
1412 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

Enhancing LLM QoS Through Cloud-Edge
Collaboration: A Diffusion-Based Multi-Agent

Reinforcement Learning Approach
Zhi Yao, Zhiqing Tang , Member, IEEE, Wenmian Yang , Member, IEEE, and Weijia Jia , Fellow, IEEE

Abstract—Large Language Models (LLMs) are widely used
across various domains, but deploying them in cloud data centers
often leads to significant response delays and high costs, undermin-
ing Quality of Service (QoS) at the network edge. Although caching
LLM request results at the edge using vector databases can greatly
reduce response times and costs for similar requests, this approach
has been overlooked in prior research. To address this, we propose a
novel Vector database-assisted cloud-Edge collaborative LLM QoS
Optimization (VELO) framework that caches LLM request results
at the edge using vector databases, thereby reducing response times
for subsequent similar requests. Unlike methods that modify LLMs
directly, VELO leaves the LLM’s internal structure intact and is
applicable to various LLMs. Building on VELO, we formulate the
QoS optimization problem as a Markov Decision Process (MDP)
and design an algorithm based on Multi-Agent Reinforcement
Learning (MARL). Our algorithm employs a diffusion-based policy
network to extract the LLM request features, determining whether
to request the LLM in the cloud or retrieve results from the edge’s
vector database. Implemented in a real edge system, our experi-
mental results demonstrate that VELO significantly enhances user
satisfaction by simultaneously reducing delays and resource con-
sumption for edge users of LLMs. Our DLRS algorithm improves
performance by 15.0% on average for similar requests and by
14.6% for new requests compared to the baselines.

Index Terms—Edge computing, vector database, diffusion
model, multi-agent reinforcement learning, request scheduling.

Received 14 November 2024; revised 5 March 2025; accepted 29 March 2025.
Date of publication 18 April 2025; date of current version 12 June 2025. This
work was supported in part by the National Natural Science Foundation of China
(NSFC) under Grant 62272050 and Grant 62302048, in part by the Guangdong
Key Lab of AI and Multi-modal Data Processing, Beijing Normal-Hong Kong
Baptist University, Zhuhai under 2023-2024 Grants sponsored by Guangdong
Provincial Department of Education, in part by Institute of Artificial Intelligence
and Future Networks and Engineering Center of AI and Future Education,
Guangdong Provincial Department of Science and Technology, China, in part
by Zhuhai Science-Tech Innovation Bureau under Grant 2320004002772, and
in part by the Interdisciplinary Intelligence Super Computer Center of Beijing
Normal University at Zhuhai. (Corresponding authors: Zhiqing Tang; Weijia
Jia.)

Zhi Yao is with the School of Artificial Intelligence, Beijing Normal Univer-
sity, Beijing 100875, China, and also with the Institute of Artificial Intelligence
and Future Networks, Beijing Normal University, Zhuhai 519087, China (e-mail:
yaozhi@mail.bnu.edu.cn).

Zhiqing Tang and Wenmian Yang are with the Institute of Artificial Intelli-
gence and Future Networks, Beijing Normal University, Zhuhai 519087, China
(e-mail: zhiqingtang@bnu.edu.cn; wenmianyang@bnu.edu.cn).

Weijia Jia is with the Institute of Artificial Intelligence and Future Networks,
Beijing Normal University, Zhuhai 519087, China, and also with Guangdong
Key Lab of AI and Multi-Modal Data Processing, Beijing Normal-Hong Kong
Baptist University, Zhuhai 519087, China (e-mail: jiawj@bnu.edu.cn).

Digital Object Identifier 10.1109/TSC.2025.3562362

I. INTRODUCTION

THE Large Language Models (LLMs), as the latest achieve-
ment in the field of generative artificial intelligence, can be

widely used in production and daily life by achieving accurate
dialogue service through reasonable prompt text [1]. LLMs
can provide satisfactory answers to users through reasoning,
but its extensive parameters demand substantial computational
resources, thus prolonging the total time required to generate
a comprehensive response for users [2]. Additionally, LLMs
relying on traditional cloud computing frameworks introduce
additional data transfer delay and network traffic stress [3]. Con-
versely, edge computing provides both significant computing
power and low delay by enabling collaboration between the edge
and the cloud [4]. Moreover, it decreases reliance on central
cloud data centers, enhancing privacy protection and reducing
the risk of sensitive data transmission over the network.

Existing related studies primarily focus on optimizing the
challenges of large model sizes and high computational delay
by constructing lightweight models [2]. Techniques like model
quantization and compression optimize models by reducing
parameter counts while minimizing performance loss [5], [6],
[7]. Other approaches, such as knowledge distillation and model
pruning, enable models of different scales to collaboratively
fulfill LLM requests through cloud-edge collaboration [8]. How-
ever, these methods involve invasive alterations to the model
structure, significantly limiting versatility. Moreover, LLM re-
quests remain computationally intensive, consuming substantial
resources, and high delay persists. Therefore, optimizing the
Quality of Service (QoS) of LLMs via edge servers remains a
worthwhile research problem [9], [10], [11].

Vector databases can cache historical Questions and Answers
(QA) as vectors, reducing LLM inference by reusing them when
similar requests recur, or enhancing requests through prompt
expansion. As a non-invasive LLM optimization technology, it
effectively minimizes request completion delay and conserves
computational resources while ensuring satisfactory request ful-
fillment [12], [13], [14]. The main costs of the vector database
come from CPU and memory consumption when calculating
the similarity between different vectors. As shown in Table I,
we have tested the delay required to directly request LLM
to return answers and the delay of directly returning answers
through database queries at the edge [15]. Even if the vector
database stores 11.34 × 106 vectors, the memory required is

1939-1374 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0001-8493-4449
https://orcid.org/0000-0003-1000-3937
mailto:yaozhi@mail.bnu.edu.cn
mailto:zhiqingtang@bnu.edu.cn
mailto:wenmianyang@bnu.edu.cn
mailto:jiawj@bnu.edu.cn

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1413

TABLE I
COMPARISON BETWEEN LLM AND VECTOR DATABASE

only 12.2 GB. Additionally, the query delay is still very small
when the vector database is deployed on the edge server [16],
[17]. Therefore, compared with the large amount of GPU re-
sources and high request delay required to directly deploy LLM
on the edge server, deploying a vector database at the edge
and storing LLM request results is a very promising method
to improve the QoS for edge users.

We propose a novel Vector database-assisted cloud-Edge
collaborative LLM QoS Optimization (VELO) framework. In
the VELO framework, we deploy the vector database on edge
servers and cache some results returned by the LLM. The edge
server decides how to process new LLM requests based on
request features and vector similarity in the edge vector database,
selecting one of the following methods to return the answer:
1) Query the request directly from the edge vector database and
return the answer. 2) Utilize similar vectors in the edge vector
database to enhance the user request, and then request the LLM
from the cloud to return the answer. 3) Directly request the LLM
from the cloud to return the answer.

However, several challenges remain unresolved when deter-
mining whether LLM requests should be processed by the edge
or the cloud. First, the correlation between LLM requests is sig-
nificant, and there are new features in this scenario, such as one
question for multiple answers, multiple queries corresponding to
one answer, and timeliness of request results [18], [19]. Second,
traditional scheduling methods base decisions on analyzing
the similarity between newly arrived requests and the cached
vectors. However, different LLM requests exhibit varying sensi-
tivities to the similarity between requests, reflected in the diverse
forms and descriptions of language requests [20]. Additionally,
the features of LLM requests are discrete, which can pose chal-
lenges in early exploration and lead to data wastage in related
training models [21]. While Reinforcement Learning (RL) can
enhance LLM request scheduling decisions to achieve higher
long-term returns through learned policy networks and reward
design [22], it suffers from low sample efficiency and limited
flexibility in policy updates. Conditional diffusion models ad-
dress these shortcomings by enabling smoother and more stable
policy updates, effectively modeling uncertainties in decision-
making, better analyzing the relationship between input condi-
tions and decisions, and making more robust decisions [23].

We present a Diffusion based LLM Request Scheduling
(DLRS) algorithm utilizing Multi-Agent Reinforcement
Learning (MARL) to enhance the scheduling process of LLM
requests [24], [25]. The RL agent is placed on each edge
server to determine LLM request scheduling. First, to address
the challenges of feature extraction and similarity analysis
of diverse requests, we introduce a request feature extraction
network built on the Transformer encoder [26], [27]. A diffusion

model-based policy network is further proposed to determine
the scheduling decisions of requests using extracted features
and vector query results from the edge vector database [28],
[29]. Second, to address the discrete nature of LLM requests,
we suggest a policy network training approach based on
expert demonstrations [30]. The network is updated with
the support of similar decision-making agents to achieve
superior performance. The integration of expert demonstrations
effectively resolves concerns regarding poor vector richness
and challenges in model fitting due to early action sampling.

In this extension of our previous work [31], we focus on
enhancing the algorithm’s effectiveness and robustness. Our
main improvements over prior work are as follows: 1) A related
work section is added to clarify our contributions to LLM ser-
vices in cloud-edge scenarios and distinguish our approach from
existing researches. 2) The algorithm is significantly enhanced
by integrating a diffusion-based policy network that uses input
states for progressive denoising to derive action probabilities.
This innovative approach yields superior scheduling decisions
for LLM requests, improving satisfaction and reducing delay.
3) The computational complexity of the algorithm is analyzed,
demonstrating that performance improvements are achieved
without a significant increase in complexity, confirming its
practical feasibility. 4) Large-scale experiments demonstrate
the effectiveness and scalability of the proposed algorithm,
achieving up to 15% performance improvement over baselines.
5) The performance is evaluated with new requests after freezing
parameters and the vector database cache. Additionally, we
verify its executability by measuring execution times, showing
up to 14.59% performance improvement over the baselines.

The main contributions of this paper are summarized as
follows:

1) We introduce the vector database-assisted cloud-edge col-
laborative LLM QoS optimization framework, VELO. In
VELO, vector databases are deployed on edge servers to
store LLM request processing results. This framework is
highly versatile, maintaining the structure of LLMs and
applicable across various LLM implementations.

2) We propose the DLRS algorithm based on a diffusion-
based policy network, which utilizes request features and
vector query results to denoise and restore the decision of
LLM requests. Additionally, to enhance feature extraction
and convergence performance, we introduce a feature
extraction network and include expert demonstrations dur-
ing training.

3) We have implemented the VELO framework and DLRS
algorithm in a real edge system, complemented by larger-
scale simulations using virtual machines. Experimental
results indicate the efficacy of our algorithms in enhancing
the QoS of edge users when requesting LLMs, leading to
higher satisfaction and lower delay.

II. RELATED WORK

1) Quality of Services in LLM: LLMs, primarily deployed in
cloud data centers for AI services, face challenges such as re-
sponse delays and high operational costs. Existing optimization
techniques have somewhat mitigated these issues. For example,
Lin et al. [35] reduce model size through weight quantization,Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

1414 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

which lowers computational and memory requirements but may
compromise QoS. The advent of edge computing presents a
promising optimization strategy for LLM deployment. Chen
et al. [36] propose an edge computing framework that segments
LLM layers to improve privacy and computational efficiency,
but it faces challenges with data consistency and noise inter-
ference. Patel et al. [37] distribute computation-heavy prompt
calculations and memory-heavy token generation across vari-
ous servers to enhance throughput. However, these techniques
involve human intervention during the model or inference stages,
which may limit adaptability and complicate direct deployment
in varied scenarios. Rao et al. [38] introduce a method for
automatically generating and applying code via natural language
instructions, enabling dynamic task deployment between the
edge and cloud. However, they overlook task characteristics,
causing resource wastage and reduced service quality due to
repeated calculations.

2) Decision Algorithms for LLM Request Scheduling: Pre-
vious research focuses mainly on RL and Imitation Learning
(IL). Fujimoto et al. [39] propose an offline RL algorithm that
incorporates a behavior cloning term and data normalization
to reduce computational overhead. Gulcehre et al. [30] pro-
pose an agent that uses demonstrations to address challenging
exploration problems in partially observable environments. In
RL, researchers have investigated the use of diffusion mod-
els as policy actors within actor-critic frameworks [40]. Wang
et al. [41] propose diffusion Q-learning, which leverages expres-
sive diffusion models to represent policies, effectively coupling
behavior cloning and policy improvement. Inspired by the above
works, we apply diffusion models to Multi-Agent Proximal
Policy Optimization (MAPPO), leveraging parallel learning to
share the computational load. This is a straightforward approach
that can effectively enhance the learning efficiency of diffusion
models in large-scale environments. This approach mitigates
elevated service delay in the cluster resulting from concurrent
cloud LLM requests across all edge servers. We also introduce a
feature extraction module and leverage expert demonstrations to
address data scarcity and the challenges of random exploration
in real-world scenarios.

3) LLM Inference Optimization: With the rising demand for
efficient AI services, accelerating LLM inference is a key re-
search focus [42]. Researchers enhance performance by opti-
mizing LLM inference through intelligent task scheduling. He
et al. [43] propose an efficient method for large-scale LLM in-
ference services, significantly reducing inference delay through
resource analysis, batch scheduling, and model deployment. Fu
et al. [44] present a novel scheduler that enhances LLM inference
by learning relative output length rankings, thereby reducing
delay. Additionally, some studies utilize Retrieval-Augmented
Generation (RAG) techniques to lower inference delay and
enhance the quality of LLM services. Zhao et al. [45] optimize
the illusion, delay, and accuracy of LLMs in data analysis
by combining domain knowledge, vector databases, and task
decomposition strategies. Hernandez-Salinas et al. [46] integrate
RAG into the field of intelligent driving, thereby enhancing its
ability to respond to user queries in real time.

The aforementioned studies have optimized LLM services
through edge computing and RAG-assisted reasoning while

Fig. 1. VELO framework overview.

scheduling tasks based on resource availability. However, they
overlook request relationships and lack effective management
strategies for similar requests. Furthermore, they do not fully
leverage vector databases for data caching.

In contrast to these studies, this paper presents several key
differences: 1) We consider the performance of servers equipped
with vector databases when faced with similar and new requests,
aligning more closely with real-world usage scenarios. 2) We
explore the relationship between request features and scheduling
decisions using a diffusion model-based policy network, a factor
overlooked in previous works [31], [46]. 3) We deploy the
prototype system of VELO in a real environment to validate
the effectiveness of the DLRS algorithm.

III. VELO FRAMEWORK AND PROBLEM FORMULATION

The VELO framework, illustrated in Fig. 1, comprises users,
edge servers, vector databases, and the cloud LLM. Various
users dispatch distinct LLM requests to nearby edge servers.
Upon receiving a user request, the edge server decides how
to handle it based on the request’s content and subsequently
provides the result. Using Edge Server 1 as an illustration, upon
receiving a request from User 1, it initially queries the local
vector database and then assesses request features alongside
vector query outcomes. Based on this analysis, it selects LLM
request scheduling actions from the following options: Action A
- returning the answer directly from the vector database, Action
B - directly requesting the cloud LLM and returning the answer,
and Action C - augmenting the user request with the vector
database query results and requesting the LLM in the cloud to
return the answer. Consequently, edge servers can offer high QoS
request scheduling decisions through cloud-edge collaboration,
predominantly assessed by completion satisfaction and delay.
The specifics are elaborated as follows.

Users and edge servers: There exists a set of mobile users
M and a set of edge servers N. At each time slot t, the LLM
request is generated by userm ∈M and offloaded to edge server
n ∈ N, which can be represented as xm,n(t). Subsequently, the
LLM request is embedded as a vector fm(t)with a dimension of
H . The experience samples generated by the server processing
the LLM request is En, with a quantity of ln. The experience
generated by all agents can be represented as EN . In addition,

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1415

Fig. 2. Vector database structure and data formats.

there are expert demonstrationsEg, with a quantity of lg, cached
in advance on the server.

Vector database: Each edge server n has a vector database
Vn(t) to cache request completion records, with a current data
volume of k(t) [28]. A vector query result of an LLM request
in Vn(t) is a vector data collection Lm,n(t) of P items with the
highest similarity to the request. The pth item of data in Lm,n(t)
can be described as lm,n,p(t). Vector cache value cr

n,p(t) is
cached in the Vn(t), with an average value of c̄r

n(t).
The correlation between request fm(t) and vector query data

Lm,n(t) can be expressed as cm,n(t). Then, the correlation
between fm(t) and one of the vector query data lm,n,p(t) can
be expressed as cm,n,p(t) = {cs

m,n,p(t), c
k
m,n,p(t), c

f
m,n,p(t)}.

In which, cs
m,n,p(t) denotes the value of similarity between

fm(t) and lm,n,p(t), cf
m,n,p(t) is the number of times vector

data lm,n,p(t) has been used, and ck
m,n,p(t) ∈ {1, 2} denotes

the type of lm,n,p(t) including question and answer. We further
demonstrate the vector database structure and data formats in
Fig. 2.

A. QoS Definition

As shown in Fig. 1, edge servers provide high QoS request
scheduling decisions through cloud-edge collaboration, which
is mainly measured by request completion satisfaction qm,n(t)
and request completion delay dm,n(t) [47].

Request completion satisfaction: The similarity between
LLM requests and vector data lm,n,p(t) can be calculated based
on L2 euclidean distance [15].

Jm,n,p(t) =

√√√√ H∑
h=1

(fm,h(t)− lm,n,p,h(t))
2, (1)

where the dimension of fm(t) and the vector data obtained
from query lm,n,p(t) is H . The qm,n(t) is used to evaluate
the satisfaction of completing LLM request at time t. When
the reference answer of the LLM request is known, qm,n(t) is
measured by the similarity between the current answer and the
reference answer, which is calculated as (2).

qm,n(t) = −

√√√√ H∑
h=1

(
f a
m,h(t)− f r

m,h(t)
)2

, (2)

where f a
m(t) and f r

m(t) are the answers obtained through DLRS
algorithm and reference answers.

Request completion delay: The dm,n(t) represents the delay
in the return of request xm,n(t), which is determined as follows:

dm,n(t) =

⎧⎨
⎩
de
m,n(t), Action A
dc
m,n(t), Action B
de
m,n(t) + dc

m,n(t), Action C.
(3)

In (3), de
m,n(t) is the delay for the system to complete LLM

requests through Action A, dc
m,n(t) is the delay for the system

to complete LLM requests through Action B, and de
m,n(t) +

dc
m,n(t) is the delay for the system to complete LLM requests

through Action C including the time when the server acquires
cache knowledge and the time when the LLM is requested.

B. Vector Database Operations

When the LLM request is resolved by Action B, the server
embeds the QA and inserts their information including vector
embedding, ck

m,n,p(t), c
f
m,n,p(t), and vector cache value cr

n,p(t)
separately into the vector database. When the server processes
LLM requests through Action A and Action C, vector data most
relevant to the LLM request lm,n,p(t) in the request query result
Lm,n(t) is filtered to assist in LLM request processing. The
principles of filtering can be represented as argmax

p∈P
Fn,p(t),

which can be further expressed as [48]:

Fn,p(t) = φ1c
s
m,n,p(t) + φ2c

f
m,n,p(t), p ∈ P, (4)

where φ1 and φ2 are weights used to balance the effective of
these factors. In addition, the cache value of query vector is
updated as:

cr
n,p(t) =

(
cr
n,p(t− 1) + qm,n(t)− dm,n(t)

)
/2, (5)

which is beneficial for analyzing and managing cached vector
data. When the cached data is correctly matched to the request,
cr
n,p(t) will increase, and vice versa.

C. Problem Formulation

We aim to maximize the QoS of the LLM request for the
system, which mainly depends on (2) and (3). The goal is to
find the best policy to enhance QoS while adhering to con-
straints. The definition of LLM request scheduling problem is as
follows:

minW (t) =
∑
m∈M

∑
n∈N

(−ϕ1qm,n(t) + ϕ2dm,n(t))

s.t. qm,n(t) < 0, ∀m ∈M, ∀n ∈ N,
dm,n(t) > 0, ∀m ∈M, ∀n ∈ N,

ck
m,n,p(t) ∈ {1, 2}, ∀m ∈M, ∀n ∈ N, ∀p ∈ P,

cr
m,n,p(t) < 0, ∀m ∈M, ∀n ∈ N, ∀p ∈ P,

cs
m,n,p(t) > 0, ∀m ∈M, ∀n ∈ N, ∀p ∈ P,

cf
m,n,p(t) > 0, ∀m ∈M, ∀n ∈ N, ∀p ∈ P. (6)

The LLM request scheduling problem is NP-hard and can
only be solved heuristically. However, most heuristic algorithms
make scheduling decisions based on deterministic policies and

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

1416 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

cannot consider the effects of dynamic environments and con-
tinuous decisions. For meta-heuristic algorithms, it is necessary
to know all future information, but the future LLM requests are
unknown. The Greedy strategy, a common strategy for heuristic
algorithms, makes judgements based on the similarity between
the question and the database content, but different types of
requests have different sensitivities to similarity. Whereas the
arrival of LLM requests and updates to the environment are
memoryless, so this problem can be modeled as a Markov
Decision Process (MDP) [49].

To solve the MDP problem, RL is a promosing method and
has been widely adopted. By treating each server as an agent, we
propose the DLRS algorithm based on MAPPO, which makes
scheduling decisions using a conditional denoising model [25],
[50]. The MAPPO network enhances training stability through
update-clipped policy adjustments, effectively mitigating policy
oscillation risks. Meanwhile, diffusion models employ iterative
denoising stages to progressively refine decision distributions.
The synergistic integration of MAPPO network with diffusion-
based exploration enables enhanced sample efficiency, where
structured policy evolution and probabilistic exploration jointly
maximize information extraction from constrained data environ-
ments.

Through training, the agent considers the associated status of
cached vector databases and then selects the action from a global
perspective. The long-term QoS of the system for handling LLM
requests can be improved by the reward function.

IV. OUR ALGORITHMS

A. Algorithm Settings

The DLRS algorithm is founded on MAPPO, with an agent
deployed on each edge server to make scheduling decisions
independently. Each agent maintains a local state and shares a
policy. Furthermore, a global value function incorporates global
information and updates the policy network, enabling multiple
agents to collaborate and optimize for better long-term benefits
for the system. The main settings are outlined as follows.

State: The state provides a comprehensive description of LLM
request and the queried vectors. It encompasses the correlation
between the LLM request and the vectors, as well as the features
of the request. Therefore, the state of the agent on edge server n
at time slot t can be divided as follows.

Correlation State: The correlation information between the
LLM request and the edge vector database is represented by a
matrix cm,n(t), with a dimension of 3× P :

cm,n(t) =

⎡
⎢⎣c

s
m,n,1(t) . . . cs

m,n,p(t) . . . cs
m,n,P (t)

ck
m,n,1(t) . . . ck

m,n,p(t) . . . ck
m,n,P (t)

cf
m,n,1(t) . . . cf

m,n,p(t) . . . cf
m,n,P (t)

⎤
⎥⎦.
(7)

Request Feature State: Considering the different sensitivity of
various requests to the vector database, it is crucial to include the
request features in the state representation. To accomplish this,
we employ a request embedding tool based on the Transformer

Encoder [51], defined as:

f ′
m(t) = T [fm(t)] , (8)

where T [·] represents the network layers based on the Trans-
former Encoder and fully connected layer used to extract the
features of the initial request vector fm(t). By (8), the request
features are further compressed into D, the local state of each
agent can be described as a set of dimensions 3P +D:

sm,n(t) = {cm,n(t),f
′
m(t)|m ∈M, n ∈ N} . (9)

Since each server n is treated as an agent and user requestm has
no specificity during the training process, we use sn(t) instead
of sm,n(t) for subsequent expressions. The global state consists
of the observed states of all edge servers, with a dimension of
|N| × (3P +D), which can be denoted as:

s(t) = {sn(t)|n ∈ N} . (10)

Action: Each action refers to the scheduling of the LLM
request, which can be denoted as:

an(t) ∈ {0, 1} , (11)

where an(t) = 0 indicates that the LLM request is processed
by the edge vector database, with two sub-actions: either re-
turning the results directly from the vector database (Action
A) or using the vector database to enhance the request before
querying the LLM in the cloud (Action C) [52]. We concatenate
vector query content with the user request to form an enhanced
request. Specifically, the template for constructing the prompt
is: “There may be some relevant reference information, but it
is uncertain whether it will be helpful for you to solve the
problem.” Conversely, an(t) = 1 signifies that the request is
directly forwarded to the LLM in the cloud (Action B).

Reward: The objective of each agent is to maximize the
reward. In the VELO framework, the aim is to enhance the QoS,
encompassing increasing user satisfaction and reducing request
completion delay, which can be denoted as:

rn(t) = − (W (t) + ϕ3an(t)) , (12)

where an(t) is obtained by sampling from the probability dis-
tribution of actions output by the policy network. To address
the sparsity of vector database data during algorithm training
and encourage more frequent use of these databases, we have
introduced a penalty of ϕ3 for directly requesting the LLM
without utilizing vector databases.

Policy: The output of the policy is the probability distribution
of the action choices given the observed environmental state,
represented as κx,0 in Fig. 3. The diffusion model consists of
forward and reverse diffusion processes [23]. Forward diffusion
gradually adds Gaussian noise to the data, transforming the
action probability distribution into one that approximates a uni-
form distribution. In contrast, reverse diffusion aims to restore
the action probability distribution from the noisy data using
state-condition information. By training the neural network, the
data that meets the conditions can be progressively denoised
based on the current noise and the provided state information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1417

Fig. 3. DLRS Algorithm Overview.

The algorithm aims to minimize the error in each denoising
step, enabling the model to effectively restore data during back-
propagation. We denote the noise at step τ in the forward process
as κx,τ , matching the dimension of κx,0, where τ = 1, . . ., T .
The forward diffusion process is modeled as a normal distri-
bution, with a mean of κx,τ−1

√
1− βτ and a variance of βτ ,

denoted as:

q (κx,τ |κx,τ−1) = N
(
κx,τ ;κx,τ−1

√
1− βτ , βτδ

)
, (13)

where βτ represents the forward process variance and δ is used
to describe the standard normal distribution ε ∼ (0, δ) that noise
follows. ε is a tensor with the same dimensionality as x0. Based
on this, the derivation relationship between κx,τ and κx,0 can
be denoted as:

κx,τ = κx,0
√
ᾱτ + ε

√
1− ᾱτ , (14)

where ατ = 1− βτ and ᾱτ is the cumulative product of ατ

during the previous denoising step. Based on this, we can further
obtain the expression of the reverse process:

κx,0 =
1√
ᾱτ
κx,τ −

√
1

ᾱτ
− 1 · tanh (εθ (κx,τ , τ, sn(t))) ,

(15)
where εθ(κx,τ , τ, sn(t)) represents a Multi-Layer Perceptron
(MLP) network composed of linear layers. Since there is no
pre-existing dataset of optimal scheduling decisions for various
input states, and the content of the vector database is gradu-
ally populated, the policy network only employs the reverse
diffusion process to transition from κx,τ to κx,0 to address this
challenge. [25]

Using the Bayesian formula, we convert the reverse diffusion
process into the forward process and express it as a Gaussian
probability density function. For example, regarding a request
on server n, the mean of the reverse diffusion process can be

denoted as:

µθ (κx,τ , τ, sn(t)) =

√
ατ (1− ᾱτ−1)

1− ᾱτ
κx,τ+

√
ᾱτ−1βτ
1− ᾱτ

κx,0.

(16)
Then, through (15) and (16), it can be further expressed as:

µθ(κx,τ , τ, sn(t))

=
1√
ατ

(
κx,τ −

βτ tanh(εθ(κx,τ , τ, sn(t)))√
1− ᾱτ

)
. (17)

When sampling from a distribution, gradients cannot back-
propagate through random variables. To enable gradient-based
optimization, we implement the reparameterization that disen-
tangles the stochasticity from learnable distribution parameters
via differentiable transformations. Specifically, we use the fol-
lowing update rule:

κx,τ−1 = µθ (κx,τ , τ, sn(t)) +
(
β̃τ/2

)2

� ε, (18)

where β̃τ is a deterministic variance amplitude, which can be
denoted as:

β̃τ =
1− ᾱτ−1
1− ᾱτ

βτ . (19)

The inputs to this network include the reverse diffusion noise,
the current reverse diffusion step, and the state sn(t) as a
condition. The output is the prediction result of the κx,0 at
the current step. By applying the softmax function, κx,0 is
transformed into a probability distribution. The action output
is obtained by sampling from the policy network. The goal of
the policy network is to optimize the MLP network parameters
and obtain the optimal action output by sharing the trajectories
of multiple users [53]. Therefore, the cumulative discounted
reward Jθ can be calculated based on (12), which can be
denoted as:

Jθ = Esn(t),an(t)

[
Σtγ

tr(t)
]
, (20)

where γ is a discount factor.

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

1418 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

B. Vector Database-Assisted Feature Extraction

The LLM Request Feature Extraction module is described
in Fig. 3. By extracting the LLM request query result features
from the vector database and combining the LLM request fea-
tures, the high-dimensional LLM request vectors are mapped
while the LLM information is fully extracted. As shown in Fig. 3,
each edge server, acting as an agent, independently performs the
request feature learning process.

Taking agent n as an example, we analyze the process from
bottom to top. LLM request is first encoded into vector fm(t)
through the Towhee framework and then utilized through two
pathways. The DLRS performs a vector query in the vector
database to obtain the matching results between LLM and vec-
tor database content after comparing fm(t) with vector data
Lm,n(t). In addition, DLRS feeds fm(t) to the Transformer
Encoder, which consists of a position encoder and z multi-head
attention modules to obtain a better representation of the request
features f e

m(t). Then f e
m(t) is further compressed through a

linear layer to obtain the LLM request features f ′
m(t) for the

inputs of policy network and value network. Finally, features
cm,n(t) and f ′

m(t) will be connected.

C. Training With Expert Demonstrations

To solve the problems of sparse training data and slow con-
vergence at the early stage of training, we add expert demon-
strations during the training process, as shown in Algorithm
1. To ensure that each network update is valuable, we set
the minimum number of expert demonstrations and experience
required for network training and updating to lgmin and lmmin,
respectively. Then, we denote the number of network updates
as u(u < umax).

Algorithm 1 is deployed on the edge server for network
training. The weight of the policy network b(t) obtained from
network training is updated and sent down to all agents. Algo-
rithm 1 describes the expert demonstrations assisted network
training and updating process in the Multi-Agent Network Pol-
icy and Update module in Fig. 3. As shown in Fig. 3, after
processing LLM requests, edge servers cache the experience
locally and send it periodically to the server for network train-
ing. If the server has collected enough experience for each
agent, it will train the network according to lines 7–21. The
number of expert demonstration items lug used in training de-
creases as the number of network updates increases. When lug
is above the threshold lgmin, the server will sample the expert
demonstrations, train and update the network according to lines
10–12. Conversely, considering that the expert demonstrations
are outdated for the network, it will be trained and updated
using only EN according to lines 13–14. To prevent over-
flow of the replay buffer caused by increased training itera-
tions, the training server completes the network weight update
and clears the replay buffer after 50 accesses, as shown in
line 23.

Policy optimization: We use the policy gradient method to
update the network parameters. The gradient estimation of time

Algorithm 1: DLRS Training.

step t for parameter θ can be calculated as

ĝt(θ) =
1

N

N∑
n=1

Eτn

[
Tn∑
t=0

∇θ log πθ(an(t)|sn(t))Â(t)
]
,

(21)
where Eτn represents the expectation for the trajectory of agent
n, πθ(an(t)|sn(t)) is the policy function of agent n, and Ân(t)
is an adjusted advantage function introduced in the DLRS
algorithm to handle the mutual influence between agents in
multi-agent environments, which can be denoted as:

Â(t) = δ(t) + γλδ(t+ 1) + · · ·+ (λδ)T−t+1
λ(T − 1),

(22)
where δ(t) = r(t) + γV π(s(t+ 1))− V π(s(t)), and if the
agent starts in state s(t) and takes action according to policy
π, the value function V π(s(t)) gives the expected return, which
can be denoted as:

V π (s(t)) = Eτtraj∼π [R(τtraj)|s = s(t)] , (23)

where R(τtraj) is the cumulative reward function and τtraj is a
trajectory generated based on policy π. The loss function is
constrained to ensure that the difference between new and old
parameters is not too large, which can be expressed as [54]:

L (θ) = Ê [Lclip (θ)− c1LE (θ) + c2Ce [πθ] (sn(t))] , (24)

where LE(θ) is the mean square error of the reward and the cor-
responding state value, Ce[πθ](sn(t)) is the cross entropy of the
action probability distribution, c1 and c2 are hyperparameters,

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1419

with values of -0.5 and 0.01, respectively. TheLclip(θ) is denoted
as:

Lclip(θ)= Ê
[
min

(
ψt(θ)Â(t), clip (ψt(θ), 1−ε, 1+ε) Â(t)

)]
,

(25)
where ψt(θ) is the probability ratio of actions under two
policies, clip(ψt(θ), 1− ε, 1 + ε) is used to clip the ψt(θ) be-
tween (1− ε, 1 + ε), and ε is a hyper-parameter, e.g., ε = 0.2,
which can make the value of actions lower or higher than the
average amplitude between (1− ε, 1 + ε).

Subsequently, we use the gradient ascent to update the policy
parameters.

θ ← θ + αg∇θLclip(θ), (26)

where αg is the learning rate.

D. Diffusion-Based LLM Request Scheduling

Algorithm 2 describes the DLRS algorithm, whose output is
the reward value rn(t) that represents the QoS of agent n. The
reception time of policy network weight on edge servern is bT

n(t)
and the periodicity of vector database content checking and up-
dating is ξ. First, agent n creates a collection of vector databases
and obtains the update time of the local network weights, as
shown in lines 4–5. Prior to processing each request, edge servers
must verify whether the local policy network weights have been
loaded with the most recent version, as shown in lines 8–11.
Then, the server processes the arriving LLM requests and stores
experience, as shown in lines 12–18. In each time slot, the policy
network initializes input noise, as shown in line 12. It then
employs the state input as a condition for denoising, iteratively
calculating the log probability of action selection ap

n(t). Then
the agentn samples actions, as shown in lines 13–16. In addition,
the server periodically executes the vector data eviction policy,
as shown in lines 19–26.

When the experience accumulated by agents is sufficient, it
is sent to the training server, as shown in lines 27–30. Then,
after completing the network update, new weights are sent to all
agents.

Vector data eviction policy: Low-quality data records re-
sulting from poor policies need to be updated and processed
promptly. Therefore, in addition to data insertion and update
operations, we also introduces checks and updates for vector
data quality. For each elapsed time ξ, data in the vector database
will be dropped when they satisfy cr

n,p(t) < c̄r
n(t), as these

data usually exhibit characteristics such as training failures,
mismatches, and outdated answers.

E. Computational Complexity Analysis

The DLRS algorithm is mainly composed of N policy net-
works and a value network. The decision-making process can
be mainly divided into three parts: state observation, action
selection and reward calculation. The computational complexity
of each section is analyzed below. First, the state is shown in (10),
and the complexity of this part is determined by request fea-
ture extraction calculation and vector query. The computational
complexity of the Transformer Encoder module is primarily

Algorithm 2: The DLRS Algorithm.

influenced by its multi-head self-attention operation, which is
one of its key components. This complexity is determined by the
embedding dimension H and the number of patches C, which
can be expressed as O(H2C +HC2) [55]. Assuming that the
Transformer Encoder module contains L1 layers, its overall
complexity can be calculated asO(L1 × (H2C +HC2)). Sec-
ond, κx,0 is obtained through reverse diffusion in the policy
network. εθ(κx,τ , τ, sn(t)) is an MLP network with L1 hidden
layers and G1 neurons in each layer. The complexity of reverse
diffusion calculations can be expressed asO(T × ((3P +D)×
G1 + L2 ×G2

1)) [56]. The complexity of action selection and
reward calculation for all servers can be expressed as O(|N|).

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

1420 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

In network updates, the total number of experiences used
is constant, but the ratio of expert experiences to agent ex-
periences varies. The value network is an MLP network with
L3 hidden layers and G2 neurons in each layer. The com-
plexity of network updating can be expressed as O(|N| ×
(3P +D)×G2 + L3 ×G2

2). The other operations in the
DLRS have a relatively small impact on computational com-
plexity analysis. Therefore, the complexity of the DLRS al-
gorithm isO(L1 × (H2C +HC2) + T × ((3P +D)×G1 +
L2 ×G2

1) + |N| × (3P +D)×G2 + L3 ×G2
2).

V. SYSTEM IMPLEMENTATION AND EXPERIMENTS

A. System Implementation

We have implemented a VELO prototype system and de-
ployed the DLRS algorithm into the system using Python.
The VELO system consists of edge servers and cloud LLM,
where the edge mainly consists of Towhee Service and Milvus
Service [15], [57], all of which are deployed through containers.
The experimental platform consists of three desktops featuring
an Intel i9-10900 K 10-Core CPU and NVIDIA RTX 2070 Super
GPU. Data from edges is transmitted to a desktop for network
training, which is equipped with an Intel i7-13700KF 16-Core
CPU and an NVIDIA RTX 4070ti GPU.

The Qwen7b quantized by int8 is deployed as the cloud LLM,
based on FastAPI and Uvicorn servers [32]. Uvicorn is an Asyn-
chronous Server Gateway Interface (ASGI) server that supports
asynchronous programming. FastAPI is a high-performance
web framework built on Starlette. Therefore, we can achieve
streaming output from the LLM by gradually sending data to
the client through the server, and expose the LLM service via
host and port configuration. A high-performance workstation
with an Intel i9-14900KF 24-Core CPU, an NVIDIA RTX 4090
GPU, and 64 GB RAM is used as the cloud. Given the slow
processing speed for parallel LLM requests and the limited
experimental devices, some experiments are conducted in virtual
machines (VMs). Each VM has a minimum of four CPU cores,
50 GB storage, and 8 GB RAM. The system overview we have
implemented is illustrated in Fig. 4.

LLM requests from users can be offloaded to the nearest server
and then vectorized through Towhee service and input into a
vector database to query relevant vectors. The DLRS Algorithm
Layer can determine the scheduling location of LLM requests,
including directly sending results to users through Action A at
the edge and sending LLM requests to the cloud through Action
B or Action C. The cloud server outputs the answer to the LLM
request after instantiating FastAPI. Each server sends experience
to the edge server for training through the TCP protocol and
obtains the latest network weights through the FTP protocol.
In Fig. 4, directional arrows denote both data flow pathways
and inter-module functional dependencies within the system
architecture.

Milvus service: Milvus service is an open-source vector
database that enables vector similarity search [15]. The Milvus
data service can be deployed and managed using distributed
containers, allowing for higher data throughput and more conve-
nient data indexing and querying. Vector data is usually stored

Fig. 4. System implementation details.

on the hard drive through data flush and loaded into memory
to accelerate queries as they are used. The type of collection
index is IVF_FLAT, which is an index type based on inverted
files. Based on this, we create 128 inverted lists for the inverted
files. When performing a vector query, the 10 closest candidate
items are searched from the inverted lists for precise distance
calculation [15].

Towhee service: We use the open-source Towhee framework
and adopt gpt-neo-1.3B as the embedding model [51], [57].
This is a trained GPT-style language model, which supports
multilingual embedding requests. Furthermore, the Towhee
framework also supports Triton acceleration, making it particu-
larly suitable for edge deployment. We have deployed a Triton
acceleration framework based on the NVIDIA plugin on the
server to improve embedding speed. The LLM requests into the
Towhee service first enters a pipeline, where it is accelerated
by pre-defined models and the Triton backend to obtain vector
embeddings. Through the pipeline cached embedding model,
LLM requests can be embedded in vectors with a dimension of
768. These embeddings can be used for vector querying as well
as for the task feature extraction module in the DLRS algorithm.

B. Experimental Settings

Data preprocessing: We use the multilingual open dialogue
dataset oasst1 as LLM requests [33], [34]. Due to the multilin-
gual and diverse nature of the LLM request, the highest-ranked
dialogue from the oasst1 is chosen as the training set. Each
item in the training set is expanded into five versions: English,
Spanish, German, Chinese, and Russian using Qwen14b. The
test set is obtained by restating the Question in QA pairs through
Qwen14b.

During training, edge servers periodically transmit the ex-
periences to the server for training. Updated network weights
are subsequently propagated back to all edge servers through
FTP protocol. For testing, both network parameters and vector

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1421

TABLE II
HYPERPARAMETER SETTINGS

database entries remain frozen. The test requests are sent si-
multaneously to all edge servers to evaluate the cache contents
of each edge server and the decision-making ability of agents.
Before the experiment, we populate the edge vector database
with some random data sourced from non-experimental data
in oasst1. This initialization ensures that all possible actions are
available and allows the DLRS algorithm to accumulate negative
trajectory samples.

Parameter settings: For a training dataset of 3000 samples,
13500 rounds are used for training and 500 rounds for testing.
As the dataset size increases, the number of training rounds
is adjusted accordingly. Results are recorded every 300 rounds
during the experiment. The learning rates for the policy and
value networks are set to 0.0003 and 0.001, respectively. The
discount factor is set to 0.99. The DLRS algorithm adjusts the
noise intensity in a uniformly increasing manner at each step,
requiring 10 denoising steps to restore the action decision. The
hyperparameters are listed in Table II.

Baselines: The following baselines are conducted.
1) Greedy-0.1, Greedy-0.3, Greedy-0.5 [58]: These

algorithms make scheduling decisions by judging
the vector query results and the fixed threshold. When
the vector query results is higher than the threshold, the
server directly requests the LLM; otherwise, it use the
vector database to enhance the request. Experiments are
conducted with thresholds of 0.1, 0.3, and 0.5.

2) Greedy-LLM: The algorithm completes LLM requests
with an initial estimated reward, updated periodically
based on directly requesting LLM completion satisfaction.
Specifically, the algorithm records the similarity between
the answers obtained by directly requesting LLM and the
reference answers, periodically updating this average as

the evaluation reward value. When the vector query result
is better than the reward, the vector database is used to
complete requests; otherwise, the server requests the LLM
directly.

3) MAPPO [59]: This algorithm is a multi-agent proximal
policy optimization algorithm based on deep RL.

4) G-MAPPO: This algorithm is a MAPPO algorithm with
expert demonstrations.

5) T-MAPPO: This algorithm is a MAPPO algorithm with
an external Transformer Encoder, which takes the con-
nection of the extracted request vector features and the
vector cache comparison results as input. The T-MAPPO
algorithm is used to verify the effectiveness of the feature
extraction module in Fig. 3.

6) LRS [31]: This algorithm is a MAPPO algorithm with an
external Transformer Encoder, which introduces expert
demonstrations during the training process.

7) DLRS-L5, DLRS-L15 [25]: The DLRS algorithm adjusts
the noise intensity in a uniformly increasing manner at
each denoising step, making adding or removing noise
smoother and more stable. In experiments, tests are con-
ducted using 5 and 15 denoising steps.

8) DLRS-V5, DLRS-V10, DLRS-V15 [23]: The forward pro-
cess variance of DLRS algorithms is controlled by the
Variational Posterior (VP) scheduler [60], with experi-
ments conducted using 5, 10, and 15 denoising steps.

9) Random: Edge servers complete LLM requests by ran-
domly selecting actions.

Evaluation methods: Each edge server receives different re-
quests, accumulating various content in the vector database.
This aligns better with real-world service scenarios and helps
us collect more diverse agent experiences, thereby improving
the training efficiency of the algorithm. Because of the differing
quality of cached data for each server during training, we suggest
two evaluation methods, which can be outlined as follows:
� LLM requests are offloaded to the nearest server.
� LLM requests are offloaded to all servers, and the fastest

response is returned as the answer to the request. While
distributed servers collaborate in training, disparities in
their processing capabilities arise from variations in vector
databases.

C. Experimental Results

To demonstrate the effectiveness of the DLRS algorithm, we
carry out a more detailed evaluation within the system [31].
After every 300 LLM request is fulfilled, we document an
average outcome in the figures. Within the figures, LLM Direct
Request Frequency represents the proportion of direct process-
ing requests via LLM out of the total processed requests. The
weight ratio is computed as w = ϕ2/ϕ1. The reward value in
the figures represents the average value achieved by all servers
that complete LLM requests. To enhance the fitting ability of the
network, we have increased the reward value in (12) by a factor
of 10.

Training trajectories: From Fig. 5, it is evident that the
DLRS algorithm outperforms others when the number of

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

1422 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

Fig. 5. Performance of DLRS during training episodes with a weight ratio ω = 0.1.

Fig. 6. Vector similarity metrics between requests.

denoising steps is set to 10, significantly enhancing request
completion satisfaction. Additionally, a comparison between
the G-MAPPO algorithm and other algorithms reveals that the
former achieves higher initial reward values and better vector
database utilization when guided by expert demonstrations. In
contrast to the LRS algorithm, the DLRS algorithm requires
a longer training duration due to its involvement of multiple
time steps. At each time step, the algorithm must learn how
to recover scheduling decisions from conditional noise data,
which requires multiple iterations. Although the completion
delay for the DLRS algorithm during training is not the lowest,
the quality of the resulting vector database is superior, leading
to higher utilization. This is illustrated in Figs. 5(d) and 7, where
Fig. 5 shows that the shaded area under the DLRS algorithm
curve is relatively small when the number of denoising steps is
10, indicating a stronger capacity for simultaneous optimization
of multiple agents and greater algorithm stability. Therefore,
in subsequent experiments, we will focus exclusively on the
DLRS algorithm with 10 denoising steps.

Analysis of vector similarity calculation results: To illustrate
the utility of vector similarity calculations in analyzing the
similarity between requests, we sample eight requests from
oasst1 and rephrased them. The calculation of vector similarity
between these questions follows (1). Specifically, the sampling

TABLE III
REQUEST COMPLETION RESULTS WITH REFERENCE ANSWER ASSISTANCE

requests are as follows, where the second and sixth requests are
in German, the seventh is in Chinese, and the eighth is in Russian.

1) ‘What is a fun science project I can do with my son?’
2) ‘What does Christianity think about this?’
3) ‘Is TypeScript better than JavaScript?’
4) ‘What would be the three best items to bring to a desert

island?’
5) ‘Why do humans need to sleep?’
6) ‘Can you tell me something about protein simulation based

on coarse glass mirror techniques?’
7) ‘I have a Pandas dataset containing three columns: ‘x’, ‘y’,

and ‘z’. I want to group by ‘x’ and calculate the average
occurrence of the value ‘a’ in the ‘y’ column for each
group. Additionally, I only want to consider the occurrence
frequency when the values in the ‘z’ column are not equal
to ‘b’.’

8) ‘I want to convince my mother that giving a rabbit as a gift
for a six-year-old girl is not a good idea. Could you give
me some reasons why giving a rabbit to a six-year-old girl
is not a good idea?’

As shown in Fig. 6, there is a clear indication of low similarity
between different LLM requests, while the similarity between
the original questions and their rephrased questions is signifi-
cantly higher. In Table III, we demonstrate the execution results
of the seventh request under high-similarity vector queries. We
expand the linguistic expressions of the request into English,
Chinese, Russian, German, and Spanish versions. Additionally,
we rephrase the original request to create variants as “Given
a pandas DataFrame containing columns ‘x’, ‘y’, and ‘z’, first
exclude all rows where column ‘z’ equals ‘b’. Then, for each
unique category in column ‘x’, compute the mean proportion of

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1423

Fig. 7. Performance with different weight ratio ω when LLM requests are offloaded to the nearest edge server.

Fig. 8. Performance with different weight ratio ω when LLM requests are offloaded to all servers.

entries in column ‘y’ that hold the value ‘a’ within the filtered
subset.”

Action B is directly processing the request using an LLM. Af-
ter caching these results in the vector database, Action A simply
retrieves and returns the cached answers, achieving significant
delay reduction. In contrast, Action C incorporates retrieved
reference answers as vector-based knowledge to enhance request
execution. The similarity metrics between the query and cached
reference answers are 0.59, 0.68, 0.58, 0.54, 0.63, and 0.64,
respectively—significantly lower than the inter-query similarity
values observed in Fig. 6 for non-similar requests. Experimen-
tal results show that high-quality cached answers significantly
enhance the efficiency of processing related requests.

Performance with different reward weights: The reward func-
tion in (12) primarily considers the main factors affecting user
Quality of Experience (QoE), namely completion satisfaction
and delay. Our goal is to minimize the completion delay while
ensuring the completion satisfaction. Considering that the re-
ward value directly impacts the learning effectiveness of RL, we
have pre-determined a reasonable range for the weight factors
through experiments based on the content of the oasst1 dataset
and the inference speed of the LLM. It can be seen from
Figs. 7(b) and 8(b) that the DLRS algorithm has a significant ad-
vantage withw = 0.1. Compared with the LRS algorithm, it can
significantly reduce request completion delay without affecting
request completion satisfaction. The performance of DLRS al-
gorithm is generally superior when LLM requests are offloaded
to the nearest edge server. RL algorithms perform suboptimally
at other weights because changes in weight influence reward
definitions, which in turn affect the learning effectiveness of
the policy network. Unreasonable weight settings can decrease
request completion satisfaction and increase delays, preventing

the achievement of a dynamic optimal state. As a result, we set
w to 0.1in subsequent experiments.

To encourage algorithms to use vector data related to requests,
we have imposed corresponding penalties for directly requesting
LLM without using vector databases. However, this does not
imply that every request during the testing phase must rely on
the vector database. While the test request is a variant of the
training data, not all vector databases on the server may have
cached relevant content. As shown in Figs. 7 and 8, although
the Greedy-LLM and DLRS-V10 algorithms achieve high re-
ward values, the satisfaction with request completion remains
low.

Due to request scheduling decisions that minimize the use
of Action B during training, the Greedy-LLM and DLRS-V10
algorithms incorrectly match vector knowledge data with LLM
requests. This mismatch leads to decreased request completion
satisfaction and low-quality caching in the vector database.
Clearly, when the quality of vector data is poor, errors occur
in completing requests through Action A. The training process
of the DLRS-V10 algorithm is shown in Fig. 5(b) and (d), and
subsequent experimental results further confirm this.

From Figs. 7(a) and 8(a), the reward obtained with the Greedy-
LLM algorithm is higher. Distributing each LLM request across
multiple servers is effective because each server caches different
vector data during training, leading to varying request processing
capabilities. Combining multiple servers for a single request can
significantly reduce completion delays. With w at 0.1, DLRS
algorithm outperforms in all metrics, significantly reducing
completion delay compared to LRS while preserving completion
satisfaction. Fig. 8(b) and (d) demonstrate that the DLRS algo-
rithm offers faster feedback to requests due to superior vector
data cache content.

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

1424 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

Fig. 9. Performance with different number of edge servers when LLM requests are offloaded to the nearest edge server.

Fig. 10. Performance with different number of edge servers when LLM requests are offloaded to all servers.

The experimental results show that the DLRS algorithm can
enhance the overall reward value by up to 10.47% withw = 0.1
when offloading LLM requests to the nearest edge server. Addi-
tionally, the system’s request completion satisfaction improves
by an average of 6.40%, 4.26%, 5%, 3.88%, 3%, 2.44%, 8.89%,
2%, 2.14%, and 1% compared to the Greedy-0.1, Greedy-0.3,
Greedy-0.5, Greedy-LLM, Random, MAPPO, G-MAPPO, T-
MAPPO, LRS, and DLRS-V10 algorithms, respectively.

Furthermore, when the DLRS algorithm offloads LLM re-
quests to all servers with w = 0.1, it can boost the overall
reward value by up to 15% . The request completion satisfaction
increases by an average of 13.38%, 6.89%, 10.52%, 5.16%,
5.59%, 7.74%, 14.28%, 3.82%, and 2.74% compared to the
Greedy-0.1, Greedy-0.3, Greedy-0.5, Greedy-LLM, Random,
MAPPO, G-MAPPO, T-MAPPO, and DLRS-V10 algorithms,
respectively. DLRS algorithm reduces request completion delay
by 41.39% while maintaining a request completion satisfaction
level comparable to the LRS algorithm.

Performance with different number of servers: We also eval-
uate the performance of algorithms with varying numbers of
servers, as depicted in Figs. 9 and 10. Since DLRS algorithm
significantly outperforms basic MARL and random algorithms
in previous experiments, we exclude them here. As shown in
Fig. 10(b), the performance of the DLRS algorithm improves
with more servers due to its collaborative training approach,
which enables multiple agents to share experiences. Because
DLRS requires multiple iterations for scheduling decisions,
incorporating more learning experiences reduces noise in the
learning process. Conversely, the LRS algorithm, based on fully
connected structures, performs better with fewer servers due to
its simpler decision-making process.

As the cluster scales, requests to individual servers be-
come sparser, leading to decreased cache density in the vector

database. In such sparse scenarios, the Greedy-0.5 algorithm
sustains higher database utilization, thereby outperforming al-
ternatives when processing similar requests. The LRS algorithm
has a higher proportion of directly returning cached answers
through Action A, thereby reducing delay. However, when han-
dling new requests, the algorithm’s effectiveness may degrade
due to retrieving excessive semantically irrelevant knowledge
segments. It is evident that the DLRS algorithm demonstrates
better adaptability.

The experimental results show that the DLRS algorithm can
increase the overall reward value by up to 22% when there are
at least 3 servers and LLM requests are offloaded to all of them.
Specifically, the request completion satisfaction of the system
is increased by 14.53%, 7.27%, 3.27%, 2.27%, and 2.2% on
average compared with Greedy-0.1, Greedy-0.3, Greedy-0.5,
Greed-LLM, and LRS algorithms, respectively.

Performance with different training set sizes: After obtain-
ing parameters with performance advantages, we further verify
the performance of algorithms on different training set sizes.
Figs. 11 and 12 show the evaluation results on different training
set sizes. From Fig. 11(a), it can be seen that the DLRS algorithm
can achieve high reward values after training with different
training set sizes. However, the addition of new data leads to
a decrease in request completion satisfaction for the DLRS
algorithm when the network structure remains unchanged. This
occurs because, in conditional denoising, noise guides the model
to progressively generate decision scheduling outputs that align
with a given state condition input. When the network structure is
fixed, the increase in training data complicates the exploration of
noise during the generation process. Hence, to achieve optimal
performance with varying training set sizes, adjustments to
the DLRS network structure are necessary. We increase the
hidden layer of the policy network to 384. Then, we extend

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1425

Fig. 11. Performance with different training set sizes when LLM requests are offloaded to the nearest edge server.

Fig. 12. Performance with different training set sizes when LLM requests are offloaded to all servers.

TABLE IV
PERFORMANCE OF DLRS ALGORITHM AFTER ADJUSTING

THE NETWORK STRUCTURE

TABLE V
PERFORMANCE WITH DIFFERENT LLMS

the training by 3000 time slots without updating the network
weights, yielding the experimental results shown in Table IV.
The experimental results show that while generating minimal
completion delays, the satisfaction with request fulfillment can
be further enhanced.

Performance with different LLMs:. We have integrated more
mainstream LLMs into the VELO framework for experimen-
tation. We utilize Azure’s ChatGPT-3.5-turbo and deploy the
open-source DeepSeek-R1-Distill-Qwen25-32B and Qwen72B
on an A800 GPU server. Due to the longer inference time
of DeepSeek-R1 and the higher delay of the official API, we
conduct our experimental analysis using DeepSeek-R1-Distill-
Qwen25-32B.

TABLE VI
PERFORMANCE OF DLRS IN HANDLING NEW REQUESTS

As shown in Table V, the inference results of the DeepSeek
model differ from previous experimental results with dialogue
models. Despite the assistance of a vector database, the pursuit
of low-latency response times leads to a noticeable decline in sat-
isfaction. It is evident that the DeepSeek model can achieve the
highest completion satisfaction. In contrast, ChatGPT-3.5-turbo
delivers more balanced experimental outcomes. Our approach is
applicable to various mainstream commercial LLMs and yields
greater benefits with the improvement in LLM performance,
demonstrating the practicality of the method.

Robustness and adaptability of our DLRS algorithm: We
sample 500 diverse requests to evaluate the vector database
quality and the algorithm’s decision-making capabilities after
training. As shown in Table VI, the DLRS algorithm outperforms
others, making it ideal for open dialogue scenarios. While the
DLRS algorithm makes fewer direct LLM requests with new
inputs, it maintains high task satisfaction and minimal delay.
This efficiency stems from its ability to build a high-quality
vector database during training, enabling effective reference to
knowledge when using Action C, thereby reducing delays linked
to lengthy prompts. We also assess the execution times of the
RL algorithms, which measured: LRS at 24.1 ms, DLRS-V10

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

1426 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

at 25.5 ms, and DLRS at 26.2 ms. These results confirm that
the time cost of the DLRS algorithm is reasonable. While some
completion delay stems from vector retrieval, most is due to
LLM inference.

Overhead of DLRS algorithm: The DLRS algorithm has a
training time of 16.04 ms. The average GPU memory require-
ment is 421 MB, with a memory demand of 3021 MB, further
confirming its resource efficiency. We have tested and found
that the data transfer rate of TCP protocol between servers
is about 5.0 KB/s, and the data transfer rate of FTP is about
21213.9 KB/s. Therefore, our VELO framework and DLRS
algorithm are practical for real-world applications.

VI. CONCLUSION

In this paper, we presented a framework for optimizing QoS
in LLMs through a collaborative cloud-edge approach assisted
by vector databases. We comprehensively modeled the LLM
request scheduling problem, considering both the satisfaction
of the LLM request and the completion delay. We proposed a
feature extraction method for LLM requests using the Trans-
former Encoder, and combined these features with the query
result features of LLM requests to fully describe the request
properties and their relevance to local vector data. Additionally,
we introduced training and updating algorithms based on expert
demonstrations to optimize the sparse LLM request features and
address policy exploration challenges. We introduced the DLRS
algorithm, which schedules requests through a diffusion-based
policy network and enhances the QoS of LLM requests by
utilizing cloud-edge collaboration. The system was deployed
in a physical environment and used an open-source QA dataset
to evaluate the performance of algorithms against similar and
new requests. The experimental results indicated that the DLRS
algorithm improves performance by 15% and 14.59% com-
pared to the baseline algorithms when handling similar and new
requests.

Future work will focus on further improving the success
rate of matching vector databases with requests, as well as
addressing potential parallel inference issues in request schedul-
ing. Specifically, we will improve the vector database structure
by implementing content-aware partitioning to enhance query
speed and reduce irrelevant results. In addition, we plan to imple-
ment a decision-checking mechanism to analyze the relevance
of the prompt content provided to the LLM, thereby reducing
potential decision-making errors in the algorithm. Addressing
parallel inference issues from request scheduling requires load
balancing, which can be achieved by creating and allocating
pods in Kubernetes. However, this comes with many challenges
in system implementation, guiding our future work.

REFERENCES

[1] Y. Shen et al., “Large language models empowered autonomous edge
AI for connected intelligence,” IEEE Commun. Mag., vol. 62, no. 10,
pp. 140–146, Oct. 2024.

[2] M. Xu et al., “Unleashing the power of edge-cloud generative AI in mobile
networks: A survey of AIGC services,” IEEE Commun. Surv. Tut., vol. 26,
no. 2, pp. 1127–1170, Second Quarter, 2024.

[3] C. Ding, Z. Lu, F. Juefei-Xu, V. N. Boddeti, Y. Li, and J. Cao, “Towards
transmission-friendly and robust CNN models over cloud and device,”
IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 6176–6189, Oct. 2023.

[4] Y.-C. Wang, J. Xue, C. Wei, and C. C. J. Kuo, “An overview on generative
AI at scale with edge–cloud computing,” IEEE Open J. Commun. Soc.,
vol. 4, pp. 2952–2971, 2023.

[5] J. Kim et al., “Memory-efficient fine-tuning of compressed large language
models via sub-4-bit integer quantization,” in Proc. Adv. Neural Inf.
Process. Syst., Curran Associates, Inc., 2024, pp. 36 187–36 207.

[6] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han, “SmoothQuant:
Accurate and efficient post-training quantization for large language mod-
els,” in Proc. Int. Conf. Mach. Learn., PMLR, 2023, pp. 38 087–38 099.

[7] C.-Y. Hsieh et al., “Distilling step-by-step! Outperforming larger language
models with less training data and smaller model sizes,” in Proc. Annu.
Meeting Assoc. Comput. Linguistics, 2023, pp. 8003–8017.

[8] M. Lin, L. Cao, Y. Zhang, L. Shao, C.-W. Lin, and R. Ji, “Pruning networks
with cross-layer ranking & K-reciprocal nearest filters,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 11, pp. 9139–9148, Nov. 2023.

[9] Y. Chen et al., “NetGPT: A native-AI network architecture beyond provi-
sioning personalized generative services,” 2023, arXiv:2307.06148.

[10] X. Huang et al., “Federated learning-empowered AI-generated content in
wireless networks,” IEEE Netw., vol. 38, no. 5, pp. 304–313, Sep. 2024.

[11] H. Wang, J. Hong, and J. Luo, “Service matching based on group prefer-
ence and service representation learning for edge caching,” in Proc. 2023
IEEE Int. Conf. Web Serv., 2023, pp. 1–6.

[12] Q. Cao, P. Khanna, N. D. Lane, and A. Balasubramanian, “MobiVQA:
Efficient on-device visual question answering,” in Proc. ACM Interactive,
Mobile, Wearable Ubiquitous Technol., vol. 6, no. 2, pp. 1–23, Jul. 2022.

[13] A. Nematallah, C. H. Park, and D. Black-Schaffer, “Exploring the latency
sensitivity of cache replacement policies,” IEEE Comput. Archit. Lett.,
vol. 22, no. 2, pp. 93–96, Jul./Dec. 2023.

[14] B. Cao, Q. Peng, X. Xie, Z. Peng, J. Liu, and Z. Zheng, “Web ser-
vice recommendation via combining topic-aware heterogeneous graph
representation and interactive semantic enhancement,” IEEE Trans.
Serv. Comput., vol. 17, no. 6, pp. 4451–4466, Nov./Dec. 2024,
doi: 10.1109/TSC.2024.3418328.

[15] J. Wang et al., “Milvus: A purpose-built vector data management system,”
in Proc. 2021 ACM Int. Conf. Manage. Data, 2021, pp. 2614–2627.

[16] H. Jiang, Q. Wu, C.-Y. Lin, Y. Yang, and L. Qiu, “LLMLingua: Com-
pressing prompts for accelerated inference of large language models,” in
Proc. 2023 Conf. Empirical Methods Natural Lang. Process., 2023, pp. 13
358–13 376.

[17] J. J. Pan, J. Wang, and G. Li, “Survey of vector database management
systems,” VLDB J., vol. 33, no. 5, pp. 1591–1615, Jul. 2024.

[18] O. Topsakal and T. C. Akinci, “Creating large language model applications
utilizing LangChain: A primer on developing LLM apps fast,” in Proc. Int.
Conf. Appl. Eng. Natural Sci., 2023, pp. 1050–1056.

[19] D. Driess et al., “PaLM-E: An embodied multimodal language model,” in
Proc. 40th Int. Conf. Mach. Learn., PMLR, 2023, pp. 8469–8488.

[20] T. Ahmed and P. Devanbu, “Better patching using LLM prompting, via
self-consistency,” in Proc. 38th IEEE/ACM Int. Conf. Automated Softw.
Eng., 2023, pp. 1742–1746.

[21] Z. Tang, W. Jia, X. Zhou, W. Yang, and Y. You, “Representation and
reinforcement learning for task scheduling in edge computing,” IEEE
Trans. Big Data, vol. 8, no. 3, pp. 795–808, Jun. 2022.

[22] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Proc. Auton. Agents Multi-
agent Syst., Springer, 2017, pp. 66–83.

[23] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Proc. Adv. Neural Inf. Process. Syst., Curran Associates, Inc., 2020,
pp. 6840–6851.

[24] H. Zhu, X. Li, L. Chen, and R. Ruiz, “Smart offloading computation-
intensive & delay-intensive tasks of real-time workflows in mobile
edge computing,” in Proc. 2023 IEEE Int. Conf. Web Serv., 2023,
pp. 695–697.

[25] H. Du et al., “Diffusion-based reinforcement learning for edge-enabled
AI-generated content services,” IEEE Trans. Mobile Comput., vol. 23,
no. 9, pp. 8902–8918, Sep. 2024.

[26] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., Curran Associates, Inc., 2017, pp. 5998–6008.

[27] Z. Lu, C. Ding, F. Juefei-Xu, V. N. Boddeti, S. Wang, and Y. Yang,
“TFormer: A transmission-friendly ViT model for IoT devices,” IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 2, pp. 598–610, Feb. 2023.

[28] R. Guo et al., “Manu: A cloud native vector database management system,”
in Proc. VLDB Endowment, vol. 15, no. 12, pp. 3548–3561, Aug. 2022.

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TSC.2024.3418328

YAO et al.: ENHANCING LLM QOS THROUGH CLOUD-EDGE COLLABORATION: A DIFFUSION-BASED MULTI-AGENT REINFORCEMENT 1427

[29] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforce-
ment learning-based joint task offloading and bandwidth allocation for
multi-user mobile edge computing,” Digit. Commun. Netw., vol. 5, no. 1,
pp. 10–17, Feb. 2019.

[30] C. Gulcehre et al., “Making efficient use of demonstrations to solve
hard exploration problems,” in Proc. Int. Conf. Learn. Representations,
OpenReview.net, 2020, pp. 1–20.

[31] Z. Yao, Z. Tang, J. Lou, P. Shen, and W. Jia, “VELO: A vector database-
assisted cloud-edge collaborative LLM QoS optimization framework,” in
Proc. 2024 IEEE Int. Conf. Web Serv., 2024, pp. 865–876.

[32] J. Bai et al., “Qwen technical report,” 2023, arXiv:2309.16609.
[33] A. Köpf et al., “Openassistant conversations-democratizing large language

model alignment,” in Proc. Adv. Neural Inf. Process. Syst., Curran Asso-
ciates, Inc., 2024, pp. 47 669–47 681.

[34] OASST1. 2023. [Online]. Available: https://huggingface.co/datasets/
OpenAssistant/oasst1

[35] J. Lin et al., “AWQ: Activation-aware weight quantization for on-device
LLM compression and acceleration,” in Proc. Mach. Learn. Syst., 2024,
pp. 87–100.

[36] S. Zhang, M. Xu, W. Y. Bryan Lim, and D. Niyato, “Sustainable AIGC
workload scheduling of geo-distributed data centers: A multi-agent rein-
forcement learning approach,” in Proc. 2023 IEEE Glob. Commun. Conf.,
2023, pp. 3500–3505.

[37] P. Patel, E. Choukse, C. Zhang, and A. Shah, “Splitwise: Efficient genera-
tive LLM inference using phase splitting,” in Proc. 2024 ACM/IEEE 51st
Annu. Int. Symp. Comput. Archit., 2024, pp. 118–132.

[38] K. Rao, G. Coviello, P. Benedetti, C. G. De Vita, G. Mellone, and S.
Chakradhar, “ECO-LLM: LLM-based edge cloud optimization,” in Proc.
2024 ACM Workshop AI Syst., 2024, pp. 7–12.

[39] S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforcement
learning,” in Proc. Adv. Neural Inf. Process. Syst., Curran Associates, Inc.,
2021, pp. 20 132–20 145.

[40] Z. Dong et al., “CleanDiffuser: An easy-to-use modularized library for
diffusion models in decision making,” 2024, arXiv:2406.09509.

[41] Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an expressive
policy class for offline reinforcement learning,” in Proc. Int. Conf. Learn.
Representations, 2023, pp. 1–17.

[42] D. Yu et al., “MoESys: A distributed and efficient mixture-of-experts
training and inference system for internet services,” IEEE Trans. Serv.
Comput., vol. 17, no. 5, pp. 2626–2639, Sep./Oct. 2024.

[43] Y. He, M. Xu, J. Wu, W. Zheng, K. Ye, and C. Xu, “UELLM: A unified and
efficient approach for LLM inference serving,” 2024, arXiv:2409.14961.

[44] Y. Fu, S. Zhu, R. Su, A. Qiao, I. Stoica, and H. Zhang, “Efficient LLM
scheduling by learning to rank,” 2024, arXiv:2408.15792.

[45] X. Zhao, X. Zhou, and G. Li, “Chat2Data: An interactive data analysis sys-
tem with RAG, vector databases and LLMs,” in Proc. VLDB Endowment,
vol. 17, pp. 4481–4484, 2024.

[46] L.-B. Hernandez-Salinas et al., “IDAS: Intelligent driving assistance sys-
tem using RAG,” IEEE Open J. Veh. Technol., vol. 5, pp. 1139–1165,
2024.

[47] Z. Ye et al., “Deep learning workload scheduling in GPU datacenters: A
survey,” ACM Comput. Surv., vol. 56, no. 6, pp. 1–38, Jan. 2024.

[48] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content
update for wireless edge caching via deep reinforcement learning,” IEEE
Commun. Lett., vol. 23, no. 10, pp. 1773–1777, Oct. 2019.

[49] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. Lau, “Dynamic
virtual machine management via approximate Markov decision process,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[50] Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Multi-user layer-
aware online container migration in edge-assisted vehicular networks,”
IEEE/ACM Trans. Netw., vol. 32, no. 2, pp. 1807–1822, Apr. 2024.

[51] S. Black et al., “GPT-NeoX-20B: An open-source autoregressive language
model,” in Proc. ACL Workshop Challenges Perspectives Creating Large
Lang. Models, 2022, pp. 95–136.

[52] H. Xiong et al., “When search engine services meet large language models:
Visions and challenges,” IEEE Trans. Serv. Comput., vol. 17, no. 6,
pp. 4558–4577, Nov./Dec. 2024, doi: 10.1109/TSC.2024.3451185.

[53] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods fomoesysr reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst., MIT Press, 1999, pp. 1057–1063.

[54] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv: 1707.06347.

[55] K. Han, A. Xiao, E. Wu, J. Guo, C. XU, and Y. Wang, “Transformer in
transformer,” in Proc. Adv. Neural Inf. Process. Syst., Curran Associates,
Inc., 2021, pp. 15 908–15 919.

[56] I. Sarkar, M. Adhikari, S. Kumar, and V. G. Menon, “Deep reinforcement
learning for intelligent service provisioning in software-defined industrial
fog networks,” IEEE Internet Things J., vol. 9, no. 18, pp. 16 953–16 961,
Sep. 2022.

[57] L. Gao et al., “The pile: An 800GB dataset of diverse text for language
modeling,” 2020, arXiv:2101.00027.

[58] FastGPT. 2023. [Online]. Available: https://github.com/labring/FastGPT
[59] C. Yu et al., “The surprising effectiveness of PPO in cooperative multi-

agent games,” in Proc. Adv. Neural Inf. Process. Syst., Curran Associates,
Inc., 2022, pp. 24 611–24 624.

[60] C. Luo, “Understanding diffusion models: A unified perspective,”
2022, arXiv:2208.11970.

Zhi Yao received the BS degree from the College
of Electronic and Information Engineering, Shan-
dong University of Science and Technology, China,
in 2020, and the MS degree from the South China
Academy of Advanced Optoelectronics, South China
Normal University, China, in 2023. He is currently
working toward the PhD degree with the School
of Artificial Intelligence, Beijing Normal University,
China. His current research interests include mo-
bile edge computing, vector database, LLM request
scheduling, and reinforcement learning.

Zhiqing Tang (Member, IEEE) received the BS de-
gree from the School of Communication and Infor-
mation Engineering, University of Electronic Science
and Technology of China, China, in 2015 and the PhD
degree from the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, China,
in 2022. He is currently an assistant professor with
the Advanced Institute of Natural Sciences, Beijing
Normal University, China. His current research in-
terests include edge computing, resource scheduling,
and reinforcement learning.

Wenmian Yang (Member, IEEE) received the BS
degree from the Department of Electronic Informa-
tion and Electrical Engineering, Dalian University of
Technology, China, in 2015, and the PhD degree from
the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, China, in 2020.
Currently, he is a research associate professor with
Beijing Normal University (Zhuhai). His current re-
search interests include natural language processing,
time-series data, and diffusion models.

Weijia Jia (Fellow, IEEE) is currently the di-
rector with the Institute of Artificial Intelligence
and Future Networking, and the director of Su-
per Intelligent Computer Center, Beijing Normal
University at Zhuhai, also a chair professor with
UIC, Zhuhai, Guangdong, China. He has more than
700 publications in the prestige international jour-
nals/conferences and research books and book chap-
ters. He has served as area editor for various prestige
international journals, chair and PC member/keynote
speaker for many top international conferences. He is

the distinguished member of CCF.

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 22,2025 at 06:05:39 UTC from IEEE Xplore. Restrictions apply.

https://huggingface.co/datasets/OpenAssistant/oasst1
https://huggingface.co/datasets/OpenAssistant/oasst1
https://dx.doi.org/10.1109/TSC.2024.3451185
https://github.com/labring/FastGPT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

