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Abstract—With the continuous development of mobile net-
works and sensing devices, spatiotemporal crowdsourcing has
gradually become a new intelligent sensing paradigm for data
acquisition and sharing in the Industrial Internet of Things.
How to reasonably allocate tasks to workers in a dynamic
environment to maximize the platform utility has become a
research hotspot. Many past works have made great efforts in this
regard, but most of them only consider the long-term constraints
of resources, and ignore the short-term ability constraints of
workers to provide resources. In this paper, we consider a
platform-centered online spatiotemporal crowdsourcing system,
where mobile workers have long-term and short-term resource
constraints, while the platform has a long-term budget constraint.
We aim to find an online worker scheduling scheme to maximize
the platform’s long-term utility without violating the constraints
of workers and the platform. To address the problem, we first
transform the long-term utility maximization problem into a real-
time utility maximization problem by leveraging the Lyapunov
optimization. Then, we design a centralized algorithm based on
Markov approximation to solve the real-time optimization prob-
lem. Furthermore, we demonstrate that our proposed approach
can achieve near-optimal performance for our problem. Finally,
we evaluate our designs by numerical simulation experiments,
and the results demonstrate the effectiveness of our algorithms.

I. INTRODUCTION

With the rapid development of smart devices, spatiotemporal
crowdsourcing stands out for its exceptional capabilities in task
processing and real-time responsiveness. It has great potential
to assist the Industrial Internet of Things (IIoT) systems, espe-
cially those requiring high levels of real-time responsiveness,
and has attracted widespread attention from both academia
and industry. For example, crowdsourcing helps transform
most traditional services’ passive response models for smart
manufacturing applications into context-aware and proactive
services, thus improving serviceability and productivity [1].

In a typical spatiotemporal crowdsourcing system, the plat-
form dynamically publishes tasks [2], then selects appropriate
mobile workers to perform the corresponding tasks, and speci-
fies the amount of resources that the workers need to provide,
at the same time, the platform will also pay corresponding
recruitment fees to workers. The profit of the platform is
related to the quality of task completion, which is based
on the amount of resources provided by workers. Generally
speaking, the total amount of resources of workers and the
payment budget of the platform are limited, thus online worker

scheduling (which is also known as online task allocation)
plays an important role in improving the platform’s long-term
utility.

In the past few years, many attempts have been made in
previous works on the online worker scheduling problem [2]–
[10]. Diverse methods have been adopted in the previous
works, such as online bipartite graph matching [6], [7], multi-
armed bandit [3], Q-Learning [4], approximation algorithm
[3], [8], heuristic algorithm [5]. For example, [6] modeled the
problem as a dynamic delayed bipartite graph matching prob-
lem and designed two adaptive threshold frameworks based on
Policy Gradient and Proximal Policy Optimization respectively
to acquire the approximate optimal solution for allocating
tasks. Considering timeliness and fairness, [5] propose the
Utility-Fairness Index and address the Fairness-Aware Task
Planning problem, making task planning for workers in real-
time, such that the total utility is maximized and the fairness
among workers is maintained. [3] focussed on solving the
Mobile Crowdsourcing (MCS) task assignment problem by
exploiting both task and worker context and established con-
textual combinatorial volatile multi-armed bandit which en-
capsulates a wide range of crowdsourcing problems. Although
these efforts model the online task assignment problem from a
variety of perspectives and come to inspirational conclusions,
there are still several problems to be solved. Firstly, they did
not take the long-term consumption of workers’ resources
for task completion into account, if resource consumption is
not properly controlled, the crowdsourcing system may not
run for a long time. How to maximize the long-term utility
of the platform while rationally consuming worker resources
is a challenge. Secondly, in online scenarios, tasks may be
rapidly published in large quantities within a short period,
which results in short-term resource consumption exceeding
the capacity that workers can bear. How to effectively address
this situation is another challenge.

In this paper, we investigate the online worker scheduling
problem by jointly considering the long-term and short-term
resource constraints of workers, as well as the long-term
recruitment budget of the platform. The main challenges of
our problem are twofold. First, as both workers and the
platform have long-term constraints, how to allocate resources
and budget to each time slot is a very crucial issue as it is

2024 IEEE/CIC International Conference on Communications in China (ICCC)

979-8-3503-7841-2/24/$31.00 ©2024 IEEE 1934

20
24

 IE
EE

/C
IC

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
 in

 C
hi

na
 (I

C
C

C
) |

 9
79

-8
-3

50
3-

78
41

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

C
C

62
47

9.
20

24
.1

06
82

02
6

Authorized licensed use limited to: Beijing Normal University. Downloaded on November 17,2024 at 02:03:40 UTC from IEEE Xplore.  Restrictions apply. 



almost impossible for us to get complete future information
about tasks. Second, as each worker has a short-term resource
constraint, how to assign tasks to corresponding workers to
maximize the total utility is very tough as it falls into the
category of the multi-knapsack problem. To address the above
issues, we combine Lyapunov optimization and Markov ap-
proximation theory and design a framework for online worker
scheduling to maximize platform utility while satisfying long-
term and short-term constraints. The main contributions of our
work are summarized below:

• We investigate the online worker scheduling problem for
Maximizing Platform’s Long-term utility in Platform-
centric spatiotemporal crowdsourcing systems (MPLP),
and give the formal formulation of the problem.

• To deal with the challenges of our problem, we first
transform the MPLP problem into a real-time problem by
leveraging the Lyapunov optimization, and then design a
centralized algorithm based on Markov approximation to
address the problem.

• We demonstrate that the proposed algorithms can achieve
near-optimal performance for the MPLP problem, and
prove the excellent performance of our designs by con-
ducting extensive simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a stable spatiotemporal MCS system that
contains a fixed number of m mobile workers denoted by
W = {w1, w2, . . . , wm}. The MCS platform will periodically
publish tasks to workers. To conveniently represent the peri-
odicity of system release tasks, we assume the MCS system
works in a slotted model, and the timeline is divided T time
slots, i.e., T = {1, 2, . . . , T}. At the beginning of each time
slot t ∈ T , there is a set Nt of tasks published by the platform,
which is denoted by At = {a1, a2, . . . , aNt

}. We assume that
each task is indivisible and thus can be executed by at most one
worker, while one worker may perform multiple tasks within
his/her capability.

For any worker wi ∈ W , there is a long-term time-average
resource budget Bi, which means that the average amount
of resources invested by worker wi in executing tasks in
each time slot cannot exceed Bi. In addition, considering
the capability of each worker to perform tasks is limited, we
assume the resource budget of the worker wi ∈ W is bmax

i in
a single time slot. For any task aj ∈ At, there is a minimal
resource requirement rmin

j,t , which means that the task can
only be executed if the amount of resources allocated to it is
more than rmin

j,t . We use a M × Nt allocation matrix Rt to
represent the worker scheduling strategy in time slot t, where
each element Rt

ij denotes the amount of resources that worker
wi allocates to task aj , and Rt

ij = 0 indicates that the worker
wi does not perform the task aj in time slot t.

In a time slot t, the profit obtained by the platform from
worker wi performing task aj can be calculated as P t

ij =
αj log (1 + βjR

t
ij), if Rt

ij ≥ rmin
j,t , otherwise, P t

ij = 0, where

αj , βj ∈ R+ are coefficients. Assume that the unit resource
price of workers is identical and is denoted as τ , then the
platform will pay Ct

i = τ ·
∑

aj∈At
Rt

ij for worker wi in
time slot t. The long-term time-average recruitment cost of the
platform is limited on the entire timeline and is represented
by Cbgt.

B. Constraints of Problem

Allocation decision constraint: As each task can be exe-
cuted by at most one worker, the following constraint must be
satisfied:∑

wi∈W
I{Rt

ij > 0} ≤ 1, ∀aj ∈ At, t ∈ T , (1)

where I{Rt
ij > 0} is the indicator function.

Worker resource consumption constraints: The Worker
resource consumption must satisfy the long-term and short-
term constraints:

lim
T−→∞

1

T

∑T

t=1

∑
aj∈At

E{Rt
ij} ≤ Bi, ∀wi ∈ W, (2)∑

aj∈At

Rt
ij ≤ bmax

i , ∀wi ∈ W, t ∈ T . (3)

Platform recruitment budget constraints: The time-
average recruitment cost of the platform on the entire timeline
must not exceed the budget Cbgt:

lim
T−→∞

1

T

∑T

t=1

∑
wi∈W

E{Ct
i} ≤ Cbgt. (4)

In the above constraints, the expectation function E{·} is
used to eliminate the influence of stochastic in the dynamic
spatiotemporal MCS system.

C. Problem Definition

We aim to find an online worker scheduling strategy to
maximize the long-term utility of the platform while satisfying
the above constraints. The utility Ut of the platform in a
time slot t is defined as the total profits of tasks minus
the total recruitment cost on the entire timeline, that is,
Ut =

∑
wi∈W

∑
aj∈At

P t
ij −

∑
wi∈W Ct

i . The problem is
formally defined as follows.

Problem 1. Online worker scheduling for Maximizing Plat-
form’s Long-term utility in Platform-centric spatiotem-
poral crowdsourcing systems (MPLP). Given the time slot
sequence T , the mobile worker set W , the task set At for
each time slot t ∈ T , the MPLP problem aims to find a
worker scheduling strategy Rt for each time slot to maximize
platform’s long-term utility under constraints (1)-(4), which
can be written as

(P1) max
R1,...,RT

lim
T−→∞

1

T

∑T

t=1
E{Ut},

s.t. (1)− (4).
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III. ONLINE WORKER SCHEDULING FRAMEWORK

A. Problem Transformation and Online Framework

The core challenge of the original MPLP problem P1 is
that the optimal worker scheduling strategy relies on future
information which is impossible to obtain due to the dynamic
and stochastic property of the spatiotemporal MCS system. To
address the issue, we decompose the long-term optimization
object under long-term constraints into each single time slot
based on Lyapunov optimization, and transform the original
problem into a queue stability control problem.

For clarity, we define ER
i (t) =

∑
aj∈At

Rt
ij − Bi and

EC(t) =
∑

wi∈W Ct
i − Cbgt. Then, we define virtual queues

with initial values of 0 for each long-term constraint of (2)
and (4) respectively, that is,

QR
i (t+ 1) = max{QR

i (t) + ER
i (t), 0}, ∀wi ∈ W (5)

QC(t+ 1) = max{QC(t) + EC(t), 0}. (6)

Each virtual queue represents the exceeded budget of each
constraint.

From Eq. (5), we have QR
i (t+1)−QR

i (t) ≥
∑

aj∈At
Rt

ij−
Bi, for each wi ∈ W . By summing the inequality on each t ∈
T and take expectation, we have 1

T

∑T
t=1

∑
aj∈At

E{Rt
ij} −

Bi ≤ E{QR
i (T )}/T . Therefore, to satisfy the constraint (2),

we only need to satisfy the following constraint.

lim
T−→∞

E{QR
i (T )}/T ≤ 0,∀wi ∈ W. (7)

Similarly, constraint (4) can be satisfied by meeting the
following constraint.

lim
T−→∞

E{QC(T )}/T ≤ 0. (8)

Constraints (7) and (8) suggest that we only need to control
the stability of the virtual queues to satisfy the long-term
constraints. Next, we introduce the Lyapunov function and
one-slot conditional Lyapunov drift [11] to stabilize the virtual
queues.

Define Θ(t) as the vector of all virtual queues at time
slot t, i.e., Θ(t) ≜ {QR

1 (t), Q
R
2 (t), . . . , Q

R
m(t), QC(t)}, the

Lyapunov function is defined as follows.

L(Θ(t)) ≜
1

2

∑m

i=1
QR

i (t)
2 +

1

2
QC(t)2. (9)

The one-slot conditional Lyapunov drift is defined as
∆(Θ(t)) ≜ E[L(Θ(t+1))−L(Θ(t))|Θ(t)], which reflects the
expected backlog increment of all virtual queues over one slot.
Then, we leverage the Lyapunov drift-plus-penalty function to
approximately solve our problem on each time slot t, and we
get the following problem:

(P2) max
Rt

E[V · Ut|Θ(t)]−∆(Θ(t)),∀t ∈ T ,

s.t. (1), (3), (7), (8),

where V is a positive weight that balances utility and virtual
queue backlogs.

According to the Lemma 4.6 in [11], we can derive that:
∆(Θ(t)) ≤ B +

∑
wi∈W QR

i (t)E
R
i (t) +QC(t)EC(t), where

B is a positive constant value for all t ∈ T . Define that Ω(t) =∑
wi∈W QR

i (t)E
R
i (t) + QC(t)EC(t), then, problem P2 can

be approximately solved by addressing the following problem.

(P3) max
Rt

E[V · Ut − Ω(t)|Θ(t)],∀t ∈ T ,

s.t. (1), (3).

The first component in the objective function of P3 is
about maximizing the platform’s utility in each time slot,
corresponding to the objective function of MPLP. The second
component is about controlling the virtual queue backlogs,
which reflects the exceeded budget of each time-average
constraint. The positive weight V is used to adjust the trade-off
between the two components. By solving P3 on each time slot
t, we get a feasible solution for the original MPLP problem.
The proposed online algorithm is described in Algorithm 1.

Algorithm 1 Online MPLP Algorithm
Input: W , T , At for t ∈ T , and control parameter V .
Output: Worker scheduling strategies R∗

1, . . . ,R
∗
T .

1: QC(0) = 0, QR
i (0) = 0 for each wi ∈ W;

2: for t = 0 to T − 1 do
3: Find the optimal solution R∗

t of P3;
4: Calculate virtual queues QR

i (t+1) and QC(t+1) for
the next time slot by Eqs. (5) and (6);

5: end for
6: return R∗

1, . . . ,R
∗
T ;

In Algorithm 1, we need to find the optimal solution of P3,
however, P3 is an NP-hard problem due to its multi-knapsack
property [12]. Therefore, in the next subsection, we propose
a Markov approximation method to approximately solve P3.

Notice that we omit constraints (7) and (8) in P3, the
two constraints are hidden in the second component of P3’s
optimization objective function, and the solution obtained by
Algorithm 1 can satisfy these two constraints, which will be
proved in next section.

B. Markov Approximation Method

In this subsection, we design a Markov approximation-based
algorithm to approximately solve P3 for Algorithm 1, which
is inspired by [13]. We use G(Rt) to denote the objective
function of P3, then P3 can be transformed into the following
form:

(P4) max
∑

Rt∈Ft

p(Rt) ·G (Rt) ,

s.t.
∑

Rt∈Ft

p(Rt) = 1,∀t ∈ T ,

where F t is the collection of all feasible solutions, and p(Rt)
represent the probability of the solution Rt is adopted at
time slot t. Obviously, the optimal solution of (P4) is to
set p(Rt) = 1 for Rt that maximize G(Rt).

Let Γ = 1
γ

∑
Rt∈Ft

p(Rt) · log p(Rt), where γ denote a
positive constant that controls the approximation ratio of the
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entropy term. The problem can be approximated as log-sum-
exp problem [14]:

(LSE − P4) min
∑

Rt∈Ft

p(Rt) ·G (Rt) + Γ,

s.t.
∑

Rt∈Ft

p(Rt) = 1, ∀t ∈ T .

The optimality gap between LSE−P4 and P4 is bounded
by 1

γ log |F t| according to [14]. Actually, the problem LSE−
P4 converges to the problem P4 when γ approaches infinity.
By utilizing the Karush-Kuhn-Tucker (KKT) condition [15],
we can get the optimal solution of LSE − P4 for any t ∈
T ,Rt ∈ F t:

p(Rt) =
exp (γ ·G (Rt))∑

R̃t∈Ft
exp

(
γ ·G

(
R̃t

)) . (10)

Then we can find the solution for P4 by choosing Rt with
the maximum probability p(Rt) got from Eq. (10). Next, we
design a Markov chain-based algorithm to solve the problem
LSE − P4, which also returns a feasible solution for P4.

The key idea of the Markov chain-based algorithm is
to create a time-reversible ergodic Markov chain [14] that
achieves the stationary distribution as shown in (10). The
constructed Markov chain should be irreducible, that is, any
state is reachable from any other state. Also, the following
balance equation should be satisfied: p(Rt) · p(Rt,R

′
t) =

p(R′
t)) · p(R′

t),Rt),∀Rt,R
′
t ∈ F t, and Rt ̸= R′

t, where F t

is the state space, and p(Rt,R
′
t) is the transition probability

from state Rt to R′
t. Based on Lemma 1 of [14], we could

construct such a Markov chain as follows. First, we treat
the solution space F t of LSE − P4 as the state space,
and the transition probability p(Rt,R

′
t) for any two states

Rt,R
′
t ∈ F t and Rt ̸= R′

t is set as follows.

p(Rt,R
′
t) = ρ · exp

(γ
2

(
G (R′

t)−G
(
Rt

)))
, (11)

where ρ is a positive constant.
The designed Markov chain-based algorithm is described in

Algorithm 2. In the algorithm, we randomly choose a state,
i.e., a worker scheduling strategy Rt from the solution space.
Then we constantly update the state according to the transition
probabilities, thus forming a Markov chain, and iterate this
process until the Markov chain converges. Note that during
the iteration, the best strategy has been recorded.

When the Markov chain reaches the stationary distribution,
or equivalently, satisfies the balance equation, we can get
the optimal strategy. Recall that the optimality gap between
LSE −P4 and P4 is bounded by 1

γ log |F t|, we can set γ
as large as possible to get a better solution. Assume that the
algorithm achieves convergence within Ic iterations, we need
to calculate |F t| transition probabilities in each iteration, then,
the time complexity of Algorithm 2 is O(Ic|F t|).

IV. PERFORMANCE ANALYSIS

In this section, we analyze the convergence and approxima-
tion properties of Algorithm 1. It’s easy to know that Ut is a
bounded function due to constraints, for clarity, we let Umin

Algorithm 2 MPLP-Centralized (MPLP-C)
Input: W , T , At for time slot t, F t, iteration number Ic.
Output: The optimal strategy R∗

t in time slot t.
1: R∗

t = ∅, and G (R∗
t ) = 0;

2: Randomly select Rt form F t;
3: while Ic > 0 do
4: Calculate G (Rt);
5: if G (Rt) > G (R∗

t ) then
6: R∗

t = Rt;
7: end if
8: Select a new strategy R′

t based on the transition
probability (11);

9: Update Rt by R′
t;

10: Ic = Ic − 1;
11: end while
12: return R∗

t ;

and Umax be the upper and lower bounds of Ut on all time
slots, respectively.

Theorem 1. The solution obtained by Algorithm 1 meets
constraints (7) and (8).

Proof. Based on Lemma 4.6 in [11], we have ∆(Θ(t)) ≤
B + Ω(t), where B is a positive constant value, thus we can
get the following inequation:

V · Umax −∆(Θ(t)) ≥ V · Umin −B − Ω(t). (12)

As ∆(Θ(t)) ≜ E[L(Θ(t + 1)) − L(Θ(t))|Θ(t)] and
L(Θ(t)) ≜ 1

2

∑m
i=1 Q

R
i (t)

2 + 1
2Q

C(t)2, then, taking the
summation of both sides of (12) on T , and combining with
the Cauchy-Bunyakovsky-Schwarz inequality, we obtain:(∑

wi∈W
QR

i (T ) +QC(T )
)2

≤

2T (B + V (Umax − Vmin)) + 2
∑T

t=1
Ω(t).

(13)

Then, dividing both sides of (13) by T 2 and taking the
square root of it, we have:(∑

wi∈W QR
i (T ) +QC(T )

)
T

≤√
2 (B + V (Umax − Vmin))

T
+

2
∑T

t=1 Ω(t)

T 2
.

(14)

As is proved in Theorem 4.8 in [11], all queues are mean
rate stable, thus limT−→∞

1
T

∑T
t=1 Ω(t) has a constant upper

bound. Then, taking expectations on both sides of (14) and
letting T tend to infinity, we can obtain

lim
T−→∞

E{
(∑

wi∈W QR
i (T ) +QC(T )

)
}

T
≤ 0. (15)

And because of QR
i (T ) ≥ 0,∀wi ∈ W, QC(T ) ≥

0, we have lim
T−→∞

E{QR
i (T )}/T = 0, ∀wi ∈ W and

lim
T−→∞

E{QC(T )}/T = 0.
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Let R∗
t be the optimal strategy for P1 for time slot t, and

Rp
t denote the strategy determined by Algorithm 1 and 2 in

time slot t. Then, we have the following theorem.

Theorem 2. For any δ > 0 and positive control parameter
V ≥ 0, we have:

UOPT − lim
T−→∞

1

T

∑T

t=1
E{Ut(R

p
t )} ≤ B′

V
− δ, (16)

where UOPT = lim
T−→∞

1
T

∑T
t=1 E{Ut(R

∗
t )}, and B′ = B +

1
γ log |F t|. Recall that 1

γ log |F t| is the Markov approximation
optimal gap.

Proof. Let’s recall the model description in Section II. Plat-
form utility on each time slot is related to the process of task
arrival. According to Theorem 4.5 in [11], if the process of
task arrival is stationary, then for any δ > 0 we have:

UOPT ≤ E{Ut(R
p
t )}+ δ, (17)

E{ER
i (t)} ≤ δ, ∀i ∈ W, E{EC(t)} ≤ δ. (18)

Combine the Lemma 4.6 in [11], the following inequality can
be obtained:

V · E{U (Rp
t )} −∆(Θ(t)) ≥ V · E{U (Rp

t )} −B′

− Ω(t) ≥ V · (UOPT + δ)−B′.
(19)

As ∆(Θ(t)) ≜ E[L(Θ(t + 1)) − L(Θ(t))|Θ(t)], by sum-
ming the time slots t over T on both sides of equa-
tion (19) and rearranging the terms, we have UOPT −
lim

T−→∞
1
T

∑T
t=1 E{Ut(R

p
t )} ≤ B′

V − δ.

Theorem 3. For any positive control parameter V ≥ 0, the
time average expected virtual queue satisfies:

lim sup
T−→∞

1

T

∑T

t=1
E{∥Θ(t)∥1} ≤ V · (Umax − Umin) +B′

ϵ
.

(20)

Proof. Suppose ∃ϵ ≥ 0 such that for all time slot t ∈ T and
all possible values of Θ(t), according to Theorem 4.2 in [11],
we have:

V · E{Ut|Θ(t)} −∆(Θ(t)) ≥ V · Umin −B′ + ϵ ∥Θ(t)∥1 .
(21)

Then, as ∆(Θ(t)) ≜ E[L(Θ(t + 1)) − L(Θ(t))|Θ(t)] and
Umax is the upper bound of Ut. Summing over T on both
sides of (21) and rearranging terms, we have:

1

T

∑T

t=1
E{∥Θ(t)∥1} ≤ V · (Umax − Umin) +B′

ϵ
+ C,

(22)

where C = E{L(Θ(0))}
ϵT . The theorem can be proved by setting

T −→ ∞ in (22).

Theorems 2 and 3 show that the gap between the utility
obtained by MPLP-C and the optimal utility can be measured
by O(1/V ), and the size of the time average queue can
be measured by O(V ), which implies that we can adjust
the control parameter V to achieve the balance between the
optimal goal and the queue stability.
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Fig. 2. Virtual queue analysis

V. SIMULATIONS

A. Experimental Settings

In the simulation experiment, we establish a total of T =
1500 slots and assume the presence of 25 crowdsourcing
workers. The long-term resource constraint for each worker
was randomly assigned within the range of [3, 7] per time slot,
with a unit price of τ = 1. The time-average budget for the
platform to purchase worker resources is set to eighty percent
of the total resources of the workers. The number of tasks
received by the platform in each time slot t follows a Poisson
distribution with λ = 4|W|. For task aj , the minimum resource
rmin
j,t required to execute is a random number on [0.5, 1.5].

For the parameter in the profit function of task aj , αj and βj

are randomly distributed in [2, 4] and [6, 8] respectively. bmax
i

is a multiple of time-average resource, where the multiple is
in the range of [2, 6]. We run the algorithm 100 times under
each given setting, and the data points in our figures are the
average results of 100 runs.

We compare MPLP-C with three algorithms: (1) the MPLP
framework without bmax

i (MPLP-wl); (2) Particle swarm op-
timization (PSO) algorithm; (3) Genetic algorithm (GA).

B. Preformance Evaluation

Impact of control parameter V : From Fig. 1, we can see
that the time-average platform utility increases as the control
parameter V increases. The result matches the conclusion of
Theorem 2, that is, the gap of the time-average platform utility
between our algorithm and the optimal solution is limited by
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Fig. 3. Algorithm performance analysis

O(1/V ). In addition, overall, the time-average virtual queue
size of the platform and workers also increases as V increases,
and the result matches the conclusion of Theorem 3, that is,
the size of the time-average virtual queue is limited by O(V ).

Role of virtual queues: As shown in Fig. 2(a), when
the platform consumes a lot of budget to purchase worker
resources in time slot t, the value of the budget virtual queue
in time slot t + 1 will increase. Due to the queue stability
control of our algorithm, the budget consumption in time slot
t + 1 will be reduced accordingly. A similar result can be
seen in Fig. 2(b), but we can see that the size of the workers’
virtual queues does not change as dramatically over time as
the platform’s. The reason is that the workers also have a
short-term resource budget constraint bmax

i in each time slot,
which imposes a strict upper limit on the workers’ resource
consumption in each time slot.

The queue stability: As shown in Fig. 3(a), the platform
budget virtual queue eventually converges to 0, although it
fluctuates at t=800, the fluctuations are much smaller than
those between t=0 and t=200, which is normal in the sim-
ulation. This indicates that long-term platform budget con-
straints can be effectively guaranteed. However, in Fig. 3(b),
we observe that the worker resource virtual queue does not
converge but exhibits quasi-periodicity, rapidly increasing and
then quickly converging to 0, repeating the cycle. Fig. 3(c)
shows that an increasing resource budget bmax

i of workers in
a single time slot results in larger remaining worker resources.

Algorithm comparison: Stability is crucial in spatiotempo-
ral crowdsourcing systems. Therefore, we compare the virtual
queue variations across different algorithms. As shown in Fig.
3(d), the MPLP-C algorithm has a better virtual queue control
effect than the MPLP-wl algorithm, which indicates that the
short-term constraint plays a positive role in virtual queue
control. Also, we can see that our algorithm is much better

than algorithms PSO and GA in virtual queue control. The
results suggest that our designs are more suitable for the long-
term stable operation of online MCS systems.

VI. CONCLUSION

This paper investigates the online worker scheduling prob-
lem for spatiotemporal crowdsourcing systems, the objective
is to maximize the platform’s long-term utility with the long-
term constraints of workers and the platform. To address the
problem, we employ Lyapunov optimization techniques to
decouple the long-term constraints and design a centralized
algorithm based on Markov approximations to find solutions
for each time slot. Extensive computer simulations have vali-
dated the efficacy and reliability of our designs.
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