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Abstract—Multiple unmanned aerial vehicle (UAV)-assisted
mobile-edge computing (MEC) leverages UAVs equipped with
computational resources as mobile-edge servers, providing flexi-
bility and low-latency connections, especially beneficial in smart
cities and the Internet of Things (IoT). Maximizing Quality of
Services (QoS) while minimizing energy consumption necessitates
developing a suitable offloading ratio and trajectory control
algorithm for UAVs. However, existing research on UAV control
algorithms overlooks significant challenges like the heterogeneity
of user equipments (UEs) and offloading failures. Furthermore,
there is a dearth of experimental validation in large-scale UAV-
assisted MEC scenarios. To bridge these gaps, we introduce a
QoS-aware energy-efficient multi-UAV offloading ratio and tra-
jectory control algorithm (QEMUOT). Specifically, 1) a composite
UE mobility model is proposed to enhance system heterogeneous
modeling, encompassing models for high-speed, low-speed, and
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fixed UEs; 2) QEMUOT is devised using multiagent reinforce-
ment learning algorithms to determine offloading ratio and
trajectory control decisions. To tackle sparse reward space and
offloading failures, we employ expert demonstrations for pre-
training and enhance reward mechanisms; and 3) experimental
simulations illustrate that our algorithm outperforms baseline
algorithms in user QoS with reduced energy consumption and
demonstrates superior scalability in scenarios with numerous
UAVs and UEs.

Index Terms—Heterogeneous mobility pattern, mobile-edge
computing (MEC), multiagent deep reinforcement learning,
unmanned aerial vehicle (UAV).

I. INTRODUCTION

OBILE-EDGE computing (MEC) emerges as a promis-
ing solution in smart city and Internet of Things (IoT)
by decentralizing computational resources to the network edge,
thereby enhancing the Quality of Services (QoS) within the
radio access network (RAN) [1]. Fixed-edge MEC encoun-
ters challenges, such as single-point failure [2] and high
deployment costs, necessitating redundancy [3]. In contrast,
unmanned aerial vehicle (UAV)-assisted MEC, using UAVs
as mobile-edge servers, offers flexible deployment in dynamic
scenarios [4]. UAVs establish Line-of-Sight (LoS) communi-
cation links at elevated altitudes for low-latency connections
and enhance robustness through dynamic path planning.
In UAV-assisted MEC systems, scheduling UAV clusters is
a crucial issue. Achieving load balance across each UAV and
ensuring comprehensive service coverage for all users demand
sophisticated trajectory control for UAVs [5]. Furthermore,
given the constrained computing resources [4], UAV control
involves managing not just the trajectory but also utilizing
UAVs as airborne relay stations. These UAV stations offload
computational tasks exceeding their capabilities to ground base
stations (BSs), hence necessitating control of the offloading
ratio [6]. When UAVs fly along different routes, they will be
connected to different user equipments (UEs) and receive vari-
ous computing requests. This will affect communication delays
and energy consumptions, resulting in different outcomes with
the same offloading ratio. Therefore, to improve QoS and
reduce energy consumption, it is essential to address trajectory
and offloading ratio control decisions simultaneously.
Unlocking the full potential of UAVs in MEC can effectively
provide users with higher QoS. However, several challenges
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need to be addressed. The first challenge is how to accurately
model the mobility of UEs, considering the dynamically
changing UE distribution. UE’s high mobility leads to frequent
changes in the location, resulting in varying feasibility in the
allocation of communication and computation resources over
time [7]. Consequently, this poses significant challenges to
MEC systems [8]. In practical smart city and IoT scenarios,
UEs demonstrate heterogeneous mobility characteristics [9].
Some UEs are highly mobile, such as smart vehicles and
logistics robots, while others have limited mobility, like
wearable extended reality (XR) devices used by pedestrians.
Additionally, some UEs remain stationary, such as smart
furniture. Ignoring the varied mobility patterns of UEs in
design assumptions disconnects from real-world situations.
Developing algorithms based on inaccurate UE mobility
models presents significant challenges [10] and can compro-
mise the reliability of algorithm validation experiments. It
is essential to integrate realistic UE mobility models into
algorithm design to ensure their practicality and adaptability
in real-world environments. Moreover, offloading failure (i.e.,
offloading interruption) is a typical issue due to the mobility
of UEs [11], [12]. UEs need to ensure a stable communication
link with the server while offloading within the coverage area.
Otherwise, interruptions in the connection can cause offloading
failures, resulting in significant wastage of computational
resources and a decline in QoS [13].

Limited attention has been given to studying the diverse
movement patterns of the UE and offloading failures in UAV-
MEC research. To address these gaps, we have enhanced our
model by introducing a composite UE motion model and
redesigning the reward function in our algorithms, as explained
in the next paragraph. This improvement not only enhances
connection stability but also decreases decision-making costs
for users, resulting in significant QoS improvements.

Another challenge is how to make offloading and tra-
jectory decisions for each UAV. In dynamic environments
with real-time information, traditional optimization algo-
rithms like successive convex approximation [14], [15] and
block alternating descent [16] are impractical due to their
high computational complexity. As a result, researchers
have increasingly turned to multiagent reinforcement learning
(MARL) as a promising alternative [5], [17]. To address
this complex nonconvex optimization problem, we convert
it into a decentralized partially observable Markov decision
process (Dec-POMDP). To tackle this challenge, we intro-
duce a QoS-aware energy-efficient multi-UAV offloading ratio
and trajectory control algorithm (QEMUOT) based on the
multiagent twin-delayed deep deterministic policy gradient
(MATD3) framework [18], where each UAV is treated as an
intelligent agent.

However, the widespread adoption of IoT has led to an
increasing demand for the number of UAV servers in MEC
systems [19]. This causes the joint action space and state
space of MARL to expand exponentially with the number
of agents [20], forming a more complex and reward-sparse
environment. Traditional exploration methods easily become
trapped in low-reward regions, posing challenges in collecting
effective policy experiences with high rewards [21]. This

40589

results in low training efficiency and difficulties in convergence
to the optimal solution. To address this challenge, we draw
inspiration from imitation learning to enhance the pretraining
process of the QEMUOT algorithm. This is achieved by
leveraging an expert algorithm which combines the Sailfish
optimization algorithm [22] with a greedy algorithm.

In this article, we present a novel composite UE mobility
model aimed at addressing the diverse mobility patterns of
users. We propose the QEMUOT algorithm, which leverages
MATD3 for making joint offloading ratio and trajectory
control decisions. To expedite the training process, we inte-
grate expert demonstrations into the algorithm using a novel
expert strategy. Furthermore, We introduce a modified reward
mechanism to prevent offloading failures by penalizing actions
that lead to such failures. Through a series of experiments,
we evaluate the performance of the QEMUOT algorithm,
demonstrating its superior convergence speed and effectiveness
in catering to high mobility and diverse UEs. The algorithm
shows an increase in reward of up to 62% compared to baseline
algorithms. Moreover, it proves to be applicable in larger scale
experiments and exhibits stability over baseline approaches.
The key contributions of this article can be summarized as
follows.

1) We classify UEs into three categories according to UEs’
different mobility abilities and patterns of movement: a)
high-speed UEs along city road network; b) low-speed
UEs not along city road network; and c) fixed UEs.
Then, we propose a composite UE mobility model to
better manage the heterogeneous of edge devices.

2) To optimize offloading ratio and trajectory control deci-
sions, we introduce the QEMUQT algorithm within the
MATD3 framework. To tackle the challenge of sparse
rewards, we integrate expert demonstrations for pretrain-
ing. Additionally, the reward mechanism is improved by
introducing a penalty for offloading failures.

3) Experimental results show that, compared to traditional
scheduling strategies, the QEMUQT algorithm demon-
strates superior convergence speed and effectiveness in
addressing the requirements of high mobility, diverse
UEs, and large-scale UAV-assisted MEC networking
scenarios.

The remainder of this article is organized as follows.
In Section II, the related work of our topic is illustrated.
The system model and problem formulation are described in
Section III and then reformulated as a Dec-POMDP process in
Section IV. The QEMUOT algorithm is proposed in Section V.
Performance is evaluated by experiment in Section VI. In
Section VII, several issues are further discussed. Finally,
Section VIII gives a conclusion of this article and some
possible future research directions.

II. RELATED WORK
A. Mobility Model
Current research has not extensively explored the high
mobility of UEs and the differentiation among different mobil-

ity patterns. Many models operate under the premise of UEs
being stationary and their positions being constant, thereby
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TABLE I
COMPARATIVE ANALYSIS OF RELATED WORKS

Reference | No. of UAVs Mobility of UEs Offloading Decision | QoS-aware | Energy-efficient Algorithm
[23] 1 Single mobile UE Ratio v X Analytical (Closed-form)
[14] 1 Fixed No decision X v Heuristic (SCA)
[16] 1 Fixed Binary X v Heuristic (BAD)
[15] 3 Fixed Binary v X Heuristic (SCA)
[24] 10 Fixed Binary X v Meta-heuristic (FCM)
[25] 1 Fixed Binary v X Meta-heuristic (D-WOA)
[26] 4 Markovian mobility model Binary v X RL (Q-learning)
[27] 1 Gauss-Markov model Binary v v RL (Double DQN)
5] 4 Fixed Binary X v/ MARL (MADDPG)
[28] 9 Fixed No decision v v MARL (MADDPG)
[29] 4 Fixed Binary v v MARL (Nash Q-learning)
[30] 2 Fixed or Random walk model Ratio v v MARL (MATD3)
[6] 3 Fixed Ratio v 7 MARL (IPPO)

Proposed 8~ 14 Heterogeneous mobility patterns Ratio v v MARL (QEMUOT)

overlooking their mobility or considering all UEs as uniform
entities [5], [6], [16], [29], [30]. Various mobility models
for individuals in urban environments have been put forth in
previous studies. Among these, the most significant models
can be summarized as follows:

1) Mathematical Model:

1) Random Walk (RW) [31]: It aims to simulate the
unpredictable stochastic movement characteristics of
individuals. In [32], UEs are initialized at random
positions within a rectangular area and commence
RWs.

2) Random Waypoint (RWP) [33]: Widely used to simulate
user mobility in wireless cellular networks, involving
individuals alternating between staying put and moving
toward a random destination. The RWP-Ci model is
an enhancement of RWP based on urban street maps,
offering a more accurate simulation of the movement
trajectories of urban users in real scenarios [34].

3) Gauss—Markov [35]: It assumes that an individual’s
velocity is correlated over time and is modeled with a
Gaussian—Markov process, which has been utilized in
several recent MEC models [36].

4) Individual Mobility (IM) [37]: Tt proposes an
enhancement to the RW model by introducing two
human-specific mobility mechanisms. The single-hop
mobility under the IM model is assessed in [38],
examining the practicality of simulating UE mobility in
5G small-cell network scenarios.

2) Traffic Simulation Software: In MEC scenarios, some
researchers have started using traffic simulation software such
as SUMO [39] to generate UE trajectories for simulation
experiments [40].

3) Real-World Data: Leveraging real-world data, such as
GPS trajectory data from mobile devices or traffic data from
cities, offers insights into genuine scenarios [41], [42].

To enhance the transition of models from the lab to
practical applications, real data grounding is crucial. However,
the scarcity of data sets with varied UE mobile trajectories
and real-time upload records poses a challenge for data
collection. While simulation software can mimic real-world
results, its complex algorithms require substantial computa-
tional resources and time [43]. Therefore, this article focuses
on introducing a composite UE motion model. This model,

despite its lightweight design, exhibits strong simulation capa-
bilities for a range of UE movements.

Hence, considering their simplicity, flexibility, and inter-
pretability, mathematical models are widely applied in the
field of communications. However, some of the existing
mathematical models often only excel at simulating certain
types of UEs. Therefore, our work focused on proposing a
composite UE motion model. This model, while maintaining
a lightweight structure, also demonstrates robust simulation
performance for diverse UE movements.

B. MARL for UAV-Assisted MEC

In Table I, we present a comparative analysis of our work
against key related studies on UAV-assisted MEC systems.
The comparison includes the number of UAVs scheduled (No.
of UAVs), consideration of UE mobility, type of offloading
decisions, optimization objective of the algorithms, and the
method employed.

In the realm of UAV-assisted MEC systems, various
studies have investigated the use of MARL methods to
address scheduling and offloading decisions faced by drones.
Wang et al. [S] utilized the multiagent deep deterministic
policy gradient (MADDPG) algorithm to improve fairness in
serving user devices while reducing device energy consump-
tion. However, this approach prioritizes QoS while neglecting
the energy consumption of the entire MEC system. The
MADDPG algorithm is employed in [28], demonstrating
superior convergence properties compared to traditional single-
agent algorithms and heuristic methods. Gao et al. [28]
emphasized simulation realism by considering 3-D UAV
movement and obstacle avoidance in urban scenarios but
overlook the mobility of UE. Lee and Kim [6] used an
independent proximal policy optimization (IPPO)-based algo-
rithm but do not compare it with other MARL algorithms.
Furthermore, their experimental evaluation lacks generaliz-
ability. Zhao et al. [30] employed the MATD algorithm,
providing comprehensive considerations for system models
and optimization objectives. Ning et al. [44] adopted the
MADDPG algorithm with a prioritized experience replay
(PER) technique. However, their experiments only assess
the scheduling of 2-3 UAVs, failing to explore larger scale
networking scenarios.
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{\'. Fixed UEs

\\ Offloading from UE to UAV \Ofﬂoading from UAV to BS

Fig. 1. Overall system model architecture in smart city IoT scenario.

Furthermore, Uchendu et al. [45] conducted a study on
MARL utilizing behavior cloning (BC) pretraining. They
highlight that initializing the critic network randomly could
result in the loss of a well-performing initial policy by the
end of pretraining, leading to a notable decline in actor
network performance. Traditional expert demonstrations com-
monly involve offline learning with data sets. Qiu et al. [46]
introduced a demonstration method in algorithmic form and
integrated it with MADDPG. Their experimentation in a
classic multiagent particle environment notably enhance sam-
ple efficiency and policy performance in cluster control.
However, they did not experiment with more advanced MARL
algorithms such as MATD3, and the application of this
pretraining technique in the UAV-assisted MEC field remains
unexplored.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-UAV MEC network operating in discrete
time, comprising a set of UAVs U, a set of UEs M, and a set
of BS K. As shown in Fig. 1, UAVs take off from the BS,
establishing a network. The UEs are randomly distributed in
the square-shaped area with a side length s, while multiple
UAVs fly over this region and directly communicate with
UEs to provide MEC services. UEs are classified into three
categories based on their motion characteristics: H for high-
speed UEs, L for low-speed UEs, and F for fixed UEs, where
M = HULUF. In each time slot ¢, every UE m € M generates
a computation-intensive task W, () that needs to be offloaded.
Dy, (t) and C,,(t) denote the size of task data and the number
of CPU cycles required for each bit of data, respectively. QoS
refers to the overall performance of a network or a network
service, as perceived by the end users. High QoS ensures
that the network provides satisfactory service to its users by
meeting specific performance metrics.

i Low-speed UEs not along city road networks
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Base Station kl
also the starting point of UAV

& High-speed UEs along city road networks

AN Trajectory of UAV (:‘ Coverage area of UAV

A. UE Mobility Model

1) High-Speed UEs Along City Road Networks: Examples
include vehicles and devices mounted on them. These UEs
utilize a RWP-Ci model [33], which integrates an exploration
mechanism and a return mechanism. They move at a constant
speed Vj, on city streets. UE h € H selects a destination and
moves to it following the shortest path. Upon reaching the
destination, & remains at the current location for a specified
time #;, after which it selects another destination, repeating
this process.

1) Exploration Mechanism: The UE h may choose an
intersection point that has never been reached as the
destination with the probability P, = phn;w, where
ns is the number of reached points, p;, € (0, 1], and
¥ > 0.

2) Return Mechanism: The UE h selects an intersection
point that has been reached before as the destination
with a probability of P,y = 1 — Ppey.

2) Low-Speed UEs Not Along City Road Networks:
Examples include pedestrians carrying user devices and
intelligent robots. This category of individuals utilizes the
Gauss—Markov model [47] to capture their movement patterns,
which are not dependent on road networks. For UE [ € L,
the velocity at time ¢ is denoted as v;(¢), and v;(t + 1) is
calculated as follows:

vit+ 1) =avi(t) + (1 — ), + 57/ 1 —a2wi ) (1)

where w;(f) ~ N (0, ‘7»%)- o, v, and o represent the memory
level, asymptotic mean, and standard deviation of velocity,
respectively. Then, the coordinates of user / at time ¢, p;(t) =
[x;(t), yi(t)], are updated as p,(t + 1) = p;(t) 4+ v;(¢) At, where
At is the time interval. To constrain UEs from leaving the
specified area, if the calculated p,(f + 1) is outside the area,
the UE maintains its current position.
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3) Fixed UEs: Examples include smart furniture, where
individuals are randomly distributed within the region and
remain stationary.

B. UAV Mobility Model

It is assumed that UAVs fly at a fixed altitude Z with a
maximum speed of Vyax. The motion of UAV u at time 7 is
represented by the tuple (v, (), 6,(?)), where v, (¢) € [0, Viax]
and 6,(t) € [—m, m] are the constant velocity of uniform
flight and direction angle within the time slot (¢, + A¥),
respectively. The flight distance is Ad,(r) = v,(¢t) At. The
propulsion power is obtained as [48]

1
2

PP(Vy = Pol 1+ W +pr| 1+ i v
-0 tip2 ! 4V()4 2V()2
1 3
+ doprssaV 2

where Py is blade profile power in hovering and Vi, is the tip
speed of rotor blade. P; and vo denote induced power and the
mean rotor-induced velocity under the hover condition. As for
parasite power, dy, p, s, and sz denote the fuselage drag ratio,
air density, rotor solidity, and rotor disc area, respectively.

C. Communication Cost

1) Offloading Transmission From UEs to UAVs: At time t,
the coordinates of UAV u, denoted as X, (f), are expressed
as (x, (1), ym(?), Z). The position of UE m, denoted as X,,(¢),
is represented as (x,(?), yu(?),0), and the position of BS
k is given by (xg,yr,0). The service area of the UAV is
characterized by a circular region [49]. The coverage radius
of a UAV at work is r. = (Z/tan(®)), where ® denotes the
maximum coverage angle. The elevation angle between UAV
u and UE m at time ¢ is denoted as 6y (¢). The probabilities
of establishing LoS and Non-LoS (NLoS) connections can be
expressed as

1

PLOS — 3
um 1 + aexp(—=b[Oum(t) — al) )
P — 1 plos @

where a and b are constants determined by the communication
environment.
The channel gain between u and m during offloading is
obtained as
1

Ko (P%I%SMLOS + PEI%OSMNLOS)[ZZ + dumz(t)]

where Ko = (47f./c)?, 1/Ky represents the channel power
gain at the reference distance dy = 1 m, f. is the carrier
frequency, c is the speed of light, and upo.s and unpos are
the attenuation factors for LoS and NLoS links. dyy,(¢) is the
horizontal distance between u and m.

The offloading data rate is calculated as

Rum(®) = (Bu/NY () loga 1 + gum(®Pw /o] (6)

where By is the bandwidth of the UAV, and ny (1) is the
number of UEs offloading computational tasks to u in time

gn(h) = @)

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 24, 15 DECEMBER 2024

slot r. We assume that the bandwidth is equally shared among
all UEs. Pyy is the transmit power of the UE. 012] is the additive
Gaussian white noise power for UAV communication.

The transmission delay and energy consumption are
obtained as

TS (1) = D,y () /Rum (8), 7
Efas(t) = [Py + Ppy/Ny (0] Toe™ (1) (8)

where Py, is the receiving power of UAVs. A UAV can only
provide offloading services to UEs within its coverage area,
i.e., dym(f) < r, and at one time slot, a UE can only offload
tasks to one UAV.

An offloading indicator variable &,y (¢) is defined, where
&um(®) = 1 when UE m is served by UAV u, and &, () =0
otherwise. Assuming that each UE can be served by at most
one UAV at any given time, satisfying ZLU‘ &m(@®) €1{0,1}.0
indicates that the UE is currently in the coverage blind spot
of the UAV. Thus, there is no UAV available for offloading
computational tasks, and 1 otherwise. The UE selects the
offloading UAV & with the minimal transmission delay when
it is within the overlapping coverage zone of multiple UAVs:
u = argmin{7T2 ()}, m € U,, where U, is the available
UAVs set of UE m.

2) Offloading Transmission From UAVs to BSs: The data
rate of the wireless link between UAV u and BS k at time ¢
is calculated as follows:

Ruc(0) = Bilogy| 1+ 8P/ (NEWai?) | )

where P}, represents the transmission power of UAV, and
NK(#) denotes the quantity of tasks that u intends to offload
to the BS during time slot . It is assumed that the BS can
provide a connection bandwidth Bk to the UAV.

Each UAV has a finite capacity epax. A task queue model
is employed following a first-in—first-out (FIFO) policy. When
the incoming tasks surpass €max, the UAV must offload them
to the nearest BS. Furthermore, UAV retains the option to
either process the tasks or offload them entirely to the BS. In
each time slot, the UAV makes an offloading ratio decision,
denoted as 3,(t) € [0, 1]. Let €,(¢) denote the number of tasks
in the task queue of UAV u in the current time slot. Define
the indicator variable B,n,(f) for UAV u deciding whether to
offload W,,,(¢¥). In time slot #z, UAV u processes the first v, (7)
tasks locally in its queue, Bum(?) is set to 1. The subsequent
tasks are offloaded to the BS and Bym(¥) = 0, v,(t) =
Lex(H)[1 — 6,(f)]]. The transmission delay is determined by

[1 - ,Bum (t)]Dm (t)

Ttrans 1) = 10
t
EMS (1) = _ka(lt) TS (p). (11)

D. Computation Cost

1) Computation at UAVs: In the conventional FIFO queue,
tasks are typically executed in a sequential manner. However,
this sequential execution approach, when applied to MEC
servers, can result in timeouts for subsequent tasks. In our
pursuit of equitable service provision for each user, we propose
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Fig. 2. Kernel density plot for the transmission delay and computation delay
of tasks.

the incorporation of a parallel processing mechanism in UAV-
MEC. This mechanism allows tasks in the queue to be
executed in parallel to a certain extent.

Given that tasks do not actually arrive simultaneously
at UAV-MEC, this assumption may introduce some degree
of error. We have conducted an analysis of this error, as
depicted in Fig. 2. Notably, the transmission delay of tasks
is significantly smaller than the computation delay, exhibiting
a difference of approximately three orders of magnitude.
Consequently, this error can be deemed negligible and falls
within an acceptable range.

The total computing resources, denoted as Fy, are equitably
distributed among all tasks presently in progress. The compu-
tation delay and energy consumption for UAV u are obtained
as [41]

Bum () Do (1) Cn (1)

Tom™ (1) = 12
® Fam® (12
Eun " () = kfam@®>Tam " (2) (13)

where x = 10720 is a hardware related constant and fym(7)
is the computing resource allocated by the UAV to the task.
Due to the assumption of fair distribution of total computing
resources, fum(t) = FU/N,ZAV[(t).

2) Computation at BSs: The UAV always offloads to the
BS % with the minimum transmission delay, i.e., the closest BS
in horizontal distance: k = argmin{d,x (1)}, k € K. The BS
computation delay for UE m’s task can be calculated by
TP (1) = Bum ()Dy (1) Cu () / Fi, where F is the computing
resources allocated by the BS to each task.

E. Problem Formulation

We aim to maximize QoS while minimizing energy con-
sumption. In our work, maximizing QoS involves addressing
three critical aspects: 1) maximizing service coverage; 2) min-
imizing delay; and 3) reducing offloading failure. In time slot
t, UAV u’s energy consumption can be calculated as

M|
E®K(0) = Y Eum[EXS (1) + ESS (1) + Egm D (0] (14)
m=1

EN°(t) = APP® (v (1)) 15)

40593

where E}fSk(t) and E} °(r) denote the task-processing and
propulsion energy consumption, respectively. The total energy
consumption is E,(t) = E{f“k(t) + EP™®(1). The total computa-
tion delay on UAV u at time ¢ is expressed as

M|

() =) &um[Toa™ ()
m=1

+max{Tym " (), TomS () + Ty (D}].

umk mk

(16)

The weighted sum of E,(r) and 7,(¢) is represented as
the system cost Cu(t) = w1E,(t) + wr1,(¢), where w; and
wy are weights signifying the relative importance of energy
consumption and execution delay, respectively. By simultane-
ously optimizing UAV’s mobility decisions (v,(?), 6,(f)) and
offloading ratio §,(f), the optimization problem is formulated
as follows:

) IT| U]
(0. 60(0)840) ,:Zh,; Cul®) a7
s.t. wl+wy =1 (18a)
0,0) < xu(®,yu(®) < (s,5) YuelU (18b)
(x400),y,(0) eV Vuel (18¢)
(. y0) €V VkeK (18d)
Ay () > Diin Yu,u' € U, u# o/ (18e)

dum (t + T () Eum () Bum () <7

where Dpj, in (18e) is defined as the minimum flying distance
established to prevent collisions among UAVs, and V in (18d)
denotes the set of vertices within the specified square area,
coinciding with the location of BSs. As defined in (18c) and
(18b), UAVs initiate their operation from the BS position and
are mandated to remain within the predefined area. To prevent
offloading failures, (18f) guarantees the UE stays within the
service range of the UAV during the transmission of computing
results. Each UAV naturally serves as an agent, rendering
it highly suitable for exploration within the framework of
MARL.

VYu € U, m e M (18f)

IV. POMDP FORMULATION

The joint optimization of the UAV-assisted MEC
system can be formulated as a Dec-POMDP process:
(N,S,A,P,R,O,n,y) [50], where N is the set of agents, S
is the set of states, A is the set of actions, P is the transition
function of state, R is the reward function shared by all the
agents, O is the set of observations, n is the amount of the
agents, and y is identified as the discount factor. The details
are as follows.

1) Agent: Each UAV serves as an agent and N is a finite

set of n = |U| agents.

2) State: The state at time ¢ includes the location
information, motion state, and connection status of all
UAVs and UEs, denoted as s(t) € S.

3) Action: UAV decisions encompass both mobility
strategy and task offloading ratio. At time slot f,
the action for UAV u is represented as a,(f) =

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:13:49 UTC from IEEE Xplore. Restrictions apply.



40594

{vu(®), 6,(1), 8,1}, a,(¢) € A, while the global action is
represented as a(t) = {a,(¢) | Yu € U}.

4) Transition: When the agents interact with the environ-
ment by performing actions a(f), the state transitions
to s(t + 1) based on the transition function P(s(t +
Dls(@), a(®).

5) Observation: The observation set is denoted as O. UAV
u’s local observation o0,(f) € O at time ¢ is a partial
information obtained from s(¢), including the relative
positions of all UEs and other UAVs with respect to
u, the motion states of all agents, and the offloading
decision between all UEs and u. Formally, o,(f) =
{{Xu(t) — Xy (@) | Yu' € U}, {Xu(t) — Xpn(®) | Vm €
M}, {§um (1) | Vm € M}}.

6) Reward: The reward function R, (¢) for UAV u is defined
as follows:

n1/Cy (1), if satisfying constraints,
U]

Ru(t) = { —m2NS (1) — m3Nj (1) — n4[|U| - ZN{,”(I)} (19)

u=1

+nse€,(f), otherwise

where 71 represents the hyperparameter tied to the
system cost. On the other hand, 7, constitutes the
collision constraint that penalizes both UAVs if their
distance falls short of the predetermined safety param-
eters. In this equation, Nuc (1) denotes the count of
UAVs within the safety perimeter of u. Specially, 13
is identified as the offloading failure constraint where
le indicates the number of tasks on u subjected to
offloading lapses. Essentially, n3 serves as a deterrent
against offloading failures, aiming to prompt UAVs to
dynamically adjust to variations in UE locations. This, in
turn, reduces the occurrence of connection interruptions,
ensuring the robust execution of tasks on the UAV. As
the equation progresses, 14 symbolizes the no-service
constraint, which imposes a penalty on all UAVs should
any UEs be left unattended. Finally, ns ascribes to the
service compensation, offsetting the no-service penalty
in proportion with the current number of UEs attended
to by UAV u.

Therefore, induced by the expected reward of UAV agents, the

action-value function is defined as follows:

Qu(s(1), au(n) = E |:Z Y Ru(®)s(0), au(t)} (20)

t=0

where y € [0, 1).

V. QEMUOT ALGORITHM

The QEMUQT algorithm strategically determines offloading
ratios and trajectory controls based on the MATD3 [18]
architecture. Within the MADDPG algorithm framework,
each agent is equipped with an actor network [policy func-
tion pu,(0)] responsible for selecting actions to maximize
the expected return, and a critic network [value function
Qu(s,ay, az, ..., ay)] evaluating the future return expectancy
associated with specific actions. MATD3 adopts a dual-critic
mechanism, where each agent has an additional critic network
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to reduce estimation bias, thereby enhancing training stability.
Following the centralized training with decentralized execution
(CTDE) paradigm, in the QEMUQOT algorithm, the critic
networks undergo centralized training, while actor networks
undergo decentralized training.

As stated in Algorithm 2, we first randomly initialized the
actor network wu,(o) with weights 6,, and critic networks
{Ou.i(s, a1, az, ..., ay)}i=1,2 with weights {w, ;}i=1,2 for each
agent u. The target networks, denoted as (i, and {Qu,i}i:l,%
are initialized as copies of the actor and critic networks,
respectively. In order to enhance sample efficiency and sta-
bilize the training process, a replay buffer D with a capacity
of 10% is employed by each UAV. The target networks are
gradually updated using a soft update mechanism defined
by the parameter 7. The soft update method ensures that
i, and {Qu,i}izl,g manifest a delayed adaptation to their
learned network counterparts, and thus, their gradual path
toward synchronization preserves the balanced operation of the
learning system. The equation for network weights updating
can be summarized as follows:

/

’ .
w,; < Tty + (1 —1o,;, =12,

0, < 10, + (1 — 1)0,.

21
(22)

The target networks not only facilitate smoother training but
also define the optimization target for the critic network as
follows:

Yu=ru+y0uilsG+ 1), a1t + 1), aa(t + 1), ...,

au(t + D) la,(t+1)=p/,(0u (1)) - (23)

As demonstrated in Fig. 3, the training of the QEMUOT
algorithm can be divided into two phases: 1) the pre-
training phase (Section V-B) and 2) the exploration phase
(Section V-C). During the pretraining phase, we quickly
improve the performance of the action network to a fairly
optimal level through expert policy demonstrations, as shown
in Section V-A. Meanwhile, a “warm-up” period is imple-
mented for the critic network to prevent potential errors that
may lead to a catastrophic decline in training performance
during the upcoming exploration phase. As the algorithm
transitions into the exploration phase, our model diverges
from the expert policy and autonomously explores potentially
superior decisions using an e-greedy exploration strategy.

A. Expert Algorithm

Due to limited high-quality expert data, we propose an
expert algorithm named the Greedy-Sailfish (GSF) algorithm,
which combines the Sailfish optimization algorithm with a
greedy algorithm. Sailfish optimization is a currently popular
metaheuristic algorithm [22], and there have been many suc-
cessful applications in IoT and MEC scenarios, demonstrating
outstanding performance [52], [53]. Therefore, we chose it
as our expert algorithm.The greedy algorithm guides flight
direction decision making, while the subsequent decisions on
offloading ratio and flight speed are treated as a simplified
constrained optimization problem. We employ the Sailfish
algorithm to optimize these decisions.
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Fig. 3. Framework of the QEMUOT algorithm.

Algorithm 1: GSF Algorithm

Input: Global state s(¢) and the function g(s(?), a(?)))
Output: Global action {a,(?) | Vu € U}
1 for each agent u do

2 if €,(r) # 0 then

3 Select my, the UE farthest from u in u’s
offloading queue ;

4 Fly towards my to prevent offloading failure of
my

5 else

6 Select m,, the UE closest from m globally ;

7 Fly towards m, to improve m.’s QoS ;

8 Utilize the Sailfish optimizer [51] for determining
{vu(®), 84(1) | Vu € U} ;

As summarized in Algorithm 1, if €, () # 0, u selects the
UE my farthest from it in its offloading queue. Subsequently,
u fly toward my at Vipax to prevent offloading failure for my.
Conversely, if €,,(f) = 0, u selects the no-service UE m, that
is closest to it globally, and fly toward m.. Given {0,(¢) | Yu €
U}, the utilization of the Sailfish optimizer for determining
flight speed v, and offloading ratio §, involves reformulating
the problem along with its associated constraints

consider x = {v,(?), 6,(¢t) | Yu € U}
U]
Min. f(x) = > C,()
u=1
(18a)—(18f).

The global action execute function is represented as f(x) =
g(s(?), a(t)), where for a given state s(¢) and global action a(t),
the function g returns the value of f(x) by stepping forward
and backtracking in the computer simulated experimental
environment.

(24)
(25)

s.t.

B. Pretraining Phase

To tackle the challenge posed by training with randomly ini-
tialized network parameters in sparse reward spaces, Epretraining

[T—— = r—————— e ——— 1 — —
| Target | | Evaluation | Transition
[ —|_Soft | | {8(8), o(t), r(0), S(E+1), o(t+1)} .
||Critic Net Q,(s, a)| < Critic Net Q,(s, a)| 1 T JI 1 o Q
| IUpdate I | I noise
| |Critic Net 62(5, a)l | | |Critic Net Q,(s, ﬂ)l | | Replay buffer ] -
e e = pp— : - | o) Target Actor Net ji(0) Q

Q[ |Update | — : Soft Update

o
: |

| Actor Net p(o) |(——| Policy Gradient
Update

episodes of pretraining are conducted in the initial stages of
training. As depicted in Algorithm 2, during the pretraining
phase, the expert policy GSF is utilized instead of the actor
network for decision making. This process generates expert-
demonstrations experience samples, which are subsequently
stored in the buffer. Each iteration, a random mini-batch B
consisting of tuples (s(¢), 0,(?), a,(t), r, (), s+ 1), 0,(t+ 1))
is sampled from D for updating the network.

Specifically, BC pretraining [45] is executed on the actor
network, with the learning objective aimed at minimizing the
disparity between the decisions made by the policy network
and those made by the expert policy. The loss function for BC
is defined as follows:

Lac(6,) = E[ (2u(0u(0) = a,(0))?] 26)

The BC pretraining for actor network eliminates the inef-
ficiency of exploring better actions only through random
interactions with the environment when the policy is poor.
Instead, the policies rapidly attain a higher level by imitating
the expert algorithm, establishing a strong starting point for
learning and facilitating more effective exploration in high-
reward regions right from the outset.

Warm-up training is then conducted on the critic network to
mitigate excessively biased value estimates from an untrained
(cold start) critic network. Such biases could potentially result
in the forgetting of a well-performing policy [45]. The loss
function for warm-up training using expert-guided experience
is defined as follows:

Lwam-up (@) = B[ (Qui(s 0, a1 (9, a2(0). . aw@) = )’ .
27)

C. Exploration Phase

During this stage, the network training basically follows the
conventional online MATD3 algorithm. To achieve enhanced
performance through fine-tuning and to prevent overfitting to
the expert policy, we employ an decaying e-greedy exploration
strategy. When the model chooses to explore, Gaussian noise
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Algorithm 2: QEMUQOT Algorithm

Input: Randomly Initialize Actor networks u,(0) with
weights 6, and Critic networks
{Ou.i(s, a1, az, ..., ay)}i=1,2 with weights
{wy,i}i=1,2 for each agent u

Output: Target networks [i,(0) and {Qu, i}i=1,2 with

weights 6], and {a);’i}izlgz for each agent u

1fore=1— E do

2 Initialize a random process ;

3 fort=1—T do

4 if e < Epretraining then

5

6

Get global state s(¢) ;
Use expert policy (Algorithm 1) to determine
B global action {a,(¢)|Yu € U} ;

7 else

8 for each agent u do

9 Get observations 0,(?) ;

10 Use Actor network i, (0,(t)) to select

action a,(t) with e-greedy noise ;

11 for each agent u do

12 Execute action a,(¢), get reward r, (), and
new observation o,(t + 1) ;

13 Store

(s(0), 0u(1), au(®), ry (1), s(t + 1), o (t + 1)) in
| replay buffer D ;

14 Sample B batch of data from D ;

15 for each agent u do

16 if e < Eprerraining then

17 Update the Critic network by optimizing
loss LWarm—up(a)u,i) 5

18 Update the Actor network by optimizing
loss Lpc(6u) ;

19 Update target networks ;

20 else

21 Update the Critic network by optimizing
loss Lg(wy,i) ;

22 if t mod Tp then

23 Update the Actor network by

computing gradient Vg, J (1) ;
24 Update target networks ;

& ~ clip(N(0, 63), —c, ¢) is introduced to the output of the
policy network. The actions are computed as follows:

0y (1)),
u(ou(®)) &e

where the value of e decays gradually as the number of
training iterations increases, meaning that the intensity of
exploration decreases as the network performance improves.
The expert policy is no longer utilized in this phase. Instead,
the QEMUOT algorithm captures experiences by interacting
with the environment using its own policy network g, (0).
Various methods are employed to reduce the overestimation

with probability 1 — €

with probability € (28)

a,(t) = {
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bias of the critic network, including the dual-critic mechanism
and adding noise to the predictions of the target actor network.
By taking the lower value from the outputs of the two critic
networks, the original optimization target for the critic network
yu is reshaped into y, as follows:

Vo =ruty ,mlianu,i(s(f‘}‘ D.ay(t+1), at+1), ...,
=1,

ay(t + D)la,(+1)=p!, (0u 1)+, (29

where &, ~ clip(N (0, 0,2), —c, ¢) serves as a regularization.
Therefore, the critic networks are optimized by minimizing
a specific loss function as follows:

Le(0n) =B [(QuiG@, a1, ax0), ... av@) —¥,)’]
i=1,2. (30)

It is worth noting that, despite the warm-up process during
pretraining, we cannot ensure that the current critic network
has achieved a sufficiently high performance level. Moreover,
the experiences utilized in the warm-up phase are generated by
the expert policy rather than the policy network itself, resulting
in different distributions. Consequently, during exploration, the
critic network might still offer erroneous guidance to the actor
network, leading to the degradation of the policy network. To
mitigate this issue, the QEMUQOT algorithm adopts a delayed
updating strategy for the policy network, giving the trainer
time to wait for the critic network to stabilize. Specifically,
as depicted in line 22 of Algorithm 2, after every Tp updates
of the critic network, the actor network undergoes an update
based on the policy gradient defined as

Vol (1) = E [ V,1(00) Va, Qut (0, a1, a0, ...

aU(Z))|at¢(t):M11(011(t))]' (31)

D. Algorithm Analysis

First, we explore the computational complexity of the expert
algorithm we introduced. The worst case complexity of the
greedy algorithm is O(|U||M]|), where |U| is the number of
UAVs and |M] is the number of UEs. Moreover, considering
the population size Npop, the maximum iterations M jer, the
function’s dimension D,, and the complexity of evaluating
fevl, the computational complexity of the Sailfish Optimizer
Algorithm (SFO) can be estimated as O(M iter (Npopf evi+Dob)),
while O(Dyp) = O(|U]) and O(fey1) = O(JU|M]). To sum
up, the overall computational complexity of Algorithm 1 is
approximately equal to that of SFO, which can be calculated
as O(M iter(Npop O(|U| M) + O(IU]))).

According to the model, the decision-making process for
each UAV requires the current location information of all UEs,
and there is also the sharing of movement information between
UAVs. Therefore, the communication complexity should be
O(|U| 4+ |M]). The critic and actor networks for each UAV
are both DNN networks: the input dimension for the Critic
includes state and action information, and the output is the
Q value, with dimensions of (JU| + |[M| + (JU| + |K)|M]| +
3) and 1, respectively. Thus, the computational complexity
of the critic network can be considered as O(|U| + M| +

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:13:49 UTC from IEEE Xplore. Restrictions apply.



YIN et al.: QoS-AWARE ENERGY-EFFICIENT MULTI-UAV OFFLOADING RATIO AND TRAJECTORY CONTROL ALGORITHM

250 A . 5 0 Ul sl
N D4 o . &«
. . o
. ¥ 4 * o Ny ‘ * O o
L) ».
200 : .r- v D -~ 5 X
° . : .\ ..
150 = 24 i e
. 2 4
o o ..
. * S . .
. . . = e o
100 A
o o \ - TV
. C ] . L] .
. P \_._/b B
o 0
. wle . . (P8
A o
50 - e 5 = 5=
. ®e * *
. A, . A2
0 4 I
T T T T T T
0 50 100 150 200 250
# UE with MEC service # UE without MEC service A Uav
i
O Areas without coverage (no service) —:-:— City streets for High-speed UE

Fig. 4. Visualization of simulation experiment environment.

(JU] + |K])|M]| 4 3). The Actor’s input and output dimensions
are (|[U| + |M]|) and 3, hence, its computational complexity
can be viewed as O3(|U| + [M])). Since CTDE paradigm
is used, the overall system complexity of Algorithm 2 is
o(uU|(|U] + |M|)2). Additionally, the training process com-
plexity is also influenced by the batch size and the number of
episodes.

VI. EXPERIMENT
A. Experimental Settings

As depicted in Fig. 4, the simulation area encompasses
a square with a side length of s = 250 m. Each corner
hosts a BS, and a grid street network facilitates High-speed
UE movement within the area. Ten UAVs take off from the
BSs, then work with a flying height of Z = 100 m and a
maximum speed of Vpox = 10 m/s. In each random process,
the simulation iterates for 50 steps starting from the moment
the UAVs take off, denoted as T = 50. Due to multiple
UAVs taking off from the same starting point, and since
our experiment neglects the process of UAV ascent, collision
constraints are not considered in the first five steps, i.e., the
value of 7, is set to 0. The edge angle of the coverage area
is set to ® = 50° [49]. There are 200 UEs with a ratio
of 2:5:1 for three types of UEs (|H|:|L|:|F|). The minimum
safe distance between UAVs is set to Dpjn = 5 m, and
the propulsion energy consumption parameters are referenced
from [48]. See Table II for all the main parameters of the
simulation network environment.

Fig. 4 illustrates the scenario where UAVs have just taken
off from the BSs, beginning to network and cover UEs in the
area. We assume our experimental environment is symmetrical,
and each BS and UAV is homogeneous. Therefore, we per-
formed a simple fair allocation for the assignment of 10 UAVs
to 4 BSs as follows: the BSs in the top-left and bottom-left
corners each host three UAVs, while the BSs in the top-right
and bottom-right corners each accommodate two UAVs. The
UAVs “converge” from the four corners toward the center,
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TABLE II
NETWORK ENVIRONMENT PARAMETERS
Parameters | Value
Side length of simulation area s 250 m
Flying height of UAVs Z 100 m
Maximum velocity of UAVs Viax 10m/s
Minimum velocity of UAVS Viin Om/s
Elevation angle of UAVs © 50° [49]
Ratio of 3 types of UEs [H|:|L|:|F| 2:5:1
Minimum safe distance between UAVS Dyin 5m
Blade profile power in hover Py 79.86 W
Induced power in hover P; 88.63 W
Tip speed of rotor spade Vip 120m/s
Mean rotor induced velocity in hover vo 4.03m/s
Fuselage drag ratio do 0.6
Tip speed of rotor spade p 1.225kg/m®
Rotor disc area sq 0.503 m?
Rotor solidity 7 0.05
Size of task data D., N (8,4) Mbits
Number of CPU cycles required for each bit | N(150,50)
of data Cy,(t) cycles/bit
Constant velocity of H V}, 10m/s
Fixed stay time of H ¢, 10s
Exploration parameter of H pj, 0.2
Exploration parameter of H 1) 0.5
Memory level of L o 0.8
Symptotic mean of L’s velocity v; 2m/s
Standard deviation of L’s velocity &, 0.2
Maximum task capacity of UAVS €max 10
Attenuation factors for LoS links pr0s 2dB
Attenuation factors for NLoS links pnros 20dB
Carrier frequency f. 3GHz
Bandwidth of UAVs By 10MHz
Bandwidth of BSs Bx 10MHz
Noise power for UAV communication o 100 dBm
Transmitting power of UEs Pxs 20dBm
Receiving power of UAVs Py, 100dBm
Transmitting power of UAVs P}, 100 dBm
Total computing resources of UAVs Fy 20 GHz
Computing resources for each task of BSsFx | 30 GHz

progressively diminishing the size of the unserviced area in the
center of the region, thereby augmenting the system’s service
coverage rate.

The simulations are performed using Python and PyTorch.
In both the actor and critic networks, we utilized four fully
connected hidden layers, with [400, 800, 800, 400] neurons.
All the networks are trained with a learning rate of 107> and
updated using the Adam Optimizer. For the decaying e-greedy
exploration strategy, & is initialized to 0.8 and decays with a
rate of 0.999. Additionally, o, and o, are set to 0.2 x ¢ and
0.2, respectively. The policy update frequency Tp is fixed at 5.

Five baseline algorithms are conducted.

1) Random: In which each action is chosen randomly and
follows a uniform distribution.

2) Naive-Greedy: The greedy algorithm, as discussed in
Section V-A, is employed for flight direction selection.
However, it is important to note that the flight speed
v, (?) is consistently set to the maximum value Viax, and
the offloading ratio §,(f) remains fixed at 50%.
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3) GSF: As illustrated in Section V-A. We set the initial
population Npop to 30. The algorithm process is repeated
for M jier = 500 iterations. And parameter values of Agr
and egp are considered, 4 and 0.001, respectively [22].

4) MARL: We also conduct training with conventional
MADDPG and MATD3 approach. Furthermore, we
maintain the same network structure, learning rate,
optimizer, and epsilon exploration strategy as those used
in the QEMUOT algorithm, along with other main
parameters to ensure a fair comparison.

B. Experimental Results

1) Training Performance of the MARL Algorithms: Fig. 5
displays the training curves of the reinforcement learning
algorithms. The QEMUOT algorithm achieves a 36.62% and
62.47% improvement in reward compared to the conventional
MADDPG and MATD3 algorithms, respectively. Compared
to MATD3, QEMUOT only takes 36.59% of episodes in
pretraining to converge to the reward of Naive-Greedy algo-
rithm. When transitioning from the pretraining phase to
the exploration phase, the policy network experienced a
slight performance degradation, approximately 23.89% of the
previous training reward increments. It is noteworthy that
no further performance degradation occurred. Subsequently,
after only 1000 episodes, it quickly recovered to performance
comparable to that of the Naive-Greedy algorithm, and further
explored potentially superior solutions, surpassing all other
MARL algorithms in the baselines.

From an overall performance perspective, QEMUOT did
not achieve a higher average reward than GSF, our expert
algorithm. This gap is primarily due to the difference in
information input between the two. GSF utilizes the SFO
metaheuristic algorithm, which requires knowledge of the
objective function and allows for repeated substitutions for
optimization. In other words, the GSF algorithm benefits
from additional environmental information for the next time
slot, which is unknown to QEMUOT. The policy network
of QEMUOT must make decisions based solely on the
current state. Furthermore, this discrepancy highlights the
highly unpredictable environmental changes in this scenario
and the diverse behavior patterns of UEs. Consequently, the
observation space for the agent becomes extremely complex,
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TABLE III
AVERAGE DECISION TIME PER SYSTEM ITERATION PER AGENT (MS)

UEs Random Naive-Greedy GSF QEMUOT
200 5.04x107% 524x1072 1.03x10%2 5.33 x 109
400  5.04x 1073  1.02x 1071  1.74 x 102 7.51 x 10°
600 5.04x107% 1.55x10~1 268 x 102 8.93 x 10°
800 5.04x1073 208x10~! 3.53x10%2 1.01 x 10!
1000 5.04 x 1073 253 x 1071 4.54 x 102 1.25 x 10!

suggesting that there is still room for improvement in our
policy network structure.

2) Algorithm Time Cost Comparison: It is crucial to note
that, as depicted in Table III, although the reward achieved by
the QEMUOT algorithm in the experiments did not surpass
that of our designed expert algorithm GSF, the QEMUOT
algorithm exhibits significant superiority in practical usability
compared to GSF. First, Table III presents a comparison of the
average time taken for each decision in the simulation by the
algorithms. It is evident that the decision time of the QEMUOT
algorithm remains within an acceptable range, typically below
10 ms, whereas the decision time required by GSF consis-
tently exceeds hundreds of milliseconds. Another fundamental
reason is that GSF requires the objective function to be
known and can be repeatedly substituted for optimization.
In the experimental simulation, we can repeatedly substitute
action decisions, i.e., the solution to the problem, into the
virtual environment for optimization by stepping forward and
backtracking to obtain the objective function value. However,
in practical applications, stepping forward and backtracking
is practically impossible. Therefore, this algorithm lacks prac-
tical usability, which indirectly highlights an advantage of
MARL methods.

3) Performance With Different Numbers of UEs and UAVs:
Furthermore, we conduct experiments by varying the number
of UAVs and UEs, as depicted in Figs. 6 and 7. The simulation
results consistently demonstrate that our algorithm outper-
forms baselines across various metrics. Service Coverage Rate
refers to the proportion of users within UAV coverage, which
reflects UAVs’ basic network deployment and service coverage
capabilities. As observed, the service coverage of QEMUOT
exceeds 95%, reaching parity with GSF and surpassing all
other baseline algorithms. Notably, compared to traditional
MARL algorithms, QEMUOT demonstrates a distinct energy-
efficient advantage, consistently exhibiting the lowest system
energy consumption across all scenarios.

With an increase in the number of UEs, the energy con-
sumption of traditional MADDPG algorithms exceeds that of
the Greedy algorithm. In contrast, the energy consumption of
QEMUOT not only remains at a low level, but even surpassing
GSF by 5.26% in scenarios with 1000 UEs as shown in Fig. 6.
This energy efficiency translates to extended UAV endurance
and reduced operational costs.

QEMUOT’s performance is particularly noteworthy in
reducing offloading failure rates, which significantly con-
tributes to achieving the lowest average user latency
performance. Compared to MADDPG and MATD3 algo-
rithms, it reduces latency by 28.13%—40.67% and offloading

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:13:49 UTC from IEEE Xplore. Restrictions apply.



YIN et al.: QoS-AWARE ENERGY-EFFICIENT MULTI-UAV OFFLOADING RATIO AND TRAJECTORY CONTROL ALGORITHM

—¥—Random —o—Naive-Greedy —1—GSF

91.00 x10°

& 0.95 —————3
[

2 0.90
go.ss
> 0.80
o

00.75
go.o
20.65
& 0.60

w

N

w

N

v/"\’__./v

-

Energy Consumption

o

200 400 600 800 1000 200 400 600 800 1000

Number of UEs Number of UEs

Fig. 6. Performance with different numbers of UEs.

—%¥—Random —eo—Naive-Greedy —r—GSF
L1.00 c x104
el ——=————JHR-Fe
=225

[ Q
Y0.90 ' oo
©
©0.85 5
o @ 175
>0.80 S 150
0075 / Y125
oo e
20.65 2075 —
$0.60 W 0.50'
n=oE g 10 12 14 ' 8 10 12 14

Number of UAV Agents Number of UAV Agents

Fig. 7. Performance with different numbers of UAVs.

1.0
0.9
0.8 1
0.7 1
0.6 1
0.5 1

CDF

1

1
0.4+ 1

1
0.3 1 H
0.2 1 !
1
0.1 1

0.0 T }
0.0 0.1 0.2

—— Random —— Naive-Greedy
—— GSF —— MADDPG

03 04 05 06 07 08 09 10
Offloading Failure Rate

QEMUOT
—— MATD3

Fig. 8. Cumulative distribution of the offloading failure rate.

failure rates by 22.23%-44.74%, respectively. Fig. 8 shows
the cumulative distribution functions of the offloading failure
rate accumulated by all algorithms in the primary experimental
environment, with the dashed line indicating the mean value
of the offloading failure rate. It can be observed that the
QEMUOT algorithm ensures lower offloading failure rates at
more instances and achieves the lowest average offloading
failure rate among all baseline algorithms. The reduction in
offloading failure is attributed to QEMUQOT’s optimized task
scheduling and resource allocation mechanisms, which also
contribute to lower system energy consumption by minimizing
unnecessary task retransmissions.

It is important to note that although the offloading failure
rate of the Random algorithm is significantly lower than that
of the GSF expert algorithm, this does not necessarily indicate
that the random algorithm is more effective in avoiding
offloading failures compared to the GSF algorithm. This
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phenomenon actually occurs because the premise of offloading
failure is the initiation of task offloading. As depicted in
the first diagrams on the left of Figs. 6 and 7, the Random
algorithm fails to achieve high user coverage, resulting in
the inability to connect to the UAV server initially, thus
avoiding offloading failure incidents altogether. In contrast,
the QEMUOT algorithm, which achieves high user coverage
comparable to the GSF algorithm, also ensures a low offload-
ing failure rate. This demonstrates the positive impact of our
designed reward mechanism, providing a compelling solution
for enhancing QoS and mitigating offloading failure issues.

4) Performance With Different Preferences for Energy
Consumption and QoS: Finally, the algorithm’s flexibility and
controllability are further demonstrated by the ability to fine-
tune the preference between energy consumption and QoS
through adjustments to the weights w; and w;, as illustrated in
Fig. 9. For QEMUOT, by increasing wj, the system’s energy
consumption can be decreased by an additional 20.55%, albeit
at the cost of sacrificing QoS. Conversely, increasing w; pri-
oritizes QoS improvement over energy savings, resulting in a
further 2.74% improvement in service coverage rate, a 10.16%
reduction in offloading failure rate, and an 11.24% decrease
in latency. This underscores the algorithm’s adaptability to
various optimization objectives and its capability to strike a
balance between conflicting performance metrics.

The fine-tuning capability of QEMUOT allows for the
optimization of system performance according to dynamic
environments and user demands. By adjusting w; and w»
appropriately, operators can effectively manage the balance
between energy efficiency and service quality to meet diverse
application requirements. This flexibility positions QEMUOT
as an ideal solution for future MEC systems, where effective
resource management and excellent QoS are crucial.
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VII. DISCUSSION

The effectiveness of our proposed algorithm is evident
from the experimental results. However, several issues require
further discussion and clarification.

A. Mitigating the “Slippery Slope” at the Start of
Exploration

Upon detaching from the expert strategy’s guidance, the
reward mechanism shifts from BC to autonomous exploration.
During this phase, the critic network is susceptible to signifi-
cantly biased value estimations, leading to poor reward signals
that can cause the initially effective strategy to be forgotten.
This problem becomes apparent as the training performance
shows a “slippery slope” when the episode count hits 4000.

However, it is apparent that this decline was promptly
mitigated. This improvement is attributed to the warm-up
operation applied to the critic network and the delayed
updating process in actor network training. These measures
prevented further catastrophic degradation of the network.
This outcome highlights the effectiveness of the proposed
pretraining algorithm.

B. Practical Implementation

To deploy the system described in our work in real-world

scenarios, several critical aspects must be considered.

1) The system’s task offloading service follows the time
slot partition protocol, dividing operational time into
distinct slots. This method ensures organized task man-
agement, efficient resource allocation, and improved
system performance.

2) QEMUOT’s scheduling decisions rely on GPS posi-
tioning data for all UEs and the task offloading
relationships. UAV clusters exchange location and oper-
ational status information. Therefore, protocols, such as
MQTT or CoAP, can be used for efficient real-time
communication [54].

3) UAVs depend on LoS communication links to maintain
reliable connections, requiring optimal flight altitudes
and distribution. Currently, mature regulations on the
density, flight altitude, and communication coverage
angle of urban drone clusters are lacking. Parameters
from previous studies can be used [49].

By addressing these gaps, our proposed algorithm can be

practically deployed, guiding our future work.

VIII. CONCLUSION AND FUTURE WORK

Our work focused on addressing challenges in multi-
UAV-assisted MEC. We have introduced a composite UE
mobility model to refine system modeling and proposed
an MDRL-based algorithm, namely, QEMUOT. Notably, the
offloading failure problem was tackled for the first time
in UAV-assisted MEC. Our study contends that due to the
distinctive mobility of UAVs, UAV-MEC systems leads to a
paradigm shift from conventional user-side offloading deci-
sion designs to the optimization of server-side scheduling
mechanisms. Experimental simulations illustrated that the
proposed QEMUOT algorithm outperformed baseline algo-
rithms in terms of QoS, energy consumption reduction, and
greater scalability in large networks. Our algorithm exhibited
rapid convergence and low overhead, highlighting its practical
applicability. Future work will consider using containers to
virtualize UAV services and further optimize offloading costs
from the perspective of the container layer. Furthermore, to
address the challenge of highly complex environment spaces in
reinforcement learning methods, replacing the policy network
with a diffusion model could be a promising research direction.

REFERENCES

[1] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of MEC in the Internet
of Things,” IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84-91,
Oct. 2016.

[2] D. C. Nguyen et al., “Federated learning meets blockchain in edge

computing: Opportunities and challenges,” IEEE Internet Things J.,

vol. &, no. 16, pp. 12806-12825, Aug. 2021.

T. Pathirana and G. Nencioni, “Availability model of a 5G-MEC system,”

in Proc. 32nd Int. Conf. Comput. Commun. Netw. (ICCCN), 2023,

pp. 1-10.

Y. Yazid, 1. Ez-Zazi, A. Guerrero-Gonzalez, A. El Oualkadi, and

M. Arioua, “UAV-enabled mobile edge-computing for IoT based on Al:

A comprehensive review,” Drones, vol. 5, no. 4, p. 148, 2021.

[5] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo,
“Multi-agent deep reinforcement learning-based trajectory planning
for multi-UAV assisted mobile edge computing,” IEEE Trans. Cogn.
Commun. Netw., vol. 7, no. 1, pp. 73-84, Mar. 2021.

[6] W. Lee and T. Kim, “Multi-agent reinforcement learning in controlling
offloading ratio and trajectory for multi-UAV mobile edge computing,”
IEEE Internet Things J., vol. 11, no. 2, pp. 3417-3429, Jan. 2024.

[7] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware

joint task scheduling and resource allocation for cooperative mobile

edge computing,” IEEE Trans. Wireless Commun., vol. 20, no. 1,

pp. 360-374, Jan. 2021.

Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A

survey on mobile augmented reality with 5G mobile edge computing:

Architectures, applications, and technical aspects,” IEEE Commun.

Surveys Tuts., vol. 23, no. 2, pp. 1160-1192, 2nd Quart., 2021.

[3

=

[4

=

[8

=

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:13:49 UTC from IEEE Xplore. Restrictions apply.



YIN et al.: QoS-AWARE ENERGY-EFFICIENT MULTI-UAV OFFLOADING RATIO AND TRAJECTORY CONTROL ALGORITHM

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

M. Dai, Y. Wu, L. Qian, Z. Su, B. Lin, and N. Chen, “UAV-assisted
multi-access computation offloading via hybrid NOMA and FDMA
in marine networks,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 1,
pp. 113127, Jan./Feb. 2023.

S. D. A. Shah, M. A. Gregory, S. Li, R. dos Reis Fontes, and L. Hou,
“SDN-based service mobility management in MEC-enabled 5G and
beyond vehicular networks,” IEEE Internet Things J., vol. 9, no. 15,
pp. 13425-13442, Aug. 2022.

C. Li, H. Wang, and R. Song, “Intelligent offloading for NOMA-assisted
MEC via dual connectivity,” IEEE Internet Things J., vol. 8, no. 4,
pp. 2802-2813, Feb. 2021.

T. Tan, M. Zhao, and Z. Zeng, “Joint offloading and resource allocation
based on UAV-assisted mobile edge computing,” ACM Trans. Sens.
Netw., vol. 18, no. 3, pp. 1-21, 2022.

Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet
systems with intermittent connectivity,” IEEE Trans. Mobile Comput.,
vol. 14, no. 12, pp. 2516-2529, Dec. 2015.

S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049-2063, Mar. 2018.
S. Sun, G. Zhang, H. Mei, K. Wang, and K. Yang, “Optimizing multi-
UAV deployment in 3-D space to minimize task completion time in
UAV-enabled mobile edge computing systems,” IEEE Commun. Lett.,
vol. 25, no. 2, pp. 579-583, Oct. 2020.

J. Ji, K. Zhu, C. Yi, and D. Niyato, “Energy consumption minimization
in UAV-assisted mobile-edge computing systems: Joint resource allo-
cation and trajectory design,” IEEE Internet Things J., vol. 8, no. 10,
pp. 8570-8584, May 2021.

Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling
and learning algorithms for containers in fog computing,” IEEE Trans.
Services Comput., vol. 12, no. 5, pp. 712-725, Sep./Oct. 2019.

J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, “Reducing overes-
timation bias in multi-agent domains using double centralized critics,”
2019, arXiv:1910.01465.

L. Zhang and N. Ansari, “Latency-aware IoT service provisioning in
UAV-aided mobile-edge computing networks,” IEEE Internet Things J.,
vol. 7, no. 10, pp. 10573-10580, Oct. 2020.

X. Lou, J. Zhang, Y. Du, C. Yu, Z. He, and K. Huang, “Leveraging joint-
action embedding in multi-agent reinforcement learning for cooperative
games,” IEEE Trans. Games, vol. 16, no. 2, pp. 470-482, Jun. 2024.
B. Kang, Z. Jie, and J. Feng, “Policy optimization with demonstrations,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2018, pp. 2469-2478.

S. Shadravan, H. R. Naji, and V. K. Bardsiri, “The sailfish Optimizer:
A novel nature-inspired metaheuristic algorithm for solving constrained
engineering optimization problems,” Eng. Appl. Artif. Intell., vol. 80,
pp- 20-34, Apr. 2019.

S. Huang, J. Zhang, and Y. Wu, “Altitude optimization and task allo-
cation of UAV-assisted MEC communication system,” Sensors, vol. 22,
no. 20, p. 8061, 2022.

Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient
resource allocation in UAV-enabled mobile edge computing networks,”
IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4576-4589,
Sep. 2019.

L. X. Nguyen, Y. K. Tun, T. N. Dang, Y. M. Park, Z. Han, and
C. S. Hong, “Dependency tasks offloading and communication resource
allocation in collaborative UAV networks: A metaheuristic approach,”
IEEE Internet Things J., vol. 10, no. 10, pp. 9062-9076, May 2023.
X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-
UAV networks: Deployment and movement design,” IEEE Trans. Veh.
Technol., vol. 68, no. 8, pp. 8036-8049, Aug. 2019.

Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, “Path planning
for UAV-mounted mobile edge computing with deep reinforcement
learning,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5723-5728,
May 2020.

A. Gao, Q. Wang, W. Liang, and Z. Ding, “Game combined multi-agent
reinforcement learning approach for UAV assisted offloading,” IEEE
Trans. Veh. Technol., vol. 70, no. 12, pp. 12888-12901, Dec. 2021.

W. Lu et al., “Secure transmission for multi-UAV-assisted mobile edge
computing based on reinforcement learning,” IEEE Trans. Netw. Sci.
Eng., vol. 10, no. 3, pp. 1270-1282, May/Jun. 2023.

N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, and D. Niyato, “Multi-agent
deep reinforcement learning for task offloading in UAV-assisted mobile
edge computing,” IEEE Trans. Wireless Commun., vol. 21, no. 9,
pp. 6949-6960, Sep. 2022.

M. Sanchez and P. Manzoni, “ANEJOS: A java based simulator for ad
hoc networks,” Future Gener. Comput. Syst., vol. 17, no. 5, pp. 573-583,
2001.

(32]

[33]

[34]

[35]

[36]

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

40601

Y. Nie, J. Zhao, F. Gao, and F. R. Yu, “Semi-distributed resource
management in UAV-aided MEC systems: A multi-agent federated
reinforcement learning approach,” IEEE Trans. Veh. Technol., vol. 70,
no. 12, pp. 13162-13173, Dec. 2021.

J. Kraaier and U. Killat, “Random direction or random waypoint? A
comparison of mobility models for urban environments,” Eur. Trans.
Telecommun., vol. 19, no. 8, pp. 879-894, 2008.

W. Li, X. Chen, and S. Lu, “Content synchronization using device-
to-device communication in smart cities,” Comput. Netw., vol. 120,
pp. 170-185, Jun. 2017.

B. Liang and Z. J. Haas, “Predictive distance-based mobility manage-
ment for PCS networks,” in Proc. 18th Annu. Joint Conf. IEEE Comput.
Commun. Soc. Future Now, vol. 3, 1999, pp. 1377-1384.

S. Zhang, L. Zhang, F. Xu, S. Cheng, W. Su, and S. Wang, “Dynamic
deployment method based on double deep Q-network in UAV-assisted
MEC systems,” J. Cloud Comput., vol. 12, no. 1, p. 130, 2023.

C. Song, T. Koren, P. Wang, and A.-L. Barabdsi, “Modelling the scaling
properties of human mobility,” Nat. Phys., vol. 6, no. 10, pp. 818-823,
2010.

X. Ge, J. Ye, Y. Yang, and Q. Li, “User mobility evaluation for 5G small
cell networks based on individual mobility model,” IEEE J. Sel. Areas
Commun., vol. 34, no. 3, pp. 528-541, Mar. 2016.

D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO-simulation of urban mobility,”
Int. J. Adv. Syst. Meas., vol. 5, nos. 3—4, pp. 128-138, 2012.

L. Zhao et al., “Vehicular computation offloading for industrial
mobile edge computing,” IEEE Trans. Ind. Informat., vol. 17, no. 11,
pp. 7871-7881, Nov. 2021.

Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Multi-user layer-
aware online container migration in edge-assisted vehicular networks,”
IEEE/ACM Trans. Netw., vol. 32, no. 2, pp. 1807-1822, Apr. 2024.

Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning schedul-
ing algorithms for containers in mobile edge computing,” IEEE Trans.
Mobile Comput., vol. 22, no. 6, pp. 3444-3459, Jun. 2023.

T. Saber, C. Cachard, and A. Ventresque, “Ronin: A SUMO interop-
erable mesoscopic urban traffic simulator,” in Proc. IEEE 22nd Int.
Conf. High Perform. Comput. Commun. IEEE 18th Int. Conf. Smart
City IEEE 6th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), 2020,
pp. 1104-1111.

Z.Ning, Y. Yang, X. Wang, Q. Song, L. Guo, and A. Jamalipour, “Multi-
agent deep reinforcement learning based UAV trajectory optimization
for differentiated services,” IEEE Trans. Mobile Comput., vol. 23, no. 5,
pp. 5818-5834, May 2024.

I. Uchendu et al., “Jump-start reinforcement learning,” in Proc. Int. Conf.
Mach. Learn., 2023, pp. 34556-34583.

Y. Qiu, Y. Jin, L. Yu, J. Wang, Y. Wang, and X. Zhang, “Improving
sample efficiency of multi-agent reinforcement learning with non-expert
policy for flocking control,” IEEE Internet Things J., vol. 10, no. 16,
pp. 14014-14027, Aug. 2023.

R. He, B. Ai, G. L. Stiiber, and Z. Zhong, “Mobility model-based non-
stationary mobile-to-mobile channel modeling,” IEEE Trans. Wireless
Commun., vol. 17, no. 7, pp. 4388—4400, Jul. 2018.

Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Trans. Wireless Commun.,
vol. 18, no. 4, pp. 2329-2345, Apr. 2019.

M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D
placement of an unmanned aerial vehicle base station (UAV-BS) for
energy-efficient maximal coverage,” IEEE Wireless Commun. Lett.,
vol. 6, no. 4, pp. 434-437, Aug. 2017.

F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDRPs, vol. 1. Cham, Switzerland: Springer, 2016.

T. Nguyen, N. Tran, B. M. Nguyen, and G. Nguyen, “A resource
usage prediction system using functional-link and genetic algo-
rithm neural network for multivariate cloud metrics,” in Proc.
IEEE 11th Conf. Service-Oriented Comput. Appl. (SOCA), 2018,
pp. 49-56.

J. Deepa, S. A. Ali, and S. Hemamalini, “Intelligent energy efficient
vehicle automation system with sensible edge processing protocol in
Internet of Vehicles using hybrid optimization strategy,” Wireless Netw.,
vol. 29, no. 4, pp. 1685-1701, 2023.

M. K. Rajoriya and C. P. Gupta, “Sailfish optimization-based controller
selection (SFO-CS) for energy-aware multi-hop routing in software
defined wireless sensor network (SDWSN),” Int. J. Inf. Technol., vol. 15,
no. 7, pp. 3935-3948, 2023.

E. Longo, A. E. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni,
“MQTT-ST: A spanning tree protocol for distributed MQTT brokers,”
in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1-6.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:13:49 UTC from IEEE Xplore. Restrictions apply.



40602

Jiajie Yin is currently pursuing the B.Sc. degree
in data science with Beijing Normal University,
Zhuhai, China.

His research interests include multiagent systems,
deep learning, reinforcement learning, edge
computing, Internet of Things, and data mining.

Zhiqing Tang (Member, IEEE) received the B.S.
degree from the School of Communication and
Information Engineering, University of Electronic
Science and Technology of China, Chengdu, China,
in 2015, and the Ph.D. degree from the Department
of Computer Science and Engineering, Shanghai
Jiao Tong University, Shanghai, China, in 2022.

He is currently an Assistant Professor with
the Institute of Artificial Intelligence and Future
Networks, Beijing Normal University, Zhuhai,
China, and also visiting the Key Laboratory of
Computing Power Network and Information Security, Ministry of Education,
Qilu University of Technology (Shandong Academy of Sciences), Jinan,
China. His current research interests include edge computing, resource
scheduling, container scheduling, and reinforcement learning.

Jiong Lou (Member, IEEE) received the B.S. and
Ph.D. degrees from the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, Shanghai, China, in 2016 and 2023,
respectively.

Since 2023, he has been a Research Assistant
Professor with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University.
He has published more than ten papers in leading
journals and conferences, such as IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE
TRANSACTIONS ON MOBILE COMPUTING, and IEEE TRANSACTIONS
ON SERVICES COMPUTING. His current research interests include edge
computing, task scheduling, and container management.

Dr. Lou has served as a reviewer for Computer Networks, Journal of
Parallel and Distributed Computing, IEEE INTERNET OF THINGS JOURNAL,
and ICDCS.

Jianxiong Guo (Member, IEEE) received the
B.E. degree from the School of Chemistry and
Chemical Engineering, South China University of
Technology, Guangzhou, China, in 2015, and the
Ph.D. degree from the Department of Computer
Science, University of Texas at Dallas, Richardson,
TX, USA, in 2021.

He is currently an Associate Professor with the
Advanced Institute of Natural Sciences, Beijing
Normal University, Zhuhai, China, and also with
Guangdong Key Laboratory of Al and Multi-
Modal Data Processing, BNU-HKBU United International College, Zhuhai.
His research interests include social networks, wireless sensor networks,
combinatorial optimization, and machine learning.

Dr. Guo is a member of ACM and CCF.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 24, 15 DECEMBER 2024

Hui Cai (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Shanghai Jiao Tong University, Shanghai, China, in
2020.

She is currently an Assistant Professor with the
College of Computer, Nanjing University of Posts
and Telecommunications, Nanjing, Jiangsu, China.
She has authored papers in research-related inter-
national conferences and journals, such as IEEE
INFOCOM, IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, IEEE/ACM IWQoS,
and Computer Networks (Elsevier). Her research interests include data trading,
incentive mechanism design, mobile crowdsensing, and game theory.

Xiaoming Wu received the M.Eng. degree in
computer science and technology from Shandong
University, Jinan, China, in 2006, and the Ph.D.
degree in software engineering from Shandong
University of Science and Technology, Qingdao,
China, in 2017.

Since 2006, he has been with Shandong Computer
Science Center, Qilu University of Technology
(Shandong Academy of Sciences), Jinan, where he
is currently a Full Professor and also serves as the
Director of the Faculty of Computer Science and
Technology. His research interests include cyber security, industrial Internet,
data security, and privacy protection.

Tian Wang (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees in computer science from
Central South University, Changsha, China, in 2004
and 2007, respectively, and the Ph.D. degree in
computer science from the City University of Hong
Kong, Hong Kong, in 2011.

He is currently a Professor with the Institute of
Artificial Intelligence and Future Networks, Beijing
Normal University, Zhuhai, China. He has 27 patents
and has published more than 200 papers in high-
level journals and conferences. He has more than
14000 citations, according to Google Scholar. His H-index is 68. He has
managed six national natural science projects (including two subprojects) and
four provincial-level projects. His research interests include Internet of Things,
edge computing, and mobile computing.

Weijia Jia (Fellow, IEEE) received the B.Sc. and
M.Sc. degrees in computer science from Center
South University, Changsha, China, in 1982 and
1984, respectively, and the Master of Applied
Science and Ph.D. degrees in computer science from
the Polytechnic Faculty of Mons, Mons, Belgium, in
1992 and 1993, respectively.
He is currently a Chair Professor and the Director
0 @ of BNU-UIC Institute of Artificial Intelligence
and Future Networks, Beijing Normal University,
Zhuhai, China, and the VP for Research of BNU-
HKBU United International College, Zhuhai, and has been the Zhiyuan Chair
Professor with Shanghai Jiao Tong University, Shanghai, China. He was
the Chair Professor and the Deputy Director of the State Key Laboratory
of Internet of Things for Smart City, University of Macau, Macau, China.
From 1993 to 1995, he was a Research Fellow with the German National
Research Center for Information Science (GMD), Bonn, Germany. From 1995
to 2013, he worked with the City University of Hong Kong, Hong Kong,
as a Professor. His contributions have been recognized as optimal network
routing and deployment, anycast and QoS routing, sensors networking, Al
(knowledge relation extractions; NLP, etc.), and edge computing. He has over
600 publications in the prestige international journals/conferences and research
books, and book chapters.

Dr. Jia has received the Best Product Awards from the International Science
& Tech. Expo, Shenzhen, in 2011 and 2012 and the First Prize of Scientific
Research Awards from the Ministry of Education of China in 2017 (list 2).
He has served as an area editor for various prestige international journals,
and the chair and a PC member/skeynote speaker for many top international
conferences. He is the Distinguished Member of CCF.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 16,2025 at 10:13:49 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


