problems with extensive solution spaces.
The numerical results demonstrate that the proposed algorithm
significantly improves energy efficiency and achieves near-optimal
performance compared to benchmark methods.

Index Terms—Mobile edge computing, Deep learning, Un-
manned aerial vehicles, Intelligent reflective surface, Terahertz
communications.

I. INTRODUCTION

A Mobile Edge Computing (MEC) network enhanced by
the inclusion of Unmanned Aerial Vehicles (UAVs) stands
as a fitting solution for ensuring reliable network services at
target locations, leveraging their mobility and precise deploy-
ment capabilities [1]–[8]. Yet, limited research of the present
researchers have considered constructing this model under
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Fig. 1. The proposed IRS-assistant UAV-MEC system. User data can be
directly transmitted from UEDs to UAVs or be redirected to UAVs from IRS.

Terahertz (THz) communication, which can offer abundant
bandwidth resources, and this is crucial in an era in which
communicating data is growing with an explosive speed [9].

However, the high propagation loss associated with THz
transmissions due to electromagnetic signal travel through
the medium and water vapor’s absorptive properties in the
atmosphere [10] poses a significant challenge. Fortunately, the
proposed intelligent reflective surface (IRS) can reconfigure
wireless propagation channels by adjusting phase shifts of
reflecting elements. This innovation significantly enhances
communication, especially in UAV-supported THz commu-
nication systems [11], [12]. Recent studies [13]–[16] have
demonstrated that IRS can be a significant component in UAV-
assisted MEC systems. Furthermore, additional research [17]–
[24] has shown that IRS plays a crucial role in augmenting
wireless communication performance and increasing network
transmission speed.

Despite this, task offloading allocations in an IRS-assisted
multi-UAV MEC system operating within the THz network
remain underexplored, with minimal research in this area.
The continuous fluctuations in channel gain, user and UAV
positioning, and phase shifts perpetually impact transmis-
sion speed. With constrained resources allocated to UAVs,
an imperative arises for an energy-efficient offloading plan.
Optimizing both task offloading decisions and phase shifts
becomes vital. However, this optimization problem, referred
to as a Mixed-Integer Non-Linear Programming (MINLP)
problem, is complex and NP-hard.
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Recent research has introduced optimization methods based
on reinforcement learning to address this challenge. While
some methods like discretizing the action space in Deep Q
Network (DQN) encounter issues related to the curse of di-
mensionality, others like the Deep Deterministic Policy Gradi-
ent algorithm (DDPG) overcome this challenge by using neural
networks to map system states to actions [25]. However, these
methods adopt a single-stage approach, generating offloading
decisions and optimized phases simultaneously, resulting in
suboptimal solutions and requiring further training iterations.

Our proposed system (as illustrated in Figure 1) comprises
multiple User Equipment Devices (UEDs), a fleet of UAVs,
and an IRS responsible for enhancing UAVs’ channel capac-
ity and improving MEC network transmission reliability. To
address these challenges, we propose the Iterative Order-
preserving Policy Optimization (IOPO) framework, a novel
two-stage deep learning framework. IOPO effectively deter-
mines energy-efficient binary task offloading allocations for
the MEC system and optimizes the phase shift configurations
of the IRS. Compared to one-stage methods attempting to
derive two variables from a joint probability space, a two-
stage method first obtains a definite offloading decision and
then identifies an optimal phase shift. This approach allows us
to effectively approximate the theoretically optimal solution.
The experiments reveal IOPO’s capability to generate optimal
task offloading strategies while meeting defined constraints,
achieving superior optimization outcomes. Moreover, with an
equal number of training iterations, IOPO produces solutions
that are closer to the optimal one. Our source code can be
found at https://github.com/UIC-JQ/IOPO. The contributions
of this paper can be summarized as follows.

• We present a novel MEC system tailored for operation
on the THz communication network. The proposed MEC
system is equipped with an IRS, which is crucial in en-
hancing communication performance within the network.
Additionally, the system is designed to accommodate
multiple UAVs and users.

• In order to streamline the optimization process and im-
prove the efficiency of the MEC system, we propose a
deep learning framework named IOPO. IOPO is designed
to jointly optimize offloading decisions of the multi-user
multi-uav system and the phase shift of the IRS. As a re-
sult, IOPO eliminates the need to solve complex MINLP
problems, which can be computationally demanding and
time-consuming.

• To facilitate the generation of high-quality offloading
decisions, we equip IOPO with a novel policy explo-
ration unit called Order-Preserving Policy Optimiza-
tion (OPPO), specifically designed to search for im-
proved offloading decisions. Experimental results demon-
strate the effectiveness of OPPO in discovering improved
offloading decisions, even in scenarios with a vast solu-
tion space. Furthermore, results show that the integration
of OPPO facilitates the convergence of IOPO towards
optimal offloading decisions.

• Simulation results demonstrate IOPO’s impressive capa-
bility in significantly reducing energy consumption, sur-

passing benchmark schemes, including a strong baseline
DDPG [26]. The energy cost is reduced by up to 32.8%
when there are 3 UAVs and 15 users.

The rest of the paper is organized as follows. Section
II provides a comprehensive review of previous studies. In
Section III, we introduce the proposed MEC system model and
formulate the data communication within the THz network.
Section IV formulates the optimization problem aimed at
minimizing the energy. The design of the proposed IOPO
framework is described in Section V. Experimental settings
are presented in Section VI, followed by a thorough analysis
of the results in Section VII. Finally, Section VIII concludes
the paper by summarizing the key findings.

II. RELATED WORK

The integration of IRS in THz communication has been
extensively studied in recent works [19]–[23]. In [19], [20],
the IRS is employed to maximize the sum-rate performance of
THz communications. The studies conducted in [21], [22] fo-
cus on utilizing the IRS to maintain reliable THz transmission.
[23] introduces a comprehensive optimization framework that
jointly optimizes the UAV trajectory, IRS phase adjustments,
THz sub-band allocation, and power control. Additionally,
recent works [13], [14], [16] have explored the integration of
UAVs and IRS within MEC systems. These studies emphasize
the importance of expanding UAV capabilities and utilizing
IRS to enhance system performance.

To generate offloading allocations for MEC systems, several
studies employ machine learning algorithms. [27], [28] applies
deep reinforcement learning techniques to determine optimal
task offloading strategies in scenarios involving single or
multiple access points (APs). [29] considers factors such as
channel state information, queue state information, and energy
queue state and introduces a deep Q-learning network to
generate offloading decisions that minimize task execution
costs. Similarly, in [30], a deep Q-learning network is pro-
posed to maximize the computational performance of energy-
harvesting MEC networks. [31] proposes a deep learning
based optimization approach to minimize the system energy
consumption while optimizing the positions of ground vehicles
and unmanned aerial vehicles along with the resource alloca-
tion in a hybrid mobile edge computing platform. Furthermore,
[32] focuses on optimizing the phase shift of IRS, UAV
computing resources, and sub-band allocation in a single UAV
scenario. [15] introduces a dueling double deep Q networks
(D3QN)-DDPG network for minimize transmission and com-
puting delays while ensuring secure transmission. These works
demonstrate the effectiveness of machine learning models in
producing high-quality offloading strategies for MEC systems.

While progress has been made in existing literature, the
task offloading in an IRS-assisted multi-UAV MEC system
operating within the THz network remains unexplored. Specif-
ically, [19]–[22] primarily focuses on enhancing THz network
communication with IRS. However, they do not adequately
address the modeling of MEC systems within the context of
THz networks. Moreover, [23], [24] introduce the utilization
of IRS to improve the efficiency of MEC systems, but their
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systems do not tackle the optimization problems associated
with task offloading. In addition, recent works [13]–[16], [27]–
[31] have utilized convex optimization techniques and deep
learning models to generate offloading decisions, but these
approaches are tailored to the 5G network context, failing to
account for the unique characteristics of THz communication
networks. Lastly, [32] investigates the allocation of network
recourses and computational resources in the context of THz
networks, taking into account the integration of IRS and UAVs.
However, the studied system does not address the MEC task
offloading problem and only involves a single UAV, thereby
failing to model the complexities that arise in systems with
multiple UAVs.

III. SYSTEM MODEL

In this section, we first provide a detailed description
of the components comprising the proposed MEC system
and demonstrate how the MEC system operates in general.
Following this, Section III-B formulates the communication
and data transmission between UAVs and users within the
MEC system. Lastly, Section III-C introduces the steps for
computing the total energy consumed in the MEC system.
The frequently used notations are shown in Table I.

A. The Proposed MEC System

Figure 1 presents the proposed multi-UAV multi-user MEC
system designed for THz communication networks. The sys-
tem comprises a single IRS, U users denoted as U =
{1, 2, · · · , U}, and M UAVs denoted as M = {1, 2, · · · ,M}.
Each user is equipped with a User Electronic Device (UED),
which serves as a local computing server. Each UAV provides
full-duplex communication services to users within a specific
area and is equipped with an MEC server responsible for
processing the tasks uploaded by users and transmitting the
results through downlink transmission. We assume that the
MEC server mounted on the UAV is the UAV itself. Addi-
tionally, the computation result to be downloaded to the WD
is much shorter than the data offloaded to the edge server and
can be neglected. The scarcity of previous studies indicates the
feasibility of this approach [27], [33]–[35]. Compared with
the UEDs, the MEC servers are designed with higher com-
putational capacity. This empowers users to make decisions
regarding task offloading, choosing between offloading their
computational tasks to one of the M UAVs or executing them
locally on their UEDs. Consequently, the task allocation for
the entire MEC system can be represented by a U × (M +1)
matrix, where M + 1 signifies that users choose from M
UAVs and their local UEDs. An IRS comprising K reflecting
elements is set to assist the system. By manipulating the phase
shifts of these reflecting elements, the IRS can reconfigure
wireless propagation channels in a highly efficient manner.
This reconfiguration leads to significant improvements in both
the overall propagation environment and the data transmission
speed of the system.

The proposed MEC system operates as follows: at a time
frame n within the system time N = {1, 2, · · · , n, · · · , N},
each user in the system has a computational task that needs

TABLE I
THE FREQUENTLY USED NOTATIONS IN THIS PAPER

Notation Description
U The number of users
M The number of UAVs
T The length of a time slot
β(n) The allocation matrix of users and UAVs at time slot n
l̃1(n) The location of the first reflector of IRS at time slot n
l̂u(n) The location of user u at time slot n
l̄m(n) The location of UAV m at time slot n
Kx The number of reflecting elements along the X-axis
Kz The number of reflecting elements along the Z-axis
K Equals to Kx ·Kx, the total number of reflectors of IRS
du,m(n) Euclidean distance of user u and UAV m at time slot n
hu,m(n) Direct channel gain between user u and UAV m at time

slot n
ĝu,m(n) The IRS assisted channel gain between user u and UAV

m at time slot n
ϕk(n) The phase shift of reflector k of IRS at time slot n
Ru,m(n) The transmission rate between user u and UAV m at time

slot n
Φ(n) The diagonal reflection matrix of IRS phase shifts at time

slot n
B The communication bandwidth
σ2 The Gaussian noise
fe, fw The input feature vectors represent the energy cost of users

to UAVs and workload of UAVs
P(n) DNN predicted probability matrix at time slot n
H The number of quantized binary offloading decisions
βh H binary offloading decisions quantized by OPPO
β∗(n) The one yielding the lowest energy cost among the H

candidate offloading decisions generated by OPPO at time
slot n

to be processed. The primary objective is to utilize the
available computational resources, such as UAVs and UEDs,
to complete all users’ tasks within an acceptable time while
minimizing the total energy consumed during task processing.
To achieve this objective, an offloading decision that allo-
cates user tasks to the appropriate computational resources
is required. Initially, the central server, located at the base
station, collects essential information, such as the locations,
computational power of users, UAVs, etc. Subsequently, the
collected information is input into an offloading decision
prediction model, which is discussed in detail in Section V.
This model predicts an offloading allocation matrix denoted
as β(n) ∈ {0, 1}U×(M+1), where U represents the number
of users and M represents the number of UAVs. For a given
user u, βu,m(n) = 1 indicates that the corresponding task is
offloaded to UAV m (m ≤ M ), and βu,M+1(n) = 1 signifies
that the task is processed locally on the user’s UED. In the
proposed system, we assume that when a task is offloaded to
UAVs, it can only be offloaded to a single UAV at a time,
prohibiting simultaneous offloading to multiple UAVs. This
constraint is mathematically expressed as

∑M
m=1 βu,m(n) = 1

for each user u ∈ U .

B. Data Transmission in the THz Network

In this section, we elucidate the data transmission within
the THz network. As depicted in Figure 2, at time frame n,
there are two approaches for transmitting user data and tasks to
UAVs: (i) direct transmission of user data from UEDs to UAVs,
and (ii) redirection of user data to UAVs through the IRS.
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Fig. 2. The proposed system includes K reflectors. The first reflector serves
as a reference point and is positioned at (a, 0, c).

Both approaches are employed simultaneously to facilitate data
transmission by the users. According to the Shannon theorem,
the achievable throughput Ru,m(n) for user u to transmit data
to the m-th UAV is determined as follows:

Ru,m(n) = B log2

(
1 +

p |hu,m(n) + ĝu,m(n)|2
σ2

)
, (1)

where hu,m(n) denotes the channel gain for direct data trans-
mission and ĝu,m(n) is the channel gain of transmitting data
through the IRS. We assume that when multiple UEDs upload
their tasks to UAVs simultaneously, the available wireless
bandwidth is equally shared among them. Given this setup
and the high transmission speed of the THz bandwidth, it is
reasonable to assume that the transmission time is within the
channel coherence time. This assumption, commonly adopted
in prior works [28], [36], [37], allows each task packet to
be transmitted over a flat fading quasi-static channel. Accord-
ingly, B represents the channel bandwidth allocated to each
UED. p represents the transmission power provided by the
base station and σ2 is a Gaussian noise for modeling random
noise that affects the communication.

In the case of direct data transmission, given the coor-
dinate of user u, denoted as l̂u(n) = (x̂u(n), ŷu(n), 0)

T

and the coordinate of the m-th UAV, denoted as l̄m(n) =
(x̄m(n), ȳm(n), z̄m(n))T , the euclidean distance du,m(n) be-
tween them can be formulated as: du,m(n) =√

(x̄m(n)− x̂u(n))2 + (ȳm(n)− ŷu(n))2 + z̄2m(n). (2)

Given the distance du,m(n), the channel gain for direct
transmission hu,m(n) is defined as follows:

hu,m(n) =

( C
4πfdu,m(n)

)
·

exp

(−j2πfdu,m(n)

C +
−K(f) du,m(n)

2

)
, (3)

where C represents the speed of light, f denotes the frequency
of the sub-band, j is the imaginary unit, and K(f) represents
the absorption coefficient of the transmission medium.

In the context of data transmission via an IRS, the IRS acts
as an intermediary that receives data from the data-sending
device and subsequently reflects the data to the receiver. As
depicted in Figure 2, the IRS is situated on the X-Z plane and
comprises a total of K = Kx ·Kz reflecting elements. Kx and

Kz represent the quantities of reflecting elements along the X-
axis and Z-axis, respectively. The coordinates of the reflecting
elements in the IRS are determined based on the position of
the first reflecting element, denoted as l̃1 = (a, 0, c)T , which
is located at the lower-left corner of the IRS. Accordingly, the
coordinates of the k-th reflecting element (k = kz + (kx −
1)Kz), denoted as l̃k, can be calculated using the following
expression:

l̃k = (a+ (kx − 1)δx, 0, c+ (kz − 1)δz)
T
, (4)

where kx and kz represent the indices of the reflecting element
along the X-axis and Z-axis, respectively. δx and δz denote the
gaps between the elements along the X-axis and Z-axis.

It is worth noting that the first element of the IRS is
considered as the reference point. Hence, the distance be-
tween the IRS and communication points like UAVs or UEDs
can be approximated by measuring the distance between the
reference point and the corresponding point [38]. Therefore,
the transmission vector from the IRS (approximated to be
the first reflecting element) to the UAV m is represented as
∆r̄m(n) = l̄m(n)− l̃1 = (x̄m(n)− a, ȳm(n), z̄(n)− c)T . The
difference vector between the first reflecting element and the
k-th reflecting element is defined as ∆r̃k = l̃k − l̃1 = ((kx −
1)δx, 0, (kz − 1)δz)

T . Accordingly, for signals transmitted to
the m-th UAV through the IRS, the phase difference between
the signal reflected by the first reflecting element and the signal
reflected by the k-th element can be formulated as follows:

θmk (n) =
2πf

C
∆r̃Tk
|∆r̃k|

∆r̄m(n) (5)

=
2πf

|∆r̃k| C
((x̄m(n)− a)(kx − 1)δx + (z̄(n)− c)(kz − 1)δz) .

Similarly, the transmission vector from the first reflecting
element of the IRS to user u can be defined as ∆r̂u(n) =
l̂u(n)−l̃1 = (x̂u(n)−a, ŷu(n), −c)T and the phase difference
between the signal sent to the user by the first reflecting
element and the signal sent by the k-th element can be
formulated as follows:

νuk (n) =
2πf

C
∆r̃Tk
|∆r̃k|

∆r̂u(n)

=
2πf

|∆r̃k| C
((x̂u(n)− a)(kx − 1)δx − c(kz − 1)δz) . (6)

The cascaded channel gain of the UAV-IRS-UED connection
can be defined as:

gu,m(n) =

(
C

8
√
π3fd′u,m(n)

)
·

exp

(−j2πfd′u,m(n)

C +
−K(f)d′u,m(n)

2

)
. (7)

The variable d′u,m(n) is defined as d̂u(n) + d̄m(n). So we
sum the distance between user u and the first reflector of IRS,
denoted by d̂u(n) = ||∆r̂u(n)||2, and d̄m(n) = ||∆r̄m(n)||2,
which represents the distance between UAV m and the first
reflector of IRS [23]. Finally, the channel gain for UAV-IRS-
UED data transmission is defined as:

ĝu,m(n) = gu,m(n) ēm(n)T Φ(n) êu(n), (8)
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where ēm(n) = (exp(jθm1 (n)), · · · , exp(jθmK(n)))T ,
êu(n) = (exp(jνu1 (n)), · · · , exp(jνuK(n)))T , and
Φ(n) = diag(exp(jϕ1(n)), · · · , exp(jϕK(n))) is diagonal
matrix of IRS phase shifts, where ϕk(n) is the phase shift of
the k-th reflecting element.

C. System Energy Consumption

In this section, we formulate the energy consumed in the
MEC system. The energy cost within the system consists of
two parts: (i) the energy consumed by processing user tasks
on UEDs and (ii) the energy consumed by processing user
tasks on UAVs. At a given time frame n, let us consider
user u with its corresponding task denoted as Ψu(n) =
{Du(n), Tu(n), Cu(n)}. Here, Du(n) represents the size of
the data, Tu(n) represents the tolerable latency, and Cu(n)
represents the CPU cycles required to process the task. If the
task is processed on the user’s UED (i.e. βu,M+1(n) = 1), the
energy consumed can be defined as:

Elocal
u (n) = tlocalu (n) · pu, (9)

where pu represents the energy consumed by the UED per
CPU clock and tlocalu (n) denotes the time required for pro-
cessing the user’s task (measured in CPU clock):

tlocalu (n) = Cu(n)/Zu, (10)

where Zu refers to the CPU clock speed of the UED. It is
assumed that both Zu and pu remain constant over time.

If user u’s task is processed on UAVs (i.e.,∑
m∈M βu,m(n) = 1), the energy consumed during

this process can be divided into two parts: (i) the energy
consumed for uploading the task to UAVs and (ii) the energy
consumed during the task processing on UAVs. The energy
consumed in transmitting data from user u to UAVs is defined
as follows:

Etran
u (n) = ttranu (n) · ptranu , (11)

where ptranu represents the energy consumed per second and
ttranu (n) denotes the transmission time (measured in second):

ttranu (n) =
Du(n)∑

m∈M Ru,m(n) · I[βu,m(n) = 1]
, (12)

where I[βu,m(n) = 1] is an indicator function that takes a
value of 1 if βu,m(n) = 1, and a value of 0 otherwise.

Regarding the energy consumed in processing user u’s task
on UAVs, it can be defined as:

Ecomp
u (n) =

∑
m∈M

tcomp
u,m (n) · pm · I[βu,m(n) = 1], (13)

where pm represents the energy consumed by UAV m per
CPU clock, and tcomp

um (n) denotes the number of CPU clocks
required to process user u’s task on UAV m.

tcomp
um (n) =

Cu(n)

Zm/wm(n)
. (14)

In this context, Zm represents the CPU clock speed of UAV
m, while wm(n) = max(1,

∑
u∈U βu,m(n)) denotes the

workload status of UAV m. The workload refers to the current
number of tasks being processed on UAV m.

Hence, the energy consumption attributed to user u can be
formulated as Etotal

u (n) =

G ·
(
Etran

u (n) + Ecomp
u (n)

)
+ (1−G) · Elocal

u (n), (15)

where G = 1− βu,M+1(n).
The overall system energy is defined as the aggregate of the

energy consumed by all users within the system:

Etotal(n) =
∑

u∈U
Etotal

u (n). (16)

IV. OPTIMIZATION PROBLEM

In the given system time frame n ∈ N , our objective is to
minimize the total energy consumption Etotal(n) of all the
UAVs and UEDs, while considering various constraints. To
simplify the notation, we denote the coordinates of all users
and UAVs in the system as L(n), the CPU clock speed of
UAVs and UEDs as Z(n), and the task information of all
users as Ψ(n). We rewrite the total energy consumed in the
system Etotal(n) as:

Etotal(n){β,ϕ|L,Ψ,Z} =
∑
u∈U

Etotal
u (n){β,ϕ|L,Ψ,Z}

(17)
to highlight the dependent variables, where the ‘(n)’ terms in
L(n),Ψ(n),Z(n),β(n),ϕ(n) are omitted for convenience.
Accordingly, the optimization problem can be formulated as:

P1 : min
β(n),ϕ(n)

Etotal(n){β,ϕ|L,Ψ,Z} (18)

s.t. βu,m(n) ∈ {0, 1},∀u ∈ U ,m ≤ M + 1, (18a)
M+1∑
m=1

βu,m(n) = 1, (18b)

0 ≤ ϕk(n) ≤ 2π, 1 ≤ k ≤ K, (18d)

tcomp
u (n) + ttranu (n) + tlocalu (n) ≤ Tu(n),∀u ∈ U . (18f)

It means that given {L,Ψ, Z}, we want to find the
offloading decision β(n) and the IRS phase ϕ(n) =
{ϕ1(n), ϕ2(n), · · · , ϕK(n)} such that the total energy con-
sumed is minimized. The best offloading decision and the best
IRS phase shifts are denoted as β◦(n) and ϕ◦(n) respectively.
Constraints (18a) and (18b) ensure that at the time frame
n, each user is assigned only one task, which can be either
allocated to one of the M UAVs or executed locally on the
UED. The Constraint (18d) guarantees the angle of the k-th
reflector of IRS remains within the range of 0 and 2π. Lastly,
Constraint (18f) ensures that the task of user u is completed
within the acceptable delay threshold Tu(n).

Problem P1 presents a formidable challenge as it belongs
to the category of NP-hard mixed-integer non-linear pro-
gramming (MINLP) problems. To tackle this challenge, we
propose a two-stage approach. For the first step, we focus
on generating the offloading decision β∗(n). In this study, we
introduce a deep learning-based offloading decision generation
model capable of generating high-quality offloading decisions
within milliseconds. The intricate details of this model are
elucidated in Section V-B. Once the offloading decision β∗(n)
is obtained from the offloading decision model, the subsequent
step involves identifying the phase shifts ϕ∗(n) for the IRS
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Fig. 3. The structure of the proposed IOPO Framework. The IOPO framework consists of two processes: offloading decision generation (Steps 1.1 and
1.2) and offloading decision update (Steps 2.1, 2.2, 2.3, and 2.4). Essential operations of the algorithm encompass generating the system feature, generating
offloading decisions, evaluating offloading decisions, and updating the network.

that minimize the overall system energy consumption, given
the decision β∗(n). The optimization of IRS phase shifts is
explained in detail in Section V-E and can be formulated as:

P2 : min
ϕ(n)

Etotal(n){ϕ|L,Ψ,Z,β∗}, s.t. (18d).

V. THE IOPO FRAMEWORK

A. IOPO Framework Overview

The proposed Iterative Order-Preserving Policy Optimiza-
tion (IOPO) Framework, as illustrated in Figure 3, comprises
two alternating stages: (i) offloading decision generation and
(ii) offloading policy update. In the offloading decision gener-
ation stage, a deep neural network (DNN) offloading decision
prediction model denoted as fθ is utilized to predict an energy-
efficient task offloading allocation. For the n-th system time
frame (n ∈ N ), the DNN takes the input feature [fe(n); fw(n)]
constructed based on the status of system environment, and
outputs a probability matrix P(n), representing the proba-
bilities of different offloading allocations that each user may
adopt at time n. The probability matrix is then quantized into
H candidate offloading decisions within the Order-Preserving
Policy Optimization (OPPO) unit. Among these candidate
decisions, the one yielding the lowest system energy cost is
selected as the predicted offloading decision for the current
time frame, denoted as β∗(n). Subsequently, the generated
offloading decision β∗(n), along with the corresponding input
feature vector, are stored in the experience memory buffer for
subsequent DNN training.

In the offloading decision update stage, a batch of training
samples is randomly selected from the memory buffer to train
the DNN fθ, resulting in the update of DNN parameters θ. The
updated DNN is then utilized to produce offloading decisions
in the subsequent system time frames. Detailed descriptions
of these two stages are provided in the following subsections.

B. Offloading Decision Generation

At a system time frame n ∈ N , the input to DNN is a
feature vector [fe(n); fw(n)] formed by concatenating two
distinct feature vectors: fe(n) and fw(n), where ‘[·; ·]’ denotes
the vector concatenation operator. The first feature vector
fe(n) ∈ R(M+1)×U represents the energy costs associated
with each of the U users and their M + 1 offloading options.
The second feature vector fw(n) ∈ RM encodes the CPU
clock speed of M UAVs. The two feature vectors are concate-
nated to form the DNN input feature vector, which possesses
a shape of (M + 1)× U +M . The DNN offloading decision
model fθ with parameters θ, is a multilayer perceptron (MLP)
consisting of an input layer, six hidden layers, and an output
layer. The activation function employed in both the input and
hidden layers is the hyperbolic tangent (Tanh) function, while
the softmax function is utilized in the output layer. In order to
enhance the model’s generalization capability and mitigate the
potential overfitting issue, a dropout layer [39] is incorporated
between each pair of consecutive hidden layers.

Given the input feature [fe(n); fw(n)], the DNN predicts a
probability matrix P(n) = {pu,m(n) | pu,m(n) ∈ [0, 1] , u ∈
U ,m ∈ {1, 2, · · · ,M +1}}. Each element in the matrix holds
a value ranging from 0 to 1, and the matrix has a dimension
of U × (M + 1). The probability matrix P(n) signifies the
probability of different offloading allocations that each user
may adopt at the system time n. Specifically, the pu,m(n)
denotes the probability that user u offloads its task to UAV
m, while pu,M+1(n) denotes the probability that user u is
assigned to execute the task locally on its UED. This process
can be mathematically formulated as follows:

P(n) = fθ ([fe(n); fw(n)]) .

The next step is to transform the probability matrix P(n) into
the offloading decision matrix β(n). To accomplish this, we
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first feed the probability matrix into a novel Order-Preserving
Policy Optimization (OPPO) unit, where H candidate offload-
ing decisions are generated based on the DNN output. Then,
the candidate offloading decision with the minimum energy
cost is chosen from this set of H decisions to serve as the
predicted offloading matrix β∗(n).

The OPPO unit is derived from the order-preserving op-
timization method proposed in [27]. The original order-
preserving algorithm generates a set of H candidate of-
floading decisions, where the dissimilarity between any two
candidate decisions is maximized. This approach promotes
diversity among the candidate solutions, thereby increasing the
chance of identifying the optimal decision. However, the order-
preserving method described in [27] is specifically designed
for systems that consist of a single MEC infrastructure. As the
proposed MEC system consists of multiple UAVs and users,
the original approach is not suitable. Hence, we modify the
order-preserving optimization algorithm to align with our sys-
tem configuration, resulting in the modified approach referred
to as OPPO. Specifically, given the DNN predicted probability
matrix P(n) ∈ RU×(M+1), where U represents the number
of users and M denotes the number of UAVs in the system,
OPPO generates a set of H candidate offloading decisions,
where the hyper-parameter H is a positive integer chosen from
the range of {1, 2, · · · , U × (M + 1)}.

The first candidate offloading decision β1 can be obtained
through the following procedure. For the u-th row of P(n),
we identify the index of the highest probability within that row
using z0 = argmax

z∈{1,2,··· ,M+1}
pu,z . Subsequently, we set β1

u,z0 to

1, while assigning 0 to the remaining M elements within that
row. Mathematically, this process can be expressed as follows:

β1
u,m =

{
1 m = z0 and pu,m > T0,
0 otherwise.

where T0 = 1/(M + 1). To generate the remaining H − 1
offloading decisions, we begin by arranging all U × (M + 1)
elements of P(n) in ascending order based on their dis-
tances from T0. This sorted matrix is denoted as T =
{p′1,1, p′1,2, · · · , p′U,M+1}. Here, the element p′i,j becomes the
h-th threshold denoted as Th, where h = (i−1) · (M +1)+ j,
and i and j represent the row and column indices of p′i,j ,
respectively. For instance, T1 = p′1,1 corresponds to the
probability element with the smallest distance to T0. Subse-
quently, the h-th offloading decision, denoted as βh (where
h ∈ {2, 3, · · · , H}), is defined according to three generation
rules.

The first generation rule states that for the u-th row of P(n),
if R1 = {(u, z1) | pu,z1 > Th−1, z1 ∈ {1, 2, · · · ,M + 1}} is
not an empty set, then we assign βh

u,z1 = 1, while setting
the remaining M values to 0. Mathematically, this can be
expressed as:

βh
u,m =

{
1 m = z1,

0 otherwise.

If there are multiple elements in R1, we utilize the first
(u, z1) pair only and omit the remaining elements to meet

the constraint (18b). In the case where R1 is an empty set,
we proceed to apply the second generation rule. Specifically,
for the u-th row of P(n), if R2 = {(u, z2) | pu,z2 =
Th−1, pu,z2 ≤ T0, z2 ∈ {1, 2, · · · ,M + 1}} is not an empty
set, we assign a value of 1 to βh

u,z2 while setting the remaining
elements to 0. This can be expressed mathematically as:

βh
u,m =

{
1 m = z2,

0 otherwise.

Again, if there are multiple elements in R2, we only utilize the
first (u, z2) pair and omit the remaining elements. Lastly, in
the scenario where both R1 and R2 are all empty, we employ
the third generation rule, whereby the task is assigned to be
executed locally:

βh
u,m =

{
1 m = M + 1,

0 otherwise.

Upon completion of the OPPO, we obtain a collection of H
candidate offloading decisions, denoted as {β1, β2, · · · , βH}.
Subsequently, we identify the optimal candidate offloading
decision among them, which corresponds to the one that
minimizes the overall system energy cost. This process can
be mathematically formulated as follows:

β∗(n) = argmin
βi∈{β1,β2,··· ,βH}

Etotal(n){βi, fWOA(β
i)|L,Ψ,Z},

(19)

where Etotal is Eqn. (17) and fWOA(·) corresponds to the
WOA method for producing optimized IRS phase shifts (in-
troduced in Subsection V-E). Please be noted that, as the OPPO
unit can generate H candidate offloading decisions based on
the DNN output, it can also be perceived as an effective
solution searching unit, in which offloading decisions with
low energy costs are discovered. Throughout the execution of
IOPO, OPPO continuously explores offloading decisions that
are more energy-efficient. These newly discovered offloading
decisions are subsequently utilized in the offloading policy
update procedure to update the DNN parameters θ.

After obtaining the predicted offloading decision β∗(n), we
employ the function ϕ∗(n) = fWOA(β

∗(n)) to compute the
optimized IRS phase shifts ϕ∗(n). By substituting β∗(n) and
ϕ∗(n) into Eqn. (17), we can evaluate the energy cost of
the system. However, in order to address P1, it is imperative
for the predicted offloading decision β∗(n) to align with, or
at least closely approximate, the optimal offloading decision
β◦(n) (i.e. β∗(n) = β◦(n) or β∗(n) ≈ β◦(n)). To achieve
this alignment, it is necessary to implement an offloading
policy update procedure, which enables the DNN to learn to
generate desired offloading decisions accurately. Furthermore,
the desired offloading decisions utilized in DNN training
should also be gradually improved as the IOPO executes.
As a result, the offloading decisions predicted by the IOPO
framework, which are derived from DNN outputs, exhibit a
gradual improvement and ultimately converge towards optimal
offloading decisions.

However, during the initial stage of the IOPO execution, the
DNN is not yet adequately trained. As a result, the predicted
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offloading decision β∗(n) may exhibit poor quality. Learning
from these low-quality offloading decisions could hinder the
convergence towards optimal offloading decisions, particularly
in systems with a substantial number of UAVs and users
(wherein a poorly performing DNN finds it challenging to
predict the optimal decision among a total of (M + 1)U

possible offloading decisions, with M , U denoting the number
of UAVs and the number of users within the system). To
address this issue and expedite the convergence process, an
intuitive approach provides a favorable starting point for
the DNN to learn. Hence, we introduce an initial reference
offloading decision β̂(n) with high quality (the generation
of this initial reference offloading decision is elaborated in
Section VI-B). At the early stages of the IOPO execution, β̂(n)
may exhibit lower energy cost compared to β∗(n), thereby
enabling faster convergence toward the optimal offloading
decisions when learning from β̂(n). As the IOPO execution
progresses, the DNN gradually improves, and the predicted
offloading decision β∗(n) based on the DNN output can
surpass the initial reference offloading decision. Consequently,
we compare the predicted offloading decision β∗(n) with
the initially provided reference offloading decision β̂(n). If
the MEC system achieves lower energy costs with β∗(n)
compared to β̂(n), we update the reference offloading decision
to β∗(n) (i.e., β̂(n) = β∗(n)). This ensures that the DNN can
always learn from high-quality offloading decisions.

Subsequently, we maintain a memory buffer with limited
capacity. At the n-th time frame, a new training data sample
([fe(n); fw(n)], β̂(n)) is added to the memory buffer. When
the memory buffer is full, the newly generated data sample
replaces the oldest one.

C. Offloading Policy Update

To train the DNN offloading decision model fθ, first, we
sample a batch of data pairs, denoted by B, from the memory
buffer, where j ∈ B implies the data pair generated in j-th time
frame, ([fe(j); fw(j)], β̂(j)), is in this batch. Subsequently,
the parameters θ of the DNN are updated to minimize the
average Maximum Likelihood Estimation (MLE) loss. The
MLE loss for pair j in the training batch B is defined as
follows:

ℓ(j) = −
U∑

u=1

M+1∑
m=1

β̂u,m(j) log
(
p(β̂u,m(j)| [fe(j); fw(j)] , θ)

)
,

where β̂u,m(j) refers to the reference allocation decision of
the data pair j ∈ B and [fe(j); fw(j)] is the input feature
associates with the data pair j ∈ B. The average MLE loss
for the given training batch is formulated as:

L(B) = 1

|B|
∑

j∈B
ℓ(j),

where |B| denotes the batch size. The parameter θ is updated
using the Adam optimizer [40] and is updated every λ IOPO
execution step. By minimizing L, the IOPO-predicted offload-
ing decisions are refined progressively and eventually align
with optimal offloading decisions (demonstrated in experiment
VII-C). With the optimal offloading allocations produced and

Algorithm 1: The execution of the IOPO framework.
Input : Input feature f(n) = [fe(n); fw(n)] at each

time frame n, and an initial reference
offloading decision β̂(n).

Output: Final Offloading decision β̂(n) and the best
IRS phase shifts for each time frame n.

1 Randomly initialize parameters θ of DNN fθ and
empty the memory buffer.;

2 for n = 1, 2, . . . , N do
3 Compute the DNN probability matrix:

P(n) = fθ([fe(n); fw(n)]);
4 Feed P(n) into OPPO, where P(n) is quantized

into H candidate offloading decisions;
5 Select the best candidate decision β∗(n) using

Eqn. (19);
6 Obtain the best IRS phase shifts ϕ∗(n) using

ϕ∗(n) = fWOA(β
∗(n)) as shown in Sec. V-E;

7 if β∗(n) is better than the initially provided
reference offloading decision β̂(n) then

8 β̂(n) = β∗(n) ;
9 end

10 Update the memory buffer by adding
(
f(n), β̂(n)

)
;

11 if n mod λ = 0 then
12 Randomly sample a batch B from the memory

buffer as {([fe(j); fw(j)] , β̂(j)) | j ∈ B};
13 Train the DNN on B and update θ using the

Adam optimizer;
14 end
15 end

the optimal phase shifts obtained using the WOA algorithm
(introduced in Subsection V-E), problem P1 can be solved.
The pseudo-code of IOPO is presented in Algorithm 1.

D. Computational Complexity Analysis

As illustrated in Fig. 3, the core processes of the IOPO
algorithm involve generating system features, producing of-
floading decisions, evaluating these decisions, and updating
the network. First, the system feature, which includes the
information on UAVs and UEDs, is obtained, as shown in
Eqn. (17). The system comprises M UAVs and U UEDs,
with each UED assigned one task, resulting in U tasks and a
complexity of O(M + 2U). Second, the probability matrix is
computed, followed by the generation of offloading decisions.
The computation of the probability matrix only requires a
forward pass through the network, which is dependent solely
on the network size (which is simple in our structure), and can
therefore be considered to have a constant time complexity
[41]. The OPPO unit is responsible for generating offloading
decisions. The quantization process involves a fixed number of
operations, including selecting the largest element from each
user u and finding the index of the highest probability. This
operation requires a maximum search over M + 1 elements
for each user, resulting in a complexity of O(U(M + 1)) =
O(UM). Next, all U × (M + 1) elements are arranged in
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ascending order, which takes O((U(M +1)) log(U(M +1))),
simplifying to O((UM) log(UM)). Then, the remaining H−1
candidate offloading decisions are generated, each requiring
O(U(M + 1)) = O(UM) operations, leading to a total
complexity of O((H − 1)UM) = O(HUM). Combining
all these steps, the overall time complexity for generating
H candidate offloading decisions using the OPPO algorithm
is O(UM) + O((UM) log(UM)) + O(HUM), which can
be approximated as O(HUM + (UM) log(UM)). Third, the
evaluating complexity using WOA depends on the number
of whales W and the number of evolution round E, the
energy cost is computed according to Eqn. (16), with a given
offloading decision, the complexity is O(U). Here, we must
calculate the best among H candidates’ offloading decisions.
Thus, it is O(HWEU). Without applying OPPO, we would
need to consider (M + 1)U offloading decisions instead of
H , significantly increasing the complexity. These steps are
executed sequentially to be completed in polynomial time.

Moreover, the complexity of updating the MLP network
is dependent on the loop over N times, which involves
operations across the network layers. Sampling a batch from
the memory buffer every λ time is O(|B|). Training the
DNN on the batch using the Adam optimizer is O(|B|LD),
where L is the number of the layers and D is the element
of every layer of the network. The MLP backward pass
can be treated as matrix multiplication with a complexity
of (N/λ)O(|B|LM). Therefore, the overall time complex-
ity can be approximated as O(N(M + 2U) + N(HUM +
(UM) log(UM)) + N(HWEU) + (N/λ)|B|LD). In this
setting, with most parameters fixed, the time complexity is
primarily determined by the neural network structure and the
number of training iterations.

E. IRS Phase Shifts Optimization

Given the offloading decision β∗(n), the determination of
the optimal IRS phase shifts shown as Problem P2 is a
non-convex optimization problem. To address this, we follow
[32] to employ the Whale Optimization Algorithm (WOA)
[42]. WOA is commonly employed to tackle optimization
problems such as resource allocations in wireless networks
and beyond [43]. In our approach, the WOA algorithm
ϕ∗(n) = fWOA(β

∗(n)) takes an offloading decision β∗(n)
as input and produces the best IRS phase shifts ϕ∗(n)
through E = {1, 2, · · · , E} evolution rounds, where the hyper-
parameter E determines the total number of evolution rounds.
Initially, the whale population is represented as ϕ′(0) =
{ϕ′

1(0),ϕ
′
2(0), · · · ,ϕ′

W (0)}, where the hyper-parameter W
determines the number of whales in the environment. The j-th
whale, denoted as ϕ′

j(0), is a randomly generated IRS phase
shift. During the t-th evolution round (t ∈ E), the following
operations are performed. Firstly, we obtain the best IRS phase
shift that minimizes the system energy cost. This process can
be mathematically formulated as:

ϕ′
∗(t) = argmin

ϕ′∈{ϕ′(t−1)∪ϕ′
∗(t−1)}

Etotal(n){ϕ′|L,Ψ,Z,β∗},

where Etotal
u (n){·} is Eqn. (17), ϕ′

∗(t) denotes the global
optimal phase shifts selected in the preceding t iterations. In

the case of t = 1, we initialize ϕ′
∗(0) as an empty set, since

the global optimal phase shift has not been determined yet.
Subsequently, the WOA algorithm employs a balanced prob-
ability of 50% to perform either a “spiral route” update or a
“shrink-wrap” update. In the event that a “spiral route” update
is chosen, the j-th whale within the whale population (i.e.
the j-th candidate IRS phase shifts) undergoes the following
update procedure:

D = abs(ϕ′
∗(t)− ϕ′

j(t− 1)),

ϕ′
j(t) = abs(D · eb·lj(t) · cos(2π · lj(t)) + ϕ′

j(t− 1)),

where abs(·) denotes the element-wise absolute function, b is
a constant with a value of 1, and lj(t) denotes the behavior
of the j-th whale during the t-th evolution, which is a random
real value between [−1, 1].

In the case of selecting a “shrink-wrap” update, an addi-
tional condition check is necessary to determine whether the
whale engages in exploration or exploitation. Specifically, if
the condition abs(Aj(t)) < 1 is satisfied, an exploitation step
is performed. Conversely, if abs(Aj(t)) ≥ 1, an exploration
step is conducted. Here, Aj(t) = aj(t) · (2 rj(t) − 1), where
aj(t) = 2 ·

(
1− t

E

)
is a scalar that decreases as t increases,

and rj(t) is a randomly generated real value in the range of
[0, 1].

In the Exploitation phase, the update rule for the j-th whale
can be expressed as follows:

D = abs(Cj(t) · ϕ′
∗(t)− ϕ′

j(t− 1)),

ϕ′
j(t) = abs(ϕ′

∗(t)−Aj(t) ·D),

where Cj(t) = 2 · rj(t). In the Exploration phase, the update
rule for the j-th whale can be defined as:

D = abs(Cj(t) · ϕrand
j (t)− ϕ′

j(t− 1)),

ϕ′
j(t) = abs(ϕrand

j (t)−Aj(t) ·D),

where ϕrand
j (t) represents a randomly generated IRS phase

shifts. Upon completing all E iterations, the resulting IRS
phase shifts ϕ′

∗(E+1) is returned as the final output of WOA.

VI. EXPERIMENTAL SETTINGS

A. Simulation Setup
In conducted experiments we inspired by [19], [44] to

set users and UAVs are confined within a rectangular area
measuring 800 meters in length and 600 meters in width. The
locations of users and UAVs are randomly generated within
the designated area, with the UAVs flying at a height of 20
meters. The CPU clock speed of MEC servers carried by
UAVs, denoted as Zm, is distributed between 0.08 and 0.4
GHz. In contrast, the CPU clock speed of UEDs Zu ranges
from 0.04 to 0.08 GHz. The transmission frequency range
from 200 to 400 GHz aligns with the THz characteristics
outlined in [45] and the molecular absorption coefficients for
THz frequencies as indicated in reference [10]. The IRS is
composed of 25 reflectors, with the first element located at (4
m, 0 m, 4 m), and Kx = 5,Kz = 5. The task size of each user
ranges from 32 bytes to 100 KB. The time that users finish
their tasks locally is set as the acceptable delay threshold. Any
processing time that is longer than this threshold fails to meet
Constraint (18f) and is considered as overdue.
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B. The Execution of IOPO

We execute IOPO for N = 200, 000 system time frames,
during which the DNN offloading decision model fθ is trained
in a supervised manner. The initial reference offloading deci-
sion is generated using the GREEDY OC method (introduced
in Section VI-C) and the training interval λ is set to 10,
indicating that the DNN parameters θ are updated every 10
IOPO execution steps. Furthermore, we utilize a batch size of
256, a dropout rate of 0.1 to mitigate overfitting, a memory
buffer size of 1.5 times the batch size, and a learning rate of
0.001 in the Adam optimizer. During the execution of IOPO,
we set the number of candidate decisions generated in OPPO
as H = 20. In order to guide OPPO towards identifying
decisions that satisfy the no-overdue constraint (defined in
Eqn. (18f)), we introduce an overdue penalty to candidate
offloading decisions involving overdue users. Each overdue
user adds a penalty score of 100 to the total system energy
cost. This prioritizes candidate decisions without overdue users
during the selection of the best candidate offloading decision.
For the WOA method, the number of whales W is set as 3,
while the evolution round E is set as 5.

Following the completion of IOPO execution, we con-
ducted a series of experiments to evaluate its performance
compared to several offloading decision-generation baselines.
These experiments are carried out over the last 1,000 system
time frames and the average metrics (e.g. system energy
costs, overdue statistics) are reported. To calculate the system
energy costs of different methods, we first acquire a predicted
offloading decision from each of the considered offloading
decision models. Subsequently, we employ the WOA method
denoted as fWOA(·) to derive optimized IRS phase shifts. The
optimized IRS phase shift and the obtained offloading decision
are substituted into Eqn. (17), yielding the total energy cost
of different offloading decision generation methods.

C. Comparison Offloading Decision Generation Methods

We compare the performance of the proposed IOPO model
with baseline offloading allocation approaches as follows:

• Deep Deterministic Policy Gradient Algorithm (DDPG):
A model-free reinforcement learning algorithm based
on actor-critic architecture. DDPG [26] can be used
to generate policies from continuous action spaces. As
a strong baseline of one-stage methods, for each time
frame, DDPG takes the encoded environment feature as
input and then generates an output vector that contains
both the offloading decision and the optimal IRS phase.

• Greedy Selection (Greedy): This method utilizes a greedy
approach to assign users to UAVs. Specifically, the
algorithm iteratively selects the user with the longest
local processing time and assigns it to the UAV with
the fastest processing speed. After each assignment, the
computational speeds of UAVs are updated based on their
workload status. This process continues until the fastest
UAV processing speed is slower than the slowest local
computational speed among the remaining users. The
remaining unassigned users finish the tasks locally.

• Greedy Selection with no-overdue constraint (Greedy
OC): Similar to the Greedy method, users are ranked
based on their local processing times. However, instead
of directly assigning each user to the fastest UAV, a
more involved iterative process is performed. This process
considers all UAVs and selects the UAV that can complete
the user’s task with the lowest energy cost while ensuring
that the time constraints (18f) of all users on that UAV
are met. If a suitable UAV cannot be found, the user is
assigned to local processing.

• Local Computing (LOCAL): Users independently pro-
cess tasks on their UEDs without using UAV resources.

• Optimized Random Selection (OPT RANDOM): Users
are randomly assigned to either local processing or UAV
processing. 10 offloading decisions are randomly gen-
erated, and the decision with the lowest energy cost is
selected as the final offloading decision.

• Optimized Random Edge Selection (OPT RANDOM w/o
LOCAL): Users are randomly assigned to UAVs for task
processing. In this case, no user performs tasks locally.
Again, 10 offloading decisions are randomly generated,
and the decision with the lowest energy cost is chosen.

VII. EXPERIMENTAL RESULTS

A. Model Performance Given Different Numbers Of Users

In this experiment, we assess the proposed IOPO model
in systems with varying numbers of users. The number of
UAVs in systems is fixed at 3. The energy costs of offloading
decisions predicted by different offloading decision models are
presented in Table III. It is observed that the predicted offload-
ing decisions include users who fail to meet their acceptable
delay threshold (i.e. fail to meet the Constraint (18f)). As the
ideal offloading decisions should minimize energy costs while
satisfying the no-overdue constraint (18f), we introduce an
overdue penalty to offloading decisions containing overdue
users. Specifically, each overdue user adds a penalty score
of 100 to the overall system energy cost. By incorporating
this overdue-penalized energy cost metric, we are able to
evaluate the offloading decisions in terms of both energy costs
and the occurrence of overdue users. The results presented in
Table III demonstrate that, in comparison to the baselines, the
proposed IOPO model achieves the lowest overdue-penalized
energy costs across all system configurations. This highlights
the effectiveness of IOPO in generating offloading decisions
that not only minimize energy consumption but also adhere to
the no-overdue constraint (18f).

To gain deeper insights into the overdue situations in
offloading decisions generated by various methods, we present
the overdue statistics in Table II. The term O Plans% repre-
sents the percentage of model-predicted offloading decisions
that include overdue users, while Avg #O Users signifies
the average number of overdue users within these overdue
decisions. The results reveal that, except for LOCAL and
GREEDY (OC), all baseline methods generate a considerable
number of offloading decisions containing overdue users.
Although LOCAL and GREEDY (OC) adhere to the no-
overdue constraint, they fail to fully harness UAV resources
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TABLE II
OVERDUE STATISTICS GIVEN DIFFERENT NUMBERS OF USERS IN THE SYSTEM. O PLAN% IS THE PROPORTION OF OFFLOADING DECISIONS THAT

CONTAIN OVERDUE USERS AND AVG #O USERS IS THE AVERAGE NUMBER OF OVERDUE USERS IN OVERDUE OFFLOADING DECISIONS.

10 USERS 15 USERS 20 USERS

Methods O Plan% Avg #O Users O Plan% Avg #O Users O Plan% Avg #O Users
Baselines
LOCAL 0 0 0 0 0 0
GREEDY (OC) 0 0 0 0 0 0
GREEDY 81.76% 1.27 100% 12 100% 12.39
OPT RANDOM 82.46% 3.34 99.94% 8.83 100% 14.49
OPT RANDOM

(W/O LOCAL) 97.94% 4.44 100% 11.91 100% 17.41
DDPG 67.90% 2.31 100% 5.48 100% 8.59
Ours
IOPO 0.86% 1.36 0.6% 1.94 6.88% 1.66

TABLE III
ENERGY COSTS OF METHODS GIVEN DIFFERENT NUMBERS OF USERS IN

THE SYSTEM (WITH OVERDUE PENALTY = 100)

Methods 10 Users 15 Users 20 Users
Baselines
LOCAL 1048.77 1676.27 2062.25
GREEDY (OC) 508.64 1011.89 1384.11
GREEDY 451.66 1791.93 2030.92
OPT RANDOM 647.64 1540.31 2221.74
OPT RANDOM (W/O LOCAL) 737.47 1728.55 2343.66
DDPG 444.96 1225.47 1640.17
Ours
IOPO 397.72 823.32 1247.98

TABLE IV
ENERGY COSTS OF METHODS GIVEN DIFFERENT NUMBERS OF USERS IN

THE SYSTEM (WITHOUT OVERDUE PENALTY)

Methods 10 Users 15 Users 20 Users
Baselines
LOCAL 1048.77 1676.27 2062.25
GREEDY (OC) 508.64 1011.89 1384.11
GREEDY 347.48 591.92 791.24
OPT RANDOM 372.08 657.75 771.82
OPT RANDOM (W/O LOCAL) 301.75 537.17 601.82
DDPG 290.16 677.96 781.17
Ours
IOPO 390.18 819.38 1211.52

to generate energy-efficient offloading decisions (as depicted
in Table IV, wherein the overdue penalty is excluded from
the system energy cost computation). Consequently, none of
the baseline methods can be considered preferable. In contrast,
the proposed IOPO framework exhibits the ability to generate
offloading allocations with lower energy costs (in comparison
to LOCAL and GREEDY (OC)) while significantly reducing
the number of overdue users (in comparison to GREEDY,
DDPG, and random methods). These findings underscore the
effectiveness of the proposed methods over baselines.

B. Model Performance Given Different Numbers Of UAVs

In this experiment, we evaluate IOPO in systems with
varying numbers of UAVs. The number of users in the system
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Setting Format: (Number of User, Number of UAVs)

0.2

0.4

0.6

0.8

1.0

Ra
tio

1.00 0.98 1.00 0.99

OPTIMAL
IOPO
DDPG
Greedy
Greedy (OC)
OPT RANDOM (W/O LOCAL)
OPT RANDOM
LOCAL

Fig. 4. Average proximity ratio of methods over the last 1,000 time frames.

is fixed at 20 and the overdue-penalized energy costs of dif-
ferent methods are reported. Table VI illustrates the overdue-
penalized energy costs resulting from offloading allocations
generated by different methods. Results show that IOPO
consistently outperforms all baseline methods across different
system configurations. This underscores IOPO’s ability to
yield energy-efficient offloading decisions while satisfying the
overdue constraint in diverse system setups. Further insights
into the overdue statistics are provided in Table V. Once
again, the results affirm that IOPO surpasses the baselines
GREEDY, DDPG, and RANDOM, while achieving comparable
performance to LOCAL and GREEDY (OC) in meeting the
no-overdue constraint (18f).

C. How Good Is The Predicted Offloading Decision Com-
pared To The Optimal Decision?

In this experiment, we compare the offloading decisions
predicted by IOPO with the optimal offloading decisions.
Optimal offloading decisions are determined by considering
all possible allocations and selecting the one that minimizes
the energy cost while satisfying the no-overdue constraint. We
evaluate the performance of IOPO in systems containing (5,
7) users and (1, 2) UAVs. To assess the similarity between
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TABLE V
OVERDUE STATISTICS OF METHODS GIVEN DIFFERENT NUMBERS OF UAVS. O PLAN% DENOTES THE PROPORTION OF OFFLOADING DECISIONS THAT

CONTAIN OVERDUE USERS AND AVG #O USERS DENOTES THE AVERAGE NUMBER OF OVERDUE USERS IN OVERDUE OFFLOADING DECISIONS. THE
NUMBER OF USERS IN THE SYSTEM IS SET TO 20.

3 UAVS 4 UAVS 5 UAVS
Methods O Plan% Avg #O Users O Plan% Avg #O Users O Plan% Avg #O Users
Baselines
LOCAL 0 0 0 0 0 0
GREEDY (OC) 0 0 0 0 0 0
GREEDY 100% 12.39 100% 16.71 100% 6.07
OPT RANDOM 100% 14.49 100% 12.49 99.90% 9.24
OPT RANDOM
(W/O LOCAL) 100% 17.41 100% 15.56 100% 11.52
DDPG 100% 8.59 100% 5.99 100% 4.07
Ours
IOPO 6.88% 1.66 6.24% 1.91 6.80% 1.86

TABLE VI
ENERGY COSTS OF METHODS GIVEN DIFFERENT NUMBERS OF UAVS IN
THE SYSTEM (WITH OVERDUE PENALTY = 100). THE NUMBER OF USERS

IN THE SYSTEM IS SET TO 20.

Methods 3UAVs 4UAVs 5UAVs
Baselines
LOCAL 2062.25 2078.15 1779.39
GREEDY (OC) 1384.11 1194.84 1009.61
GREEDY 2030.92 2235.64 1322.54
OPT RANDOM 2221.74 1874.64 1646.52
OPT RANDOM (W/O LOCAL) 2343.66 2064.96 1800
DDPG 1640.17 1111.7 1038.98
Ours
IOPO 1247.98 1059.53 929.15

the predicted decisions and optimal decisions, we introduce
a proximity ratio. This ratio is calculated by dividing the
average energy cost of optimal decisions by the average energy
cost of predicted offloading decisions. An ideal scenario is
indicated by a ratio of 1, signifying that the model-predicted
offloading decisions perfectly match the optimal offloading
decisions. A ratio smaller than 1 suggests that the energy
costs of predicted offloading allocations exceed the optimal
energy costs. Therefore, a ratio close to one is desirable, as
it indicates a close alignment between the predicted decisions
and the optimal decisions. Figure 4 demonstrates the proximity
ratio of IOPO along with 6 baselines under various system set-
tings. Notably, IOPO consistently outperforms all comparison
methods, maintaining a proximity ratio close to 1 across all
(user, UAV) configurations. These results substantiate that the
IOPO-predicted offloading decisions can converge to optimal
offloading decisions.

It should be noted that as the number of users and UAVs
in the system increases, the number of possible offloading
decisions grows exponentially. For instance, in a system with
5 UAVs and 20 users, the total number of potential offloading
decisions amounts to (5+1)20. This exponential growth makes
it impractical to obtain optimal allocations for complex system
setups within a reasonable time. Consequently, we focus the
investigations on systems with a limited number of users and
UAVs. While we do not present optimal solutions for intricate
system setups, we observe that increasing the total number
of IOPO iterations yields a further reduction in the overall

system energy cost. This finding implies that for systems en-
compassing only a small number of users and UAVs, the IOPO
model can converge towards optimal offloading decisions with
a relatively small number of IOPO iterations. Conversely,
for complex systems involving a larger number of users and
UAVs, IOPO necessitates a greater number of iterations to
approximate the optimal solution. Therefore, when confronted
with systems entailing a significant number of users and UAVs,
it is recommended to employ a larger number of iteration steps
to attain enhanced outcomes.

D. Ablation Study: How OPPO Affects IOPO Performance

This experiment aims to assess the impact of the proposed
OPPO unit on the performance of IOPO. The experimental
settings include a penalty of 100 for overdue tasks, 20 users,
and 3 UAVs. The evaluation of two variants is based on the
average energy cost observed over the last 1,000 system time
slots. The two variants considered are IOPO with and without
OPPO, taking into account scenarios with the unit disabled
during the execution of IOPO and without being disabled.
When OPPO is disabled, an alternative approach is needed to
quantize the DNN output probability matrix into the offloading
decision matrix. To address this, at the n-th time frame, given
the DNN predicted probability matrix P(n) ∈ RU×(M+1),
for each user u ∈ U , we assign a value of 1 to the offloading
choice with the largest probability and a value of 0 to the
remaining M choices. The resulting offloading decision matrix
β(n) satisfies Constraints (18a) and (18b). Formally:

z′ = argmax
z∈{1,2,··· ,M+1}

pu,z,

βu,m(n) =

{
1 m = z′,

0 otherwise.

The energy cost of IOPO with OPPO is 1247.98, whereas
without OPPO is 1408.36. This demonstrates that the inclusion
of OPPO significantly reduces the overdue-penalized system
energy cost when compared to the variant without OPPO.

Besides, we analyze the impact of removing OPPO on
overdue cases in IOPO. Surprisingly, IOPO without OPPO
outperformed IOPO with OPPO, significantly reducing over-
due decisions and users. With OPPO, there was a 6.88%
occurrence of overdue plans, compared to 0.94% without
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TABLE VII
MODEL PERFORMANCE AND OPPO STATISTICS WITH DIFFERENT DNN COMPLEXITY (OVERDUE PENALTY IS 100 IN SYSTEM ENERGY COST)

10 USERS 3 UAVS 15 USERS 3 UAVS 20 USERS 3 UAVS 20 USERS 4 UAVS 20 USERS 5 UAVS
Metrics Ours Simplified Ours Simplified Ours Simplified Ours Simplified Ours Simplified
Eng Cost 393.34 424.43 841.49 912.33 1233.76 1306.16 1047.57 1118.58 953.45 1044.69
#Improved 146505 102555 143939 105877 126177 102803 122078 101471 115477 85720
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Fig. 5. IOPO performance with and without utilizing initial reference
offloading decisions during the training of DNN. The overdue penalty is set
to 100 in system energy cost computation.

OPPO. Moreover, despite higher penalties, IOPO with OPPO
achieved lower energy costs for overdue tasks than the variant
without OPPO. The reason behind these findings can be
attributed to the challenge lies in creating efficient offloading
allocations using UAV computational power while adhering to
the no-overdue constraint. The variant without OPPO showed
limited user offloading to UAVs, while the variant with OPPO
underutilized UAV capabilities. IOPO systematically improved
initial decisions with OPPO, leading to more overdue cases
with a slight increase in users per UAV. Still, IOPO had fewer
overdues, achieving lower energy costs despite predicting
more overdue cases.

During IOPO execution, OPPO continually explored im-
proved decisions, generating 127,966 during 200,000 iter-
ations. The DNN learned from these decisions, reducing
the overdue-penalized energy cost to 1247.98 compared to
1384.57 for initial decisions. Notably, the initial offloading
decisions, generated using the Greedy method with a no-
overdue constraint, didn’t have overdue users. The decrease
in energy cost resulted from OPPO’s ability to optimize task
distribution between users and UAVs. In summary, results
demonstrate the efficacy of OPPO in generating a substantial
quantity of improved offloading decisions and reducing the
system energy costs.

E. Does The Initial Reference Offloading Decision Help?

In this experiment, we study if applying initial reference
offloading decisions benefits the performance of IOPO. The
introduction of initial offloading decisions aims to establish
a favorable starting point for training the DNN in IOPO.
Without the provision of initial reference offloading decisions,
the DNN may learn from suboptimal offloading decisions
during the early stages of IOPO execution, thereby slowing
the convergence towards optimal offloading allocations and
resulting in impaired IOPO performance. This issue could
become particularly pronounced when dealing with a large

solution space due to the increasing difficulty in identifying
high-quality offloading decisions for training the DNN. Conse-
quently, the inclusion of initial reference offloading allocations
can play a critical role in guiding the training of DNN
and reducing the energy costs of IOPO-predicted offloading
decisions.

Figure 5 presents the average overdue-penalized energy
costs over the last 1,000 system time frames. When the initial
reference offloading decisions are not provided during DNN
training, we set the predicted offloading decisions generated
using Eqn. (19) as reference to offloading decisions. Results
demonstrate that, compared to the variant IOPO (W/O INI-
TIAL REF), in which initial reference offloading decisions
are excluded in DNN training, IOPO can produce offloading
decisions with lower energy costs. These findings align with
the intuition and emphasize the significance of supplying high-
quality initial reference decisions during DNN training to
achieve reduced system energy consumption.

F. Does DNN Complexity Affect IOPO Performance?

In this experiment, we study the influence of DNN com-
plexity on the performance of IOPO. Table VII presents
the performance of IOPO equipped with two DNNs: the
proposed DNN (Ours) and a DNN with reduced complexity
(Simplified). Compared to Ours, the downgraded network
consists of 1 hidden layer instead of 6 and 64 hidden units
instead of 256. Results indicate that the downgraded DNN
(Simplified) exhibits higher overdue-penalized energy cost
(Eng Cost) in all tested settings compared to the sophisticated
DNN (Ours). This outcome can be attributed to the subpar
performance of the simplified DNN in producing high-quality
probability matrices. As the offloading decisions predicted
by the IOPO are derived from the DNN probability matrix,
sub-optimal probability matrices generated from Simplified
result in predicted offloading decisions that incur higher energy
costs. Moreover, a reduced number of improved offloading
decisions discovered by OPPO (#Improved) is observed in
the downgraded model. These findings suggest that DNN
complexity has a significant impact on the final system energy
cost and the performance of OPPO searching.

G. Model Analysis: Memory Buffer Size

In this experiment, we investigate the influence of memory
buffer size on the performance of IOPO. The number of users
in the system is set to 20, and the number of UAVs is set
to 3. Figure 6 shows the overdue-penalized energy costs of
offloading decisions predicted by IOPO during the entire IOPO
execution. The REF horizontal line represents the average
energy cost of the initially provided reference offloading
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Fig. 6. Impact of memory buffer size on system energy cost. Each time frame
represents the average energy costs of over 25,000 IOPO execution steps.

TABLE VIII
IOPO PERFORMANCE WITH DIFFERENT MEMORY SIZES (WITH

OVERDUE PENALTY = 100)

Memory Size Eng Cost #Improved
0.5 batch size 1256.82 121689
1 batch size 1232.28 131871
1.5 batch size 1253.76 124038
2 batch size 1273.86 121413
4 batch size 1285.07 117858
8 batch size 1294.34 111396

decisions. As depicted in Figure 6, IOPO with various memory
sizes outperforms the REF offloading decisions as the iteration
progresses. This improvement is attributed to the OPPO unit
in IOPO, which can discover offloading decisions with low
energy costs as the IOPO execution progresses. Moreover,
IOPO with a memory size equal to the batch size demon-
strates the lowest energy cost by the end of IOPO execution,
compared to other memory size configurations. To provide
a comprehensive understanding of the impact of memory
size, Table VIII presents the average overdue-penalized energy
costs (Eng Cost) over the last 1,000 system time frames
and the number of IOPO-predicted offloading decisions that
surpass the initially provided reference offloading decisions
(#Improved). Results indicate that the optimal IOPO perfor-
mance is achieved when the memory size aligns with the batch
size, with the lowest test energy cost recorded as 1232.28
and the largest number of improved allocations discovered as
131,871. These findings highlight the significance of aligning
the memory size with the size of training batches for optimal
IOPO performance.

When considering alternative memory sizes, we observe
slightly higher system energy costs and smaller numbers of
offloading decisions discovered compared to the optimal con-
figuration. Additionally, as the memory size becomes larger,
the overall energy cost increases. This phenomenon can be
attributed to the difficulty of sampling the most recently
improved offloading decisions from a substantial historical
pool when training the DNN. As a result, the DNN may
acquire knowledge from sub-optimal historical data, leading
to compromised performance and heightened energy consump-
tion in IOPO-predicted offloading decisions.
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Fig. 7. Impact of Training Interval size on energy cost. Each time frame
represents the average energy cost of over 25,000 IOPO execution steps.

TABLE IX
IOPO PERFORMANCE WITH VARIOUS TRAINING INTERVALS (WITH

OVERDUE PENALTY = 100)

Training Interval Eng Cost #Improved
1 1196.84 144841
5 1203.57 137763
10 1253.76 124038
20 1277.90 118099
50 1324.63 86867
100 1370.78 50734

H. Model Analysis: Training Interval

In this experiment, we examine the impact of the size of the
training interval λ on the performance of IOPO. The number
of users in the system is set to 20 and the number of UAVs
is set to 3. Figure 7 illustrates the overdue-penalized energy
cost of IOPO-predicted decisions and REF denotes the average
energy cost of the initial reference offloading decisions.

As shown in Figure 7, IOPO with different training interval
sizes (1, 5, 10) can yield offloading decisions with similar
and low energy costs after IOPO execution. When the training
interval size is increased to 50 and 100, the resulting decisions
exhibit higher energy costs. Moreover, the energy costs of
IOPO with training intervals 50 and 100 are closer to the
horizontal REF line, indicating a compromised performance of
the OPPO unit in discovering improved offloading decisions
when the training interval is large. This is because, with large
training intervals, the parameters θ of the DNN offloading
decision model fθ are updated less frequently. Consequently,
the accuracy of the DNN is compromised, causing the pre-
dicted offloading decisions, which rely on the DNN-output
probability matrix, to be impaired.

Table IX demonstrates that the lowest system energy cost
achieved is 1196.84, and the largest number of improved de-
cisions discovered is 144841, both obtained when the training
interval is set to 1. This is because a small training interval
facilitates the update of DNN parameters and the improvement
of DNN performance. With the continual improvement of the
DNN, there is a corresponding enhancement in the IOPO-
predicted offloading allocations that depend on the DNN’s per-
formance. Subsequently, the DNN learns from these improved
offloading decisions, leading to further enhancements in its
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Fig. 8. Impact of IRS on system energy and data transmission speed. The
x-axis denotes (the number of users, and the number of UAVs) in the system.

own performance and a reduction in energy costs of IOPO-
predicted decisions. However, it is important to note that using
a smaller training interval may result in slower system speed
due to the increased frequency of DNN parameter updates.
If execution speed is a primary concern, it is reasonable to
consider setting the training interval to 5 or 10, as these
interval sizes yield energy costs that are close to the energy
cost achieved with a training interval of 1.

I. Model Analysis: Impact of IRS

In this experiment, we explore the influence of IRS on
both data transmission speed and system energy consumption.
Specifically, we conduct a comparative analysis involving the
proposed IOPO framework against three distinct variants: (i)
NO IRS, wherein the IRS board is excluded; (ii) IOPO (ZERO
PHASE), denoting a configuration where the phase shift of all
IRS reflecting elements is set to 0; and (iii) IOPO (RANDOM
PHASE), where the phases shift of IRS reflecting elements are
randomly assigned.

As depicted in Figure 8(a), shows that IOPO consistently
achieves superior data transmission speeds when compared to
all three variants. Figure 8(b), the removal of IRS from the
system is observed to result in escalated energy consumption.
Results demonstrate the efficacy of the IRS in reducing system
energy consumption while augmenting data transmission rates.
Moreover, IOPO consistently demonstrates reduced energy
costs compared to both IOPO (RANDOM PHASE) and IOPO
(ZERO PHASE) configurations in scenarios involving (15 users

and 3 UAVs) and (20 users and 3 UAVs), while maintaining
comparable energy consumption across other settings.

The trend of the lines in Figure 8(b) indicates an increase
in energy cost up to the point of (20 users and 4 UAVs).
This is because the UAVs function as MEC servers. When
the number of users increases while the computing resources
remain constant, the total system cost rises. The increased user
demand for the same resources leads to a higher average task
allocation per UAV, resulting in higher energy costs. Adding
more UAVs after this point alleviates the system’s computing
burden and reduces energy costs.

Although the energy consumption differences might appear
less significant at certain points, IOPO consistently demon-
strates superior energy efficiency in most scenarios, making it
a more stable optimization than other variants. The less notice-
able differences are due to the high transmission speeds under
the THz network. Once the speed reaches a certain threshold,
further improvements have a less pronounced effect on latency.
At the point of (20 users and 3 UAVs), when resources are
scarce, the benefits of optimizing IRS phase shifts to enhance
channel gain become more apparent. In conclusion, the results
highlight the advantages of incorporating IRS and optimizing
its phase shift using IOPO over simplistic configurations such
as uniformly zeroed or randomly assigned phase shifts.

VIII. CONCLUSIONS

In this study, we investigate the task offloading problems
in a multi-user multi-UAV MEC system that integrates an
IRS and operates on the THz communication network. We
present the modeling of the task offloading and the task
processing procedure of the MEC system within the THz
network and introduce IOPO, a novel deep learning-based
framework designed to optimize the energy efficiency of
task offloading decisions and the phase shifts of the IRS.
The IOPO framework can generate satisfactory offloading
decisions within milliseconds and is incorporated with a novel
offloading decision-searching unit OPPO, enabling continuous
search to identify improved offloading allocations. Extensive
experimental results demonstrate the superiority of IOPO
over baseline methods in generating energy-efficient offloading
allocations and meeting task deadlines.

In the future, several directions exist to extend this work.
First, the algorithm’s performance can be trained and eval-
uated in a realistic system (e.g., real THz data transmission
environments, practical UAV energy losses, and real-world
computational tasks) to improve the algorithm’s robustness and
applicability in practical scenarios. Second, the IOPO’s per-
formance can be further enhanced by optimizing the second-
stage algorithm. Third, the proposed model can be extended
to multiple base stations, encompassing wider areas and more
UAVs and UEDs.
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