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Abstract—The surge in mobile vehicles and data traffic in
Vehicular Edge Computing and Networks (VECONs) requires
innovative approaches for low latency, stable connectivity, and
efficient resource usage in fast-moving vehicles. Existing studies
have identified that utilizing digital twins (DTs) can effectively
improve service quality in VECONs. However, it still faces
substantial challenges posed by large-scale complex DT com-
munications in sustaining real-time collaborative endeavors. In
particular, within the dynamic VECONs, the decision regarding
DT migration plays a pivotal role in sustaining the quality of
services. In this paper, we propose an adaptive DT migration
(ADM) algorithm to minimize the overall migration costs when
DTs deliver services. Specifically, 1) We formulate ADM as a
combinatorial optimization problem in VECONs, comprehen-
sively considering communication latency and migration latency
under complex DT communications, vehicular mobilities, and
dynamic states of edges; 2) An ADM algorithm based on off-
policy actor-critic reinforcement learning is proposed to make
migration decisions. Moreover, the ADM agent employs warm-up
policies to address exploration challenges in sparse state spaces;
3) Simulations based on real-world, large-scale urban vehicular
mobility datasets demonstrate that our method outperforms
existing algorithms by approximately 39% on average, and it
can achieve results close to the optimal.

Index Terms—Digital twin, migration, vehicular edge comput-
ing, deep reinforcement learning.

I. INTRODUCTION

THE paradigm of Vehicular Edge Computing and Net-
works (VECONs) [1] is a promising approach that can

be embedded at the network edge to support massive data
storage, computing, and sharing close to the vehicles [2].
Constrained by limited resources, current VECONs cannot
efficiently satisfy the growing resource demands of vehicular
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applications [3]. To enable real-time services under large-scale
communications, it is promising to conduct predictions and
processing through specific virtual spaces, e.g., digital twins
(DTs) [4], [5]. Real-world data and experiences, such as traffic
patterns and environmental conditions, are captured and inte-
grated into the virtual environment. Within the virtual realm,
this data is used to model diverse scenarios and potential
outcomes, evaluate the effectiveness of vehicle decisions, or
analyze the impact of autonomous vehicle behavior [6], [7].

Using knowledge obtained through virtual analysis, DT
facilitates bidirectional data exchange and enhances decision-
making that can aid in formulating optimal operational ap-
proaches in diverse real-time VECONs [8]. Existing studies
have investigated the performance enhancement of edge net-
works through the assistance of DTs, including network ser-
vices improvement [9], [10], collaborative driving decisions-
making [11], task scheduling and resource utilizations [12].
However, determining how to migrate DTs that handle com-
plex communication and strict latency requirements to mini-
mize service latency while preserving service quality remains
a crucial, yet unresolved challenge, particularly for mobile
vehicles in dynamic VECONs.

Achieving appropriate DT migration decisions requires ad-
dressing the following two challenges. The first challenge is
how to quantify the complex latency of DT communications
during migration. The complex communication relationships
within DTs, which have been neglected by existing stud-
ies, primarily involve three components: interactions between
physical objects and DTs, between DTs themselves, and the
information flow between DTs and user applications. [8].
Different types of DTs can enable cooperative management
of autonomous vehicle driving [11], [13]. Due to frequent
status and data synchronization for DTs, it becomes essential
to account for additional communication interactions and data
transmissions. This inevitably leads to heightened system
intricacy and increased communication costs. Moreover, the
simultaneous exchange of information among multiple DTs
significantly scales up the communication network. To address
these issues, a feature extraction network is meticulously
designed to capture interdependent complex communication
features, which are then integrated into the system state.

The second challenge is how to make adaptive migration
decisions for DTs in dynamic VECONs. It involves a joint
optimization of DT migration latency and communications
costs to achieve long-term benefits. Traditional heuristic al-
gorithms often struggle to effectively address this challenge
due to their static strategies and inability to capture long-
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term awards. Reinforcement learning (RL) is leveraged to
optimize strategies and find optimal solutions. However, the
interactive environment undergoes frequent changes due to
the high-speed mobility of vehicles and variations in DT
communications connections. Due to the insufficient state data,
it is challenging for RL agents to make effective decisions
from limited states to unseen ones. Therefore, warm-start
policies [14], [15] from expert demonstrations are employed to
improve policy exploration and accelerate the training process
for RL agents. We first pre-train the agent based on expert
demonstrations and progressively diminish the proportion of
these demonstrations during the training process, guiding the
RL agent to converge towards the expert region gradually.
Then, adaptive DT migration decisions can be made by
utilizing a policy gradient RL with warm-start policies.

In this paper, we first model the large-scale communication-
aware adaptive DT migration problem in VECONs, aiming
to minimize communication latency and migration cost. The
features of large-scale interactive connections of DTs, DT
mobilities, and the resources of heterogeneous roadside units
(RSUs) are fully considered. Feature extraction is performed
on these elements. Next, an adaptive DT migration (ADM)
algorithm is proposed based on the off-policy actor-critic RL
algorithm [16]. Expert demonstrations are utilized as prior
knowledge for efficient initialization. The training process
of the ADM algorithm is then guided by progressively di-
minishing demonstrations used as warm-up policies. Finally,
simulations based on real-world vehicular mobility traces of
Cologne, Germany [17], are conducted to evaluate the perfor-
mance of the ADM algorithm compared to other migration
algorithms. Results show that our ADM algorithm reduces
total migration latency by approximately 39% on average
compared to baseline algorithms. The main contributions are
listed as follows:

• We address the significant system latency caused by
large-scale complex communications during DT migra-
tions in VECONs, fully modeling interactions among
physical objects, DTs, and user applications. This model
comprehensively accounts for communication latency,
colocation, and migration costs to enhance the perfor-
mance of DTs.

• An RL-based ADM algorithm is proposed for DT migra-
tion decisions. Features are extracted from large-scale DT
communications. Expert demonstrations are then used to
assist in feature learning, effectively guiding the RL agent
in making adaptive migration decisions.

• Simulations utilizing real-world urban vehicular mobility
datasets evaluate the ADM algorithm’s performance. Re-
sults illustrate that our algorithm outperforms traditional
baseline algorithms by roughly 39% on average.

II. RELATED WORK

A. DT in VECONs

Recent advancements in VECONs with DT technologies
have addressed challenges associated with leveraging vir-
tualization to facilitate remote execution of vehicle-related
tasks by RSUs or base stations. Wang et al. [4] define and

discuss three kinds of DT-built microservices for mobility
services, focusing on driver management, vehicle, and traffic
DTs in vehicular edge networks. Zhao et al. [3] apply the DT
technology to construct virtual replicas of vehicular networks
with multiple twin versions. Zheng et al. [18] examine the
problem of joint network selection and power allocation in
DT-assisted networks and use DT to predict the waiting
time for decision-making. Zhang et al. [19] present a DT-
assisted platform for edge computing networks and introduce
a novel service framework to address resource dynamics and
mobile users. Feng et al. [5] simulate the DT network by
mapping the traffic situation in the physical road network to
the virtual space and transmitting vehicular data interactions
based on blockchain technology. Yuan et al. [20] utilize DTs to
gather real-time data and obtain representations of the physical
operating environments. Lu et al. [21] propose a DT-assist
prediction algorithm for vehicle-to-vehicle pairing to improve
task offloading efficiency according to the real-time vehicular
network state.

These studies leverage the DT technology to derive insights
from physical network data and then employ deep learning
methods to optimize overall networks. However, they overlook
the importance of optimizing DT performance throughout the
entire DT lifecycle, which includes initialization, migration,
and updates. This optimization is crucial for enhancing the
operational quality of DT edge networks.

B. Service and DT migration

In edge computing, traditional service migration has been
widely explored to address various challenges, such as reduc-
ing startup latency [22], improving system energy efficiency
[23], [24], optimizing overall costs [25]–[27], and satisfying
network Quality of Service (QoS) [28]. However, the con-
stant movement of vehicles, diverse resources available at
edge nodes, and the requirement for multifaceted vehicular
communications present unique challenges for DT migration.

Existing research has begun addressing these challenges,
yet notable gaps persist. Sun et al. [29] utilize DT to estimate
states of edge servers and provide training data for service
offloading decisions. Lu et al. [30] formulate the edge asso-
ciation problem concerning the dynamic network states and
varying network topologies and then decompose the problem
into DT placement and DT migration. Most existing studies
mainly concentrate on optimizing migration costs and making
decisions based on mobility patterns and network dynamics.
However, the complex nature of DT communications, es-
pecially in large-scale, real-time collaborative environments,
presents additional challenges that have not been thoroughly
explored. It is crucial to examine the ADM problem con-
sidering multi-dimensional and intricate DT communications.
Our research differs from existing studies by specifically
addressing these gaps.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1 shows the ADM problem in VECONs. In the physical
space, RSU servers e1, e2,··· ∈ E are placed along the roads,
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Fig. 1: An illustration of DT migration in VECONs. As the vehicle u1 continuously moves, the DT d1 must migrate intelligently
on RSU servers e1, e2,··· ∈ E to enable concurrent running. The DT d1 maintains constant wireless pair-wise communications
to acquire updated vehicular digital states. It also returns the processing results of vehicular requests and cooperates with other
DTs simultaneously. More detailed explanations are in Section III-A.

allowing moving vehicles to achieve continuous data sharing
through multiple RSUs [8], [31]. Each vehicle can transmit
requests to servers on RSUs, using data collected by their
onboard sensors [32]. The requests are sent in discrete time
slots t1, t2, · · · ∈ T until they are finished. DTs are deployed
in parallel with vehicles and modeled within RSUs, using a
portion of their resources [33].

As the vehicle u1 moves from the coverage area of e1
to e4 over time, it starts communicating with DT d1, which
is currently hosted on e1 at time t1. The vehicle u1 sends
its current state and requests to DT d1 for processing. This
interaction helps u1 to obtain real-time traffic updates and
navigation assistance. As vehicle u1 continues moving, it
approaches RSU e2. To maintain a high QoS, DT d1 migrates
from RSU e1 to e2 at time t2. This migration involves
transferring the DT’s state and ongoing vehicular request data
to RSU e2. This handover is critical to reduce latency and
ensure seamless service continuity. At time t3, DT can also
connect to other RSUs through multi-hop routing to serve the
vehicle u1 that approaches RSU e4. During the continuous
time interval from t3 to t4, vehicle u1 is near RSU e4. DT d1
at e2 keeps serving u1 by moving through RSU e3 to maintain
low-latency services directly. Throughout this processing, DT
d1 ensures that u1 receives continuous updates and processing
results, effectively adapting to the vehicle’s changing position.

Based on long-term optimizations of migration and com-
munication latencies, DT migration facilitates communication
between vehicles and DTs and ensures that vehicular requests
are processed with minimal latency. The migration decisions
are based on optimizing communication latencies and main-
taining service quality, showcasing the dynamic interaction in
a VECON environment. The vehicle, RSU, and DT are defined
as follows. The main notations are summarized in TABLE I.

Vehicle: All moving vehicles in the system are denoted as a
set U = {u1, u2, . . . , u|U|}, where | · | signifies the cardinality
of the set. Thus, |U| represents the total number of vehicles in
the moving vehicle set. Each vehicle u ∈ U is equipped with a

set of attributes represented by u(t) ≜ {ϑu, zu, ou,mu, lu(t)},
which enable it to interact within the system environment.
Specifically, ϑu is the running period, zu represents the update
state, ou is the request CPU frequency, mu is the request
memory, and lu(t) is the location.

RSU: All heterogeneous RSUs in the system are denoted
as a set E = {e1, e2, . . . , e|E|}, where |E| is the total number
of RSUs in the VECON network. The properties of a RSU
e ∈ E are defined as e(t) ≜ {be(t), oe(t),me(t), ze(t), le(t)},
which support communications between vehicles and DTs.
Specifically, be(t) represents the remaining bandwidth, oe
denotes the total CPU frequency capacity, oe(t) is remaining
CPU frequency, me(t) indicates the remaining memory, ze(t)
is the storage, and le(t) denotes the location.

DT: A set of DT is defined as D = {d1, d2, . . . , d|D|},
representing the digital models of the physical vehicles in
the environment. The properties of each d(t) are defined as
d(t) ≜ {u(t), ℓd(t),md, zd, ∆zd, ld(t)}. Here, u(t) denotes
the corresponding vehicle, ℓd(t) denotes the required computa-
tional CPU frequency, md represents the DT memory capacity,
zd indicates the size of DT, ∆zd is the size of synchronized
data, and ld(t) represents the location.

B. Cost

To ensure a satisfactory QoS, DTs should be dynamically
migrated among RSUs as vehicles move, comprehensively
considering communication latency, colocation cost, and mi-
gration latency.

Communications latency: The communication model
consists of three parts [8]: the DT cooperation communication
for data synchronization among DTs, the DT interaction
communication with user applications, and the DT pair-wise
communication for data exchange with the respective vehicle.

DT cooperation communication: Based on the direct trust
interactions among RSUs [34], the communication of DTs
between any two RSUs ei and ej , denoted as L(ei, ej),
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TABLE I: Notations.

U Mobile vehicle set
ui uith mobile vehicle (u ∈ U, i ∈ |U|)
zui Update size of vehicle ui

oui CPU request of vehicle ui

mui Memory request of vehicle ui

lui (t) Location of vehicle ui at time t
E RSU set
ek ekth RSU (e ∈ E, k ∈ |E|)
bek (t) Bandwidth of RSU ek at time t
oek (t) CPU resource of RSU ek at time t
mek (t) Memory resource of RSU ek at time t
zek (t) Storage capacity of RSU ek at time t
lek (t) Location of RSU ek at time t
D DT set
dj djth DT (d ∈ D, j ∈ |D|)
bdj (t) Allocated bandwidth for DT dj at time t
ℓdj (t) CPU request of DT dj at time t
zdj Size of DT dj
∆zdj Synchronized size of DT dj
f(di, dj) Cooperation frequency between DT di and dj
f(di, ek) Interaction frequency between DT di and closest RSU

ek to vehicle application
f(di, ui) Pair-wise frequency between DT di and its vehicle ui

Lcom(t) Communication latency for DT
Lcolo(t) Colocation cost for DT
Lmig(t) Migration latency for DT
L(t) Total latency for DT

signifies the potential for collaboration. The interaction rate,
represented as f(di, dj) ≥ 0, signifies the direct trust rela-
tionship between RSUs. This direct trust interaction fosters
an environment that promotes seamless communication and
coordinated task execution among DTs. δd,e(t) is a binary
variable to indicate if the DT d is on the RSU e at time t,
which is defined as follows:

δd,e(t) ≜

{
1, ∃d(t) ∈ D, e ∈ E,

0, otherwise.
(1)

Then, the cooperation communication latency over all kinds
of DTs at time t is denoted as:

Lcoop(t) =
∑

ei,ej∈E

∑
di,dj∈D

f(di, dj)L(ei, ej)δdi,ei(t)δdj ,ej (t).

(2)
DT interaction communication: The DT di and the user

application ek are processed on separate RSUs, denoted as
ei and ek, respectively. The communicative relationship be-
tween these entities is denoted as L(ei, ek), representing the
connection between RSUs. The interaction rate between the
DT and user application is defined as f(di, ek) ≥ 0 [35]. The
interaction communication latency is calculated as follows:

Linter(t) =
∑

ei,ek∈E

∑
di∈D

f(di, ek)L(ei, ek)δdi,ei(t). (3)

DT pair-wise communication: A DT di communicates
with its relative vehicle ui based on the data exchange rate
f(di, ui). The wireless uplink transmission rate is influenced
by various factors, including path loss, modulation schemes,
etc. [26]. The wireless transmission rate from vehicles to their
DTs is formulated as:

ξ(t) = bdi
(t) log2

(
1 +

pui
|hui,di

|2

bdi(t)σ

)
, (4)

where bdi
(t) is the allocated bandwidth for DT di at time

slot t, pui is the transmission power of vehicle ui, hui,di is
the channel gain between the vehicle ui and its corresponding
DT di, and σ is the power spectral density of the Gaussian
white noise. The update for vehicle ui to DT di is obtained
as:

Lup(t) =
zui

ξ(t)
, (5)

where zui denotes the data size that vehicle ui transfers.
The communication between a DT and the respective vehi-

cle is bidirectional. The downlink communication primarily
depends on the hop distance along the shortest path and
the size of the synchronized data [36], [37]. The downlink
communication latency is defined as:

Ldown(t) =
∆zdi

bei(t)
+ α(t)l(ui, ei), (6)

where α(t) is a positive coefficient and l(ui, ei) is the hop
distance between the vehicle ui and the location ei of the
corresponding DT. The total pair-wise communication of the
system is obtained as follows:

Lpair(t) =
∑
ei∈E

∑
di∈D

f(di, ui)δdi,ei(t)
(
Lup(t) + Ldown(t)

)
.

(7)
Various DT instances engage in concurrent and independent

communications, where all three communications coincide
within the overall system. Therefore, communication latency
in VECONs at time t can be defined as:

Lcom(t) = max
(
Lcoop(t),Linter(t),Lpair(t)

)
. (8)

Colocation cost: The colocation cost is associated with
hosting DT data and computational resources for DT opera-
tion. While DT is migrating, resource contention may arise
from CPU, memory, or network usage among DTs on the
same RSU. The required CPU cycles of the DT di are defined
as ℓdi

(t) = zdi
η, where η represents the processing density

of the DT. The workload of the serving RSU is denoted as
wei(t) =

∑
di∈D ℓdi

(t)δdi,ei(t). The actual colocation cost
for the DT di is obtained as [38]:

Lcolo
di

(t) =
ℓdi

(t)

wei(t) + ℓdi
(t)
oei . (9)

The total colocation cost for VECONs is defined as follows:

Lcolo(t) =
∑
di∈D

∑
ei∈E

Lcolo
di

(t)δdi,ei(t). (10)

DT Migration latency: Low migration latency is critical
for ensuring the seamless transition of DTs between different
RSUs. When DT migration is required, real-time processing
modules and computations must be transferred to target RSUs.
This requires optimizing the network latencies, including the
DT transmission, propagation, processing, and queueing la-
tencies. Due to the ample bandwidth available in the network,
processing and queuing latencies are relatively small and can
be disregarded. The transmission latency of DT is defined
as Ltr

di
(t) =

zdi
υt

, where υt stands for the transmission rate.
For DT migrating from node ei to node ej , the propagation
latency is measured by the hop distance that is denoted as
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Lpr
di
(t) = β(t)l(ei, ej), where β(t) is a positive coefficient,

l(ei, ej) refers to the shortest path from the source DT to the
target DT. The DT migration latency is obtained as [36], [38]:

Lmig
di

(t) =

{
0, if l(ei, ej) = 0,

Ltr
di
(t) + Lpr

di
(t), if l(ei, ej) ̸= 0.

(11)

The migration latency of VECONs can then be calculated as:

Lmig(t) =
∑
di∈D

Lmig
di

(t). (12)

C. Problem Formulation

A comprehensive cost model including the above three types
of costs is considered. The total cost at time t is defined as:

L(t) = Lcom(t) + Lcolo(t) + Lmig(t). (13)

The main object is to minimize the total cost over time to
guarantee the overall system QoS. The calculation of the
total cost is processed across multiple RSUs, collecting DT
colocation cost on each RSU, DT migration latencies between
RSUs, and DT communication latencies between different
RSUs, including DT state updates and synchronization.

Constraints: With the high mobility and handovers between
vehicles and DTs, the dynamic environment leads to changing
network connections. Therefore, the DT has to meet the la-
tency requirements to realize real-time processing. The actual
communication latency must be within the latency constraint
for each time t, which can be denoted as:

Lpair(t) < Wd,∀d ∈ D, t ∈ T, (14)

where Wd denotes the latency constraint.
A binary variable ae(t) ∈ {0, 1} is defined to indicate

whether RSU e is selected at time t. If the RSU e is selected
at time t, then ae(t) is set to 1. Otherwise, ae(t) = 0. It is
imperative to guarantee the allocation of at least one RSU to
a DT, as constrained by:∑

e∈E

ae(t) = 1,∀t ∈ T. (15)

It should be noted that at any given time t, one DT must
be actively running on an RSU, which is represented as:∑

e∈E

δd,e(t) = 1,∀d ∈ D, t ∈ T. (16)

To ensure the performance of RSUs, the maximum number
of DTs running on each RSU is limited with a number Ne:∑

d∈D

δd,e(t) ≤ Ne,∀e ∈ E, t ∈ T. (17)

The migration of DTs is affected by the available resources
on RSUs. The limits of storage and memory resources of each
RSU are defined as follows:∑

d∈D

zdδd,e(t) ≤ ze,∀e ∈ E, t ∈ T, (18)

∑
d∈D

mdδd,e(t) ≤ me,∀e ∈ E, t ∈ T. (19)

Problem: (DT Migration Problem) For each time t, our goal
is to optimize DT migrations to minimize the overall system
cost. This optimization takes into account the high-speed
movement of vehicles, complex communication relationships,
as well as constraints related to communication latencies and
resource limitations of RSUs, which is formulated as:

Problem 1. minL =
∑

t∈T L(t),
s.t. Eqs. (14), (15), (16), (17), (18), (19),

δd,e(t) ∈ {0, 1},∀d ∈ D,∀e ∈ E,∀t ∈ T,
ae(t) ∈ {0, 1},∀e ∈ E,∀t ∈ T.

The DT Migration problem is a binary non-linear program-
ming problem. Eq. (8) includes three communication relation-
ships and varies among DT interactions. The core challenge
lies in the exponential rise in DT migration complexity when
evaluating overall system performance.

Proposition 1. The DT migration problem is NP-Hard.

Proof. The DT migration problem can be polynomial-time
reduced to the set cover problem (SCP) ideally [39]. Given
a graph with vertices and edges, each vertex represents a po-
tential facility, and each edge represents a customer. Facilities
are assigned a cost of 1. The distances between customers and
facilities are 1 if edges connect them and 0 otherwise. Each
edge connected to different facilities has an assigned weight.
The service cost is the sum of the distances multiplied by the
corresponding edge weights. The SCP is NP-hard. Therefore,
the solution to the DT migration problem is NP-hardness.

The objective of the problem is to make continuous DT
migration decisions under complex communication and dy-
namic VECONs to maximize the cumulative long-term reward.
The effectiveness of heuristic solutions is closely linked to
the quality of the predefined rules. Meta-heuristic algorithms
efficiently explore vast problem spaces and provide high-
quality solutions, though their computational time can be con-
siderable. The first-order transition probability of the system
state remains quasi-static over an extended period [40] when
modeled as a Markov Decision Process (MDP). RL is ideal
for MDPs, offering a structure for iteratively and interactively
learning optimal policies. Additionally, RL algorithms utilize
the value function based on immediate rewards to secure long-
term benefits. Therefore, RL can address the complex and
large-scale DT migration issue.

In RL, the centralized network consolidates all RSU data
into one edge node, achieving precise reward computation
and enabling scheduling decisions based on the global state.
As the network scales up, this centralized approach may
become burdensome, resulting in additional latency. Although
the estimated cumulative reward in a distributed network
may show greater variance, the advantages of reduced data
collection overhead and faster communication significantly
outweigh this concern. [41].

IV. PROPOSED ALGORITHMS

A. Algorithm Settings
We formulate the ADM problem as an infinite-horizon

MDP, which is represented by the tuple {S,A,P, ρ0, r, γ},
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Fig. 2: Algorithm structure.

where S denotes a finite state set, A represents a finite action
set, P : S × A× S → R+ is the transition density, ρ0 stands
for the initial state distribution, r : S × A → R is the reward
function, and γ ∈ [0, 1) is a discount factor.

State: As shown in Fig. 2, the state is composed of
properties of RSUs and DTs, which can be denoted as:

st = {set , sdt } ∈ S, (20)

where the state of RSUs is described as set =
{Le, Pe(t), Oe(t), Ze(t),Me(t)}. It includes the locations of
RSUs Le = {l1, l2, · · · , l|E|}, the communications with co-
operating DTs Pe(t) = {Lcoop

D,1 ,L
coop
D,2 , · · · ,L

coop
D,|E|}, the avail-

able CPU frequency Oe(t) = {o1(t), o2(t), · · · , o|E|(t)}, the
remaining storage Ze(t) = {z1(t), z2(t), · · · , z|E|(t)}, and the
remaining memory Me(t) = {m1(t),m2(t), · · · ,m|E|(t)}.

Moreover, the state of current processing DT is denoted
as sdt = {ld(t), Hd(t), zd, ℓd(t),md(t)}, where ld(t) is the
location of DT, Hd(t) = {L(d, e1), L(d, e2), · · · , L(d, e|E|)}
is the distance between DT d and each RSU, zd indicates the
size of the DT, ℓd(t) is the CPU request, and md(t) denotes
the memory request of the DT d. Based on the dynamic state, a
feature extraction and concatenation network is used to capture
the intricate relationships in DT communication and migration
for subsequent decision-making processes.

Action: An action at ∈ E indicates that the DT can migrate
to any satisfied RSU e, where the RSU set E combines the
action space.

Reward: The agent navigates the environment repetitively,
learning how to optimize to reach its goal. Since the goal is to
minimize the overall cost in ADM, the reward can be denoted
as rt = −L(t).

Policy network with feature extraction: In an MDP,
an agent determines a sequence of parameterized policies
π(a|s; θ1), . . . , π(a|s; θT ) to formalize the distribution of
state-action trajectories τ = {s1, a1, . . . , sT , aT }.

To enhance decision-making, a feature network ϕ(s; θf ) is
used to extract features from the state s ∈ S . The policy is
then defined on these features:

π(a|s; θ) = π(a|ϕ(s; θf ); θT ), (21)

where θf is the parameters of the feature network.
The state distribution is defined as dπ(s) when following

policy π. The long-term discounted average return of the ADM
agent is denoted as:

η(π) = Es∼dπ,a∼π(a|ϕ(s;θf ))

[ ∞∑
t=0

γtr(st, at)

]
. (22)

The Problem 1 can be transformed into a policy optimization
problem, which is to obtain the optimal policy π∗:

π∗ = argmax
π

η(π). (23)

B. Algorithm Overview

The ADM algorithm is introduced in Algorithm 1. All
running DTs are in a priority queue QD saved with running
duration time and DT index. In Lines 2 - 6, the current
processing DTs are obtained, and their actions are determined
by policy. Then, according to the problem constraints, in
Lines 8-16, whether the decision satisfies DT communication
constraints is checked. If not, a new finding that meets the
above rules is resampled. The computation time is calculated,
and the DT queue is updated in Line 18. Next, the processing
queue is updated by recurring the tuple value in the DT queue
in Lines 21 - 25. The environment is constantly updated.

C. Expert Demonstration

Due to the complexity and sparsity of the state space in
VECONs, the agent encounters challenges in exploration and
training instability. A substantial number of trajectories are
needed for the agent to find optimal strategies. To help the
agent explore the state and action space more purposefully
and reduce unnecessary exploration, pre-training with expert
demonstrations is employed to initialize the actor network.

The optimal policy resides within a particular region around
the expert policy. Once the agent enters this region, its
optimization is solely influenced by environmental interactions
rather than expert demonstrations [42]. As shown in Fig. 2,
we also merge expert trajectories with training trajectories,
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enabling the agent to gradually converge towards regions of
expertise under the guidance of expert features to improve
sample efficiency.

The state-action value function Qπ(s, a) is defined as:

Qπ(s, a) ≡ E

[ ∞∑
t=1

(r(st, at)− η(π))|s0 = s, a0 = a, π

]
.

(24)
This calculation starts from an initial state-action pair {s0, a0}
and follows policy π for subsequent actions. The definitions
of state-value function V π(s, π) and the advantage function
Aπ(s, a) are denoted as:

V π(s, π) ≡ Ea∼π(a|s) [Q
π(s, a)] , (25)

Aπ(s, a) = Qπ(s, a)− V π(s, π). (26)

The action-value function satisfies the well-known recurrence
equation, which is defined as:

Qπ(s, a) = r(s, a)− η(π) + γEs′∼Psa
[V π(s′, π)] , (27)

where s′ ∼ Psa = ρ(s′|s, a), s′ ∈ S stands for the pos-
sible transition probabilities of next states, V π(s′, π) is the
next state-value. Suppose there exists θE for expert policy
π(a|s; θE) that yields high rewards, which the straight-forward
constraint expressed as follows:

QπE

(s, a) = E

[
T∑

t=1

γtr(t; θE)

]
≥ Qπ(s, a). (28)

The objective is to minimize the difference against the best
fixed stationary policy, which can be defined as:

η◦ ≜ min
π

(
sup
θ
Qπ −QπE

)
. (29)

Equivalently, we aim to seek an optimal solution π∗ that
satisfies Qπ∗ ≤ QπE

+ η◦ with η◦ being always nonpositive,
which means the optimal policy outperforms the expert policy.

Intuitively, for a specific state s, an action a sampled from
the deterministic expert policy πE(a|s) is expected to yield a
higher return compared to the policy π, which is defined as:

V π(s, πE) ≡ Ea∼πE(a|s) [Q
π(s, a)] . (30)

The policy πE selects actions differently for the states visited
under policy π. The optimal policy is guided toward selecting
actions with a potentially high expected return.

Lemma 1. For any policies π and expert policy πE ,

η(πE)− η(π) = Es∼dπE

[
V π(s, πE)− V π(s, π)

]
. (31)

Proof. We consider stationary policies where state transitions
maintain the same distribution. Formally, if s ∼ dπ

E

, a ∼
πE(a|s), and s′ ∼ Psa, then s′ ∼ dπ

E

. With this and Eq.
(27), Eq. (30), we have:

Es∼dπE

[
V π(s, πE)

]
= Es∼dπE ,a∼πE [Qπ(s, a)]

= Es∼dπE ,a∼πE [r(s, a)− η(π) + Es′∼Psa [V
π(s′, π)]]

= Es∼dπE ,a∼πE [r(s, a)− η(π)] + Es∼dπE [V π(s, π)]

= η(πE)− η(π) + Es∼dπE [V π(s, π)] .
(32)

Algorithm 1: ADM Algorithm

Input : QD, πθ, j = 0
Output: Aτ

1 for t ∈ {1, 2, 3, · · · } do
2 Get the processing DT set QD(t)
3 for i = 1, 2, · · · , |QD(t)| do
4 Get DT processing property di(t)
5 Select the node e = at ∼ πθ
6 Get the corresponding vehicle ui(t)
7 Compute communication latency T com(t)

8 // Action Validation
9 while ze(t) + zdi

> ze or me(t) + ℓdi
(t) >

me or T pair(t) > Wdi
do

10 Resample the node e
11 j ←− j + 1
12 if j > |A| then
13 Select the node e = a ∈ A
14 break
15 end if
16 end while

17 Compute Computation time T colo(t)
18 QD(t)←− (T colo(t) + ϑui

, di)
19 Update the environment
20 end for
21 while QD(t) ̸= ∅ do
22 Get the sub-item (td, d) from QD(t)
23 if td > t then
24 QD(t)←− (td, d)
25 end if
26 end while
27 Update the environment
28 end for
29 Return Aτ

30 end

Rearranging, the result follows.

Lemma 1 shows that policy optimization relies on esti-
mating state-action value functions until they converge to
their optimal values. When the algorithm incorporates expert
demonstrations, estimating the target η(π) requires sampling
πE to generate expected trajectories.

The expected policy advantage objective, as derived from
Eqs. (26) and (31), is denoted as follows:

AθE (θ∗) = Es∼dπ∗

[
V πE

(s, π∗)− V πE

(s, πE)
]

= Es∼dπ∗

[ ∞∑
t=0

γt
[
r(st, at) + γV πE

(st+1)− V πE

(st)
]]

= Es∼dπ∗

[ ∞∑
t=0

γtAπE

(st, at)

]

=

∞∑
t=0

γtEst∼dπ∗Eat∼π∗(·|st)

[
AπE

(st, at)
]
.

(33)
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Thus, our goal is to determine a policy π∗ that satisfies Lemma
1 while ensuring a monotonic increase in policy performance.

The proof of Lemma. 1 demonstrates that the difference in
policy performance can be decomposed into the summation
of per-timestep value function estimators. An optimal strategy
can direct the state towards more advantageous values. There-
fore, the objective of the training phase is to learn to emulate
the expert demonstrations with a value function that adheres to
the Bellman equation and can be updated through TD learning
once the agent begins interacting with the environment.

Algorithm 2: Training of ADM Algorithm
Input : Initialize τE , mask distribution M,

parameters of policy network θ, value
network ω; Define τRL = ∅, pre-train step k.

Output: π∗

1 for pre-train steps t ∈ {1, 2, 3, · · · , k} do
2 Sample a set of trajectories τE from πE

3 Compute the policy function by Eq. (35)
4 Update the policy parameter by Eq. (39)
5 Compute the value loss by Eq. (36)
6 Compute the total loss on Eq. (37)
7 θt+1 ←− θt
8 ωt+1 ←− ωt

9 end for
10 for online training t ∈ {1, 2, . . .} do
11 Call Algorithm 1 with policy a ∼ πθ
12 Store trajectory τt = (st, at, st+1, rt) into τRL,

overwriting trajectory set if exceeded capacity
13 Sample mini-batch τ = ετRL ∪ (1− ε)τE
14 Sample bootstrap mask mt ∼M
15 Compute action-value function Qπθ (τt) +mt

16 Compute policy loss function by Eq. (35)
17 Update the policy parameter Eq. (39)
18 Compute value loss function by Eq. (36)
19 Update loss function parameter on Eq. (37)
20 θt+1 ←− θt
21 ωt+1 ←− ωt

22 st+1 ←− st
23 if done then
24 Break
25 end if
26 end for
27 Return π∗

28 end

D. Policy Training
The objective is to minimize the norm of the Eq. (29) to

find the optimal policy π∗(θ). We start by considering the self-
generated trajectories and estimate the actor network policy
gradient that is denoted as follows:

g = Est∼dπ,at∼π(·|st) [∇θlogπ(at|st) ·Aπ(st, at)] . (34)

Eq. (34) is obtained by differentiating the actor loss function
LQ(θ) of policy gradient, which is denoted as:

LQ(θ) = −Eτ∼πθ
[logπ(at|st)Aπ

θ (st, at)] . (35)

The loss function of the critic network, parameterized by ω,
is represented as:

LV (ω) = Eτ∼πθ

[
rt + γtV π

ω (st+1)− V π
ω (st)

]
. (36)

Thus, the overall loss function is denoted as:

LADM = LQ +
1

2
LV . (37)

To incorporate with expert demonstration, importance sam-
pling ratio we =

πθ(a
E
t |sEt )

πE(aE
t |sEt )

is used to improve the target policy
πθ based on expert trajectories. Thus, the corresponding policy
gradient of off-policy actor-critic algorithm is estimated as:

ĝ = ∇θ(η(π)− ηE)

= −∇θ

∞∑
t=0

γtEst∼dπ,at∼π(·|st)

[
weAπE

(st, at)
]
.

(38)

At the beginning, the policy π(θ) is randomly initialized. To
enhance the ADM agent in obtaining better estimate policy
gradients, the expert policy πE is added as follows:

gπ = g + λĝ, (39)

where λ is a constant weighting parameter.
To promote deep exploration, a bootstrap mask is applied

during the update of the actor network to mitigate overfitting
to expert demonstrations. We introduce bootstrap maskMt[n]
for each estimated value function Qn(s, a). The mask is
defined as Mt[n] ∼ ψ(t) = {0, κιat

(n)},∀t ∈ T, n ∈ |A|,
whereMt[n] represents the mask value at dimension n in time
step t. The distribution ψ(t) takes a value κ on the selected
action at. ιat

(n) is an indicator vector with a dimensionality
matching that of the action space. It takes a value of 1 at the
position corresponding to the selected action and 0 otherwise.
The masking distributionM is responsible for generating each
mt ∈ M(t). This mechanism facilitates training the model
to enhance exploratory behavior by introducing noise and
uncertainty, thereby mitigating bias and overfitting that may
arise from the influence of actual expert trajectories.

The training process of the ADM algorithm primarily in-
volves updating the network weights as shown in Fig. 2,
which is detailed in Algorithm 2. Lines 2 - 8 show that
the policy π(θ) is pre-trained using the expert trajectories τE
before interacting with the environment. The pre-training stage
estimates the policy gradient gπ from expert demonstrations
and updates the network loss. Next, the agent interacts with
the environment and stores transitions τRL. In Lines 13 - 15,
training batches τ are sampled from mixed replay buffers,
gradually reducing the proportion of expert demonstrations.
A bootstrap mask is applied to the policy network to mitigate
overfitting. Then, parameters in both actor and critic networks
are optimized and updated in Lines 16 - 22. The training
process continues until convergence and the optimal policy
π∗ is sought.

E. Computational Complexity Analysis

The ADM algorithm primarily involves two key operations:
Algorithm 1 and Algorithm 2. In Algorithm 1, the computation
of the system state Eq. (20) has a computational complexity
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of O(|E|). The time complexity of the policy network is
predominantly dependent on the network size, which can be
treated as a constant Ot. Then, the computational complexity
for action selection is O(Ot). Algorithm 2 focuses on the
update of network weights, as illustrated in Fig. II. This update
can be assessed regarding floating-point operations (FLOPs)
[25]. Denoting input and output dimensions of j-th linear layer
as Din

j and Dout
j , respectively, the FLOPs for the two layers

involved in the feature extraction process are 2(Din
1 − 1)Dout

1

and 2(Din
2 − 1)Dout

2 , respectively. The non-linear activation
functions, e.g., ReLU and Softmax, can be excluded from
FLOP counts as negligible in the overall computational time.
It should be noted that the complexity of the training phase
does not significantly impact the computational complexity
of decision-making within the network, treated as polynomial
time. These steps are executed sequentially, completing within
polynomial time. Moreover, our experiments also demonstrate
that the execution time of the ADM algorithm is acceptable,
as shown in Section V.

(a) Mobility areas and
edge nodes.
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interactions.

Fig. 3: (a) The outer areas of Cologne, Germany (9.5 km ×
9.5 km bounded by the coordinate pairs [6.914, 50.902] and
[6.999, 50.987]) as a large-scale dataset, the inner areas (3 km
× 3 km bounded by the coordinate pairs [6.924, 50.930] and
[6.971, 50.959]) as a small-scale dataset. Orange stars refer to
the location of base stations, with 448 base stations in the
large-scale range and 194 base stations in the smaller one.
(b,c) Distributions of DT communications.

V. NUMERICAL RESULTS

A. Simulation Scenario

Dataset and settings: The vehicular mobility trace of
the city of Cologne, Germany [17] is used. Each edge node

is equipped with an RSU server, which comprises multiple
CPU cores with computational capacities oe vary from 128
GHz, 256GHz, to 512GHz (i.e., different numbers of 16-
core, servers with 2GHz for each core) [26]. The distribution
coordinates of edge nodes in Cologne are obtained through
web crawling techniques from the webpage [43], as depicted
in Fig. 3a. The coverage radius of each RSU reaches up to
500 meters according to the C-V2X standard [44], [45].

To emulate DT direct trust interactions and frequencies
within the available communication range of moving vehicles
[34], scale-free interactive graphs are synthesized based on
interaction graph distributions reported in [46]. Cumulative
Distribution Functions (CDFs) of synthetically generated fre-
quencies of DT interactions are presented in Fig. 3. As the
number of arriving mobile vehicles fluctuates across different
time slots, DT interactions exhibit significant temporal uneven-
ness and task concentration, as shown in Fig. 3b, reflecting the
varying frequencies of different types of DT interactions. This
variability reflects the diverse traffic patterns seen in VECONs
at various times. Fig. 3c illustrates the cumulative distribution
of interactions among DTs over the observed period, showing
a more balanced distribution when considered over longer
time frames. This long-term perspective enhances data analysis
and forecasting, providing a deeper understanding of systemic
behaviors and trends in DT interactions.

The distances between two DTs are calculated by haversine
distance based on their geographic coordinates. The Simula-
tion of Urban Mobility (SUMO) package of Cologne [47] is
used to obtain reference locations to measure the hop distance
during DT migration. The positive coefficient β uniformly dis-
tributed in [1.0, 3.0] s/hop [26] as the fluctuate empirical values
to reflect the propagation conditions are not uniform across all
hops. Transmission power pu and noise power σ of wireless
access are set to 0.2W and 1.07×10−21W , respectively [48].
The channel gains hui,dk

is calculated based on the distance
between the vehicle and RSU with a path loss factor set to 6.
The network bisection bandwidth of wired communication v is
set to 1Gbps, and the bandwidth of backhaul communication
network bback is set to 500Mbps. The positive coefficient α for
relatively stable backhaul communication latency is specified
as 0.02 s/hop [37] by using the average value of the empirical
α coefficient.

The size of DT is uniformly distributed within [5, 100]
MB, mirroring the variety of real-world data sizes. This
range aligns with actual end-to-end vehicle data transmissions
[49], where RSUs handle time-series information (such as
position, velocity, and acceleration) that spans from basic
telemetry data to complex diagnostics data. The required CPU
cycles are uniformly distributed in [200, 5000] cycles/bit [37].
These ranges encompass various tasks, from high-resource-
demanding activities such as autonomous assistance navigation
to micro instances like road sensor data transmission.

Simulator: The simulation of VECONs is implemented in
Python, involving classes of RSUs, vehicles, DTs, interactive
networks, and the scheduler. The details are as follows:

1) RSUs. Each RSU includes its ID, resource capacities,
bandwidth, geographic coordinates, and running DT list.
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2) Vehicles. Each vehicle contains its ID, arrival time,
resource requests, running period, geographical coordi-
nates, group ID, and request RSUs.

3) DT. The DT class includes the DT ID, size, resource
requests, interaction ID, and the deployed RSU.

4) Interactions. The class of interactions mainly includes ID
pairs of interactions between each DT and other objects.

The environment is constructed based on these classes and is
updated online according to the interaction of the ADM agent.
As vehicles move, the agent decides whether to migrate the
DT and calculates total latencies. The hyperparameters of the
ADM algorithm are listed in TABLE II.

TABLE II: Hyperparameter Settings.

Hyperparameter Value Hyperparameter Value
Policy Layer Type Dense Layer Dimension 4
Layer Hidd. Units 128 Activation Function ReLU

Loss Function MSELoss Weighted Param κ 0.8
Optimizer Adam Weighted Param λ 1

Discount Factor 0.99 Learning Rate 0.0003
Batch Size 256 Initial Sample Percent ε 0.95
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Fig. 4: Reward.

Baselines: We compare the performance of the ADM
algorithm against the following five Baselines.

1) Greedy. A greedy algorithm selects the RSU with the
minimized total costs of communications latency, re-
source colocation, and migration during DT migration.

2) Never Migration (NM). The DT does not undergo mi-
gration that remains initialized on an RSU while the
corresponding physical objects continue to move.

3) Round-Robin (RR). The RR algorithm is a load-
balancing algorithm that distributes requests to RSUs.

4) Genetic Algorithm (GA). The GA algorithm is a heuris-
tic method drawing inspiration from natural selection,
incorporating mutation, crossover, and selection opera-
tors, and utilizing a comprehensive cost fitness function
during DT migration to identify the optimal RSUs.

5) DRL. A traditional actor-critic-based deep reinforcement
learning (DRL) algorithm selects the best RSUs for DT
migration directly from the same states of the ADM.

6) DRL-PT. A DRL algorithm integrates expert pre-training
solely to initialize the ADM agent efficiently.

The neural network structure of DRL and DRL-PT algo-
rithms is similar to the ADM algorithm with the same policy
network. However, the key distinction lies in the initialization
and training process. The ADM algorithm employs expert poli-
cies to guide its training, while the DRL algorithm starts with
random parameters. The trajectories of the Greedy algorithm
are saved as expert demonstrations. The ADM, DRL, and
DRL-PT algorithms are trained with the same learning rate,
mini-batch size, and number of gradient update steps.

B. Simulation Results

The performance of the proposed ADM algorithm and
baselines is evaluated, and the results are analyzed through
various experiments.

Performance of the ADM algorithm: We evaluate the
training performance of the ADM algorithm on small-scale
and large-scale mobility trace datasets with 500 and 2000
randomly selected mobility traces, respectively. Fig. 4 displays
training results of different algorithms. The final rewards
of the training are ADM > DRL-PT > DRL > Greedy
> GA > NM > RR. The DRL algorithm initially selects
random actions, leading to a period of exploration before
convergence. It performs worse than the Greedy algorithm at
the beginning, requiring approximately 470 training epochs
to reach a more competitive performance. In contrast, the
DRL-PT and ADM algorithms initialize their learning process
with expert-provided policies, ensuring efficient learning of
effective policies from the outset. Consequently, these two
algorithms quickly surpass the Greedy algorithm after initial-
ization and continue to improve their performance. Moreover,
the ADM agent gradually reduces reliance on expert guidance
during training, as illustrated in Fig. 5a. It rapidly converges to
a higher value after approximately 100 epochs. This demon-
strates that the ADM agent leverages expert knowledge to
accelerate its learning in the initial stages and then refines
its behavior through further exploration and experience.

To illustrate the convergence of the ADM algorithm, the
total loss, policy loss, and pretrain loss are shown in Figs.
5b, 5c, and 5d, respectively. In the pre-training phase, the
reduction and stabilization of pre-train loss indicate that the
ADM agent has initialized a policy that aligns well with
the desired sub-optimal policy, as shown in Fig. 5b. This
significantly accelerates the subsequent RL training phase. As
training progresses, the total loss curve in Fig. 5c initially
decreases and stabilizes after approximately 100 epochs, sig-
nifying convergence of the ADM algorithm. As shown in Fig.
5d, the rapid and early convergence of the actor loss in the
first 20 epochs illustrates that the actor network is initialized
with appropriate parameters. This means expert policies help
to generate meaningful actions from the beginning of training,
contributing to the quick convergence of the actor loss.

We evaluate the ADM algorithm and baselines on large-
scale vehicular mobility trace datasets to appraise their ca-
pacity for generalization. As illustrated in Fig. 6, the ADM
algorithm outperforms the other baseline algorithms, which
demonstrates the adaptability and robustness of the ADM
algorithm. The ADM algorithm reduces the overall average
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DT migration latency of Greedy, NM, RR, GA, DRL, and
DRL-PT algorithms by 6%, 14%, 63%, 26%, 28%, and 21%,
respectively. This shows the effectiveness of the ADM algo-
rithm in the context of the complex and dynamic VECONs.

Performance with different migration coefficients: To
compare the impact of migration latency on the overall latency,
we evaluate these algorithms with different coefficients of
migration latency in Fig. 7. In Fig. 7a, as the migration
cost coefficient increases, the performance of most algorithms
degrades except for the NM algorithm, which does not involve
DT migration. Due to the frequent migration decisions, the
RR algorithm is more susceptible to variations in migration
coefficient. It’s observed that the DRL-PT and DRL algorithms
exhibit poorer performance compared to the ADM and Greedy
algorithms when migration coefficients exceed 3. This obser-
vation indicates that the former two algorithms encounter ex-
ploration challenges. Exploration becomes difficult in environ-
ments with high migration coefficients, as suboptimal actions
result in significant penalties. Expert policies help mitigate
the exploration challenge by providing more informed actions,
enabling the ADM algorithm to benefit from integrating expert
insights to bypass unnecessary exploration. In Fig. 7b, the
ADM algorithm reduces the total migration latency of DTs
than Greedy, NM, RR, GA, DRL, and DRL-PT algorithms by
25%, 61%, 93%, 83%, 54%, and 23% on average, respectively.

Fig. 7c reveals that ADM, DRL, and DRL-PT algorithms
consistently demonstrate superior and stable communication
latency compared to other heuristic algorithms as the migration
coefficient progressively increases. Overall, the ADM algo-
rithm learns to maintain the lowest communication latency
among the scenarios with different migration costs, and the

order of communication latencies of these algorithms is ADM
< DRL-PT < DRL < Greedy < GA < NM < RR.

Performance with different numbers of moving vehicles:
Fig. 8 shows the performance of each algorithm under the
different numbers of moving vehicles. In Fig. 8a, the number
of moving vehicles is set from 400 to 800 with an interval
of 100. As the number of vehicles increases, DTs wait in
queues for longer durations, amplifying total DT migration
latency as shown in Fig. 8b. It can be seen from the figure
that the ADM algorithm can reduce up to 40% of the total
migration latency against the other algorithms. Overall, the
total migration latency with different numbers of vehicles
is reduced by 13%, 25%, 71%, 43%, 41%, and 25% on
average compared with Greedy, NM, RR, GA, DRL, and DRL-
PT algorithms, respectively. This means the ADM agent can
adapt its policies based on real-time interactions, learning to
make decisions that reduce DT migration latency in response
to changing environments. As shown in Fig. 8c, the ADM
algorithm achieves the lowest and most stable communication
latency of DTs. As the number of vehicles grows, the ADM
algorithm can dynamically select RSUs that minimize latency
and ensure efficient data transfer in complex communication
relationships. Overall, the order of average communication
latency of these algorithms is ADM < DRL-PT < DRL <
GA < Greedy < NM < RR.

Performance with different arriving rates of vehicles:
We evaluate the performance with different vehicle arriving
rates in Fig. 9. The migration latency is defined as the
total migration time for all DTs divided by their count. As
shown in Fig. 9a, the migration latency also rises with the
increase in the arrival rate. The system seeks to expedite DT
migration to meet DT response requirements. We find that
the ADM effectively adapts to changes in the arrival rate,
outperforming baselines that require DT migration. Fig. 9b
shows the total latencies of all evaluated algorithms increase
with the arrival rate increase since the number of DTs increases
at each time slot. Overall, the total ADM latency outperforms
Greedy, NM, RR, GA, DRL, and DRL-PT algorithms by 10%,
57%, 87%, 70%, 40%, and 36% on average, respectively.
This is because the ADM algorithm considers the current
resource availability and utilization across different RSUs and
makes more informed migration decisions from a long-term
perspective.

The total communication latency of different algorithms
is shown in Fig. 9c. It shows that the ADM algorithm
outperforms baselines with the order as ADM < DRL-PT <
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Fig. 8: Performance with different numbers of moving vehicles.

DRL < Greedy < GA < NM < RR while also exhibiting
more excellent stability. ADM, DRL, and DRL-PT algorithms
perform better than other heuristic baselines. In complex DT
communication relationships, where short-term gains might
lead to suboptimal long-term performance, RL can make
better trade-offs by considering the overall impact of decisions
over time. The communication latency mainly includes pair-
wise cost, cooperation cost, and interaction cost, as shown
in Figs. 9d, 9e, and 9f, respectively. As the arrival rates of
vehicles increase, the existing communications of DTs are
more complex, so these three detailed costs increase.

TABLE III: Computation resources for each decision-making.

Algorithm Vehicles RAM VRAM Execution Time
Greedy 500 - - 1.123× 10−3

NM 500 - - 2.510× 10−7

RR 500 - - 1.274× 10−6

GA 500 - - 3.941× 10−2

DRL 500 112.4 Kb 112.8 Kb 1.730× 10−3

DRL-PT 500 115.6 Kb 120.4 Kb 1.218× 10−3

ADM 500 143.2 Kb 124.1 Kb 1.319× 10−3

ADM 1000 139.8 Kb 120.0 Kb 1.522× 10−3

ADM 2000 140.6 Kb 148.2 Kb 1.537× 10−3

ADM 3000 146.4 Kb 152.4 Kb 1.597× 10−3

Computational complexity and execution time: To further
demonstrate the computational complexity of all algorithms,
we use torch.profiler [50] to obtain the Random Access
Memory (RAM), Video RAM (VRAM), and execution time
for different algorithms. The results of the average decision-
making resources and time are presented in TABLE III. The
algorithms with the least execution time are NM and RR
due to their lack of complex heuristic rules and neural net-
work reasoning processes. The GA algorithm has the longest
execution time because it needs to explore more possible

solutions. The computational demands and execution time of
the ADM algorithm closely resemble those of RL algorithms,
demonstrating that our enhancements do not significantly
increase operational overhead. Therefore, our algorithm main-
tains reasonable computational complexity and is practical.

Performance for DT migrations: To further illustrate
the effect of the algorithm, the average migration frequency
is shown in Fig. 10. It can be seen from the figure that
the average migration frequency of the ADM algorithm is
the lowest among all algorithms. This fully demonstrates
that the ADM algorithm can effectively reduce the number
of migrations while maintaining a high reward, further il-
lustrating the effectiveness of the algorithm. On the other
hand, the migration frequency of the Greedy algorithm is
relatively higher. The Greedy algorithm cannot consider long-
term rewards, resulting in frequent migrations. The latencies
of different sizes of DTs are shown in Fig. 11. The end-to-
end migration latencies range from hundreds of milliseconds
to a few seconds. The algorithms with larger latency do not
indicate flaws in the simulation model itself but rather reflect
the practical limitations and trade-offs inherent to baselines.
This highlights the necessity of algorithmic designs that our
ADM algorithm could balance computational efficiency and
decision effectiveness to minimize migration latencies.

Average migration latency for each DT: To ensure the
stability of our proposed ADM, the detailed and average
migration latencies over 200 diverse DTs are recorded in a
single episode. As depicted in Fig. 12, the ADM algorithm
demonstrates minimal volatility compared to other baselines
during the DT migration process. By the average migration
latency lines, it becomes evident that the ADM algorithm
achieves the lowest average latency time throughout the entire
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Fig. 9: Performance with different arriving rates of vehicles.
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episode. Therefore, the ADM algorithm has created a stable,
long-term optimized strategy that effectively addresses the
challenges of DT migration in VECONs.
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VI. DISCUSSION

The ADM algorithm is built on a robust foundation of
real-world data and can be deployed on RSUs using the
Kubernetes scheduling framework [51]. The status of vehicles,
e.g., speed and direction, can be seamlessly exchanged with
RSUs through C-V2X technology [7]. RSUs possess sufficient
computational and communication capabilities, allowing for
continuous monitoring and processing of real-time resource
load data collected by Prometheus via Kubernetes APIs [52].
Precisely, by utilizing custom iperf3 export files [53], the
status of DTs at each time slot, connectivity status, and
communication latency between each DT are monitored. The
colocation costs on each RSU and the migration latencies for
DTs across RSUs are recorded by the custom node export file.

There are two stages in the Kubernetes scheduling process:
the scheduling cycle and the binding cycle [51]. During the
scheduling cycle, the custom plugin of our ADM algorithm
can select the most suitable edge node for each DT, ensuring
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optimal migration for minimizing communication latency and
migration latency. Then, the binding cycle binds the decision to
the chosen RSU, effectively executing the migration decision.
The Kubernetes scheduling framework with complete cus-
tomization offers a robust platform to integrate our algorithm
effectively.

Deploying such a sophisticated system demands significant
engineering effort, and incorporating RL adds complexity
due to its iterative training and decision-making processes.
The main goal of this proposed algorithm is to evaluate DT
migration in VECONs. To thoroughly assess its performance
and efficiency, we utilized large-scale simulations as a robust
tool. This method enabled us to create a controlled yet real-
istic environment that mirrors complex real-world scenarios.
Additionally, we acknowledge the importance of practical
implementation. As noted, our team is simultaneously working
on integrating the algorithm into the Kubernetes system.

VII. CONCLUSION

In this work, we proposed the ADM algorithm to solve
the adaptive DT migration problem in VECONs. We modeled
the ADM problem comprehensively, considering the complex
communication latency, colocation cost, and migration latency.
Then, the ADM algorithm based on policy gradient RL was
proposed for adaptive migration decisions. Expert demonstra-
tions were utilized to improve the exploration and exploitation
in sparse environments. We evaluated the proposed ADM al-
gorithm using real-world data traces, and experimental results
showed that our ADM algorithm consistently outperforms the
baseline algorithms with an average 39% improvement in
migration latency. Future work will include integrating DT-
based complex task scheduling and edge caching, as well
as exploring hybrid strategies that combine local centralized
and global distributed decision-making. This dual approach
seeks to balance responsiveness and overall network sum-rate
performance.
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