
12314 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Layer-Aware Cost-Effective Container Updates With
Edge-Cloud Collaboration in Edge Computing

Hanshuai Cui , Zhiqing Tang , Member, IEEE, Yuan Wu , Senior Member, IEEE, and Weijia Jia , Fellow, IEEE

Abstract—Containers have become popular for deploying appli-
cations in Edge Computing (EC) for their seamless integration and
easy deployment. Frequent container updates are essential to en-
hance performance and introduce new challenges for cutting-edge
applications such as large language models and digital twins. How-
ever, traditional container update methods result in substantial
download costs and task interruptions, which are unacceptable for
latency-sensitive tasks in resource-constrained EC. Existing work
has largely overlooked the layered structure of container images.
By leveraging this layered structure, duplicate downloads can be
reduced, and various layers can be transferred from other edges,
reducing burden on the remote cloud. In this paper, we model the
layer-aware container update problem with edge-cloud collabo-
ration to minimize update and scheduling costs. We present the
Layer-aware Edge-cloud collaborative Container Update (LECU)
algorithm based on reinforcement learning to make container up-
date decisions. Moreover, a task scheduling algorithm is devised
to schedule tasks affected by container updates to other edges,
minimizing the impact of task interruptions. We implement our
LECU algorithm on an edge system with real-world data traces to
demonstrate its effectiveness and conduct larger-scale simulations
to evaluate its scalability. Results demonstrate that our algorithms
reduce container update and task scheduling costs by 14% and
19%, respectively, compared to baselines.

Received 30 December 2024; revised 19 June 2025; accepted 20 June 2025.
Date of publication 25 June 2025; date of current version 3 October 2025.
This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant 62272050 and Grant 62302048, in part by
the Science and Technology Development Fund of Macau SAR under Grant
FDCT 0158/2022/A, in part by the Research Fund of Guangxi Key Lab of
Multi-Source Information Mining and Security under Grant MIMS24-07, in
part by the Guangdong Key Lab of AI and Multi-modal Data Processing,
Beijing Normal-Hong Kong Baptist University, Zhuhai under Grant 2023-2024
Grants sponsored by Guangdong Provincial Department of Education, in part by
Institute of Artificial Intelligence and Future Networks and Engineering Center
of AI and Future Education, Guangdong Provincial Department of Science and
Technology, China, in part by Zhuhai Science-Tech Innovation Bureau under
Grant 2320004002772, and in part by the Interdisciplinary Intelligence Super
Computer Center of Beijing Normal University at Zhuhai. Recommended for
acceptance by C. Lin. (Corresponding authors: Zhiqing Tang; Weijia Jia.)

Hanshuai Cui is with the School of Artificial Intelligence, Beijing Normal
University, Beijing 100875, China, and also with the Institute of Artificial
Intelligence and Future Networks, Beijing Normal University, Zhuhai 519087,
China (e-mail: hanshuaicui@mail.bnu.edu.cn).

Zhiqing Tang is with the Institute of Artificial Intelligence and Future Net-
works, Beijing Normal University, Zhuhai 519087, China, and also with the
Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi
Normal University, Guilin 541004, China (e-mail: zhiqingtang@bnu.edu.cn).

Yuan Wu is with the State Key Laboratory of Internet of Things for Smart
City, University of Macau, Macau SAR, China (e-mail: yuanwu@um.edu.mo).

Weijia Jia is with the Institute of Artificial Intelligence and Future Networks,
Beijing Normal University, Zhuhai 519087, China, and also with the Guangdong
Key Lab of AI and Multi-Modal Data Processing, Beijing Normal-Hong Kong
Baptist University, Zhuhai 519087, China (e-mail: jiawj@bnu.edu.cn).

Digital Object Identifier 10.1109/TMC.2025.3583153

Index Terms—Container update, edge computing, layer sharing,
edge-cloud collaboration, reinforcement learning.

I. INTRODUCTION

CONTAINERS have gained popularity in Edge Computing
(EC) due to their efficiency in facilitating the deployment

of services [1]. An image file containing the binaries, code, sys-
tem tools, and configuration files must exist locally for running a
container [2]. Recent cutting-edge applications, including large
language models and digital twins, can be easily deployed to
EC using containerization [3], [4]. These applications require
rapid updates to meet user demands effectively. Besides, regular
updates are also necessary to add new features, enhance secu-
rity, and fix bugs. Real-world production cluster data [5], [6],
collected from August 1 to October 24, 2022 using a one-minute
sampling interval, shows 922 version updates occurred. The
average interval between updates ranges from several days to
weeks, with 95% of updates completed within eight hours.
The container update process involves downloading the new
image version from the cloud, halting the existing container, and
initializing the newly one. Despite being lightweight, container
updates may be slow in practice due to limited bandwidth for
image downloads in EC environments. Moreover, many image
downloads can place a heavy burden on the remote cloud.
Therefore, finding a fast and effective way to update containers
in EC is crucial.

Edge nodes have limited computation and storage resources,
making them incapable of supporting large-scale parallel up-
dates. Therefore, traditional update strategies for software are
not suitable for container updates in EC. Container update
strategies in cloud data centers are also unsuitable for EC.
Unlike cloud data centers, EC environments impose stringent
constraints on resource availability and network stability. For ex-
ample, the blue-green update [7] requires running two container
versions simultaneously, making it unsuitable for resource-
limited EC environments. Similarly, the Rolling Update (RU) [8]
involves taking one or more containers out of service for updat-
ing and then reincorporating them once the update is complete.
The number of containers to update is often predefined and not
dynamically adjusted according to the current load.

Several container update strategies specifically improved for
EC have been proposed [9], [10]. However, two critical issues
often overlooked in existing studies have been identified. First,
images are composed of layers [11]. During container updates,
only the modified layers need to be downloaded, whereas
traditional software updates require downloading the entire

1536-1233 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5988-5470
https://orcid.org/0000-0002-9375-4818
https://orcid.org/0000-0001-6661-9461
https://orcid.org/0000-0003-1000-3937
mailto:hanshuaicui@mail.bnu.edu.cn
mailto:zhiqingtang@bnu.edu.cn
mailto:yuanwu@um.edu.mo
mailto:jiawj@bnu.edu.cn

CUI et al.: LAYER-AWARE COST-EFFECTIVE CONTAINER UPDATES WITH EDGE-CLOUD COLLABORATION IN EDGE COMPUTING 12315

Fig. 1. Edge-cloud collaborative container update process. Left: Two versions
of a Golang container image share common layers, with only two layers differing.
Right: Edge nodes download layers from neighboring nodes instead of the
remote cloud, reducing download latency.

installation package and reinstalling the software [12], leading
to significant bandwidth waste. Fig. 1 shows two versions of the
Golang image (used to provide a Golang programming environ-
ment), highlighting only two layers of differences between them.
Second, distributed file systems can share layers across different
nodes [13]. Container layers can be shared across multiple nodes,
and employing efficient coordination of cross-node updates can
reduce overall update latency. If a node lacks specific layers,
it can load them from other nodes or download them from
the remote cloud. However, the layered structure of containers,
while enabling partial layer reuse, introduces complexity in co-
ordinating distributed layer sharing across heterogeneous edge
nodes in EC. The unique opportunity of layer sharing across
edge nodes, which is not typically feasible in centralized cloud
environments. Fig. 1 illustrates that nodes n2 and n3 need layer
l5 to update container c2. If l5 is loaded from node n1, the
burden of the cloud can be reduced. As a result, layer sharing
and edge-cloud collaboration can enable more efficient container
updates.

Although making layer-aware container update decisions with
edge-cloud collaboration shows promise in shortening update
time, several challenges remain to be addressed. The first chal-
lenge is how to determine the optimal number of concurrent
container updates. Existing studies often rely on static update
strategies that do not account for user mobility and load vari-
ability in EC [8]. Consequently, these methods cannot determine
the optimal number of containers that can be updated simulta-
neously while ensuring that the remaining nodes still provide
adequate service. Updating too many edge nodes can lead to
unhandled tasks due to resource constraints, whereas updating
too few prolongs the overall update duration. We have to face the
dilemma of the longer total update time or the number of task
interruptions caused by the container updates. Existing studies
mainly focus on utilizing layer sharing to reduce container
deployment or migration costs but overlook the effects of layer
sharing during container updates [14], [15], [16], [17]. For down-
loading only a few layers, increasing the update proportion will
expedite the process. Therefore, the update proportion should

Fig. 2. Two-timescale container update framework. Container updates occur
on a large timescale, while task scheduling operates on a small timescale.

be adjusted dynamically based on the load of edge nodes and
layer distribution.

The second challenge is how to jointly optimize the container
update sequence and task scheduling to minimize update time
and reduce update-related task interruptions. The update se-
quence affects the resources of nodes, thereby impacting task
scheduling. Prioritizing the update of low-load edge nodes is
advisable to reduce task interruptions. Meanwhile, later updated
edge nodes can load layers from other edge nodes rather than
download from the remote cloud, reducing the burden on the
remote cloud. The update sequence and task scheduling should
be considered comprehensively. However, existing studies often
focus solely on updating strategies or task scheduling inde-
pendently [18], [19], neglecting the mutual impacts of both
problems. Reinforcement Learning (RL) algorithms have been
extensively tackled diverse optimization problems [20], [21].
The reward function in RL enables comprehensive consideration
of long-term benefits as well as the effects of layer sharing
and edge-cloud collaboration. Therefore, we propose the Layer-
aware Edge-cloud collaborative Container Update (LECU) al-
gorithm based on the Soft Actor-Critic (SAC) RL algorithm
to make container update decisions. Additionally, to prevent
massive task disruptions caused by the updates, an efficient
task scheduling algorithm named Resource Balance Allocation
(RBA) is devised to balance the resource consumption across all
the edge nodes.

This paper explores the layer-aware container update issue
in the edge-cloud network. The proposed container update
framework, shown in Fig. 2, employs the LECU algorithm for
managing container updates upon new releases and the RBA
algorithm for task scheduling when User Equipments (UEs)
offload tasks to the edge node. We implement these algorithms
on a small-scale edge system to validate their practicality and
applicability. Docker facilitates performing the container update
process, with images crawled from Docker Hub [22]. The state
data is collected from the system, and an NVIDIA GPU is
employed to train the RL agent. Once trained, the agent is
deployed on the edge system to make update decisions whenever
a container update request arises. Additionally, we conduct
more extensive experiments to evaluate scalability. The results
demonstrate that the LECU algorithm outperforms all baselines.
The contributions are summarized below.

1) We formulate the layer-aware edge-cloud collaborative
container update problem to reduce total update time and
minimize task interruptions caused by container updates
in a resource-constrained EC environment.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

12316 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Fig. 3. Motivation example comparing three update situations. Case 1 completes 5 tasks with 16 units update time. Case 2 interrupts task k3, completing 4 tasks.
Case 3 reduces update time to 8 units but interrupts task k2 and offloads task k3 to the cloud, completing only 3 tasks. Trade-offs between update time and task
interruptions are highlighted.

2) We propose a two-timescale container update framework
that employs the LECU algorithm for container update
decisions and the RBA algorithm for task scheduling to
minimize task interruptions during updates.

3) We validate the performance of our algorithms on an edge
system using real-world data traces and assess their scala-
bility through larger-scale simulations. Results show that
the LECU algorithms outperform all baseline methods.

II. RELATED WORK

A. Layer-Aware Container Scheduling

Containers are lightweight virtualization techniques that en-
able the efficient deployment of applications in EC environ-
ments [4]. Some recent works have focused on the layered
structure of containers to reduce image download costs. For ex-
ample, Ma et al. [23] propose an efficient live migration method
for offloading services by leveraging a layered storage system,
significantly reducing migration time and user-perceived inter-
ruptions. Tang et al. [11] present a container migration algorithm
for edge-assisted vehicular networks, utilizing layer sharing to
reduce total latency. Shi et al. [15] introduce an optimization
algorithm to enhance reliability in microservice deployment
with layer sharing. Zeng et al. [17] propose a cost-efficient algo-
rithm for placing dependent microservices while considering the
layered structure. Lou et al. [24] introduce a method for jointly
determining container assignment and layer sequencing to min-
imize container startup latency. Gu et al. [14] investigate layer
sharing and introduce a non-sequential layer fetching strategy to
expedite microservice initialization. However, existing research
has ignored the differences in layers during container updates
and the potential for sharing layers between nodes [13], which
could further minimize image downloads.

B. Container Update Strategies

Container update issues are still in the early stages in EC.
Zhang et al. [9] present a chunk reuse mechanism to enhance
container update efficiency and reduce network resource con-
sumption. Al Maruf et al. [10] present an algorithm to determine
the ideal quantity of fog nodes needed for Over-the-Air (OTA)

updates. Chen et al. [19] present a method that employs RL to
optimize the scheduling of virtual machine migrations during
datacenter upgrades. Sun et al. [8] increase the robustness of
rolling upgrades by improving error detection and predictability.
Hassan et al. [18] present novel scheduling algorithms for OTA
software updates. In our previous work [21], we propose a
RL-based task scheduling algorithm for edge cluster upgrades.
However, the existing studies failed to target the container layer
update in the EC scenarios specifically, facing limited resources.
In this paper, we jointly address container updates and task
scheduling with layer sharing for the first time, aiming to reduce
update time and task interruptions caused by updates.

III. MOTIVATION

To better understand the scenario of container updates, a
motivating example is illustrated in Fig. 3. An edge-cloud
network consisting of a remote cloud and four edge nodes
is considered. We aim to update the container version from
1.0.0 to 1.0.1. Considering the layer sharing between different
containers, updating this container is equivalent to downloading
layer l4. For simplicity, it is assumed that each node executes
only a single task simultaneously. The data transfer rate between
edge nodes and the remote cloud is 0.6, while the edge nodes
are interconnected with varying transmission rates. Table A in
Fig. 3 lists five different tasks. Blue shaded areas represent the
container update duration on each node. Orange arrows represent
downloading layers from the remote cloud, while green arrows
show layer transfers between nodes, with their directionality re-
flecting the layer transmission. For example, in Case 1, the arrow
from edge node n1 to edge node n3 indicates that node n3 loads
shared layers from node n1 instead of downloading them from
the remote cloud. In addition, the circle numbers, e.g., 1©, 2©, 3©,
and 4©, represent the update order of nodes. Task interruptions
due to updates are highlighted in red. Three different update
proportions and update sequences are considered as follows.

In Case 1, with an update proportion of 25%, one container is
updated at a time in the sequence n1→ n2→ n3→ n4. Nodes
n1 and n2 download layers from the cloud, while nodes n3 and
n4 load layers from n2 and n1, respectively. The total update
time is 16 units, and the number of tasks completed is 5 units.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: LAYER-AWARE COST-EFFECTIVE CONTAINER UPDATES WITH EDGE-CLOUD COLLABORATION IN EDGE COMPUTING 12317

In Case 2, containers are updated in the sequence of n1 →
n4 → n2 → n3, with the same update proportion of 25%. At
time 5, the container on node n4 begins updating, forcing the
eviction of the ongoing task k3 on node n4, which subsequently
fails. The total update time remains 16 units, but the number of
tasks completed is 4 units.

In Case 3, the update proportion is 50%, allowing two con-
tainers to update simultaneously. The container update sequence
is n1, n3→ n2, n4. Task k3 is offloaded to the remote cloud due
to the unavailability of edge nodes. At the same time, the task
k3 on the node n4 is evicted, and the execution fails due to the
node update. Consequently, only 3 units of tasks are completed.
As more containers are updated simultaneously, the total update
time decreases to 8 units.

More details of the container update results are shown in Table
B in Fig. 3. This example highlights the need to balance container
updates and task scheduling to optimize the tradeoff between
task completion ratio and update time duration, illustrating the
complexity and significance of container update problems and
the interconnected decisions involved.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. Overview of the System

This section describes the system model for container updates
and task scheduling. Then, the problem is formulated. Table I
enumerates the key notations.

Edge node: Let N = {n1, n2, . . . , n|N|} represent the set of
edge nodes, where | · | indicates the size of a set. Hence, |N|
stands for the overall number of such nodes. The remaining CPU
cores and memory in the edge node n at time t are represented
by Un(t) and Mn(t), respectively. The initial CPU cores and
memory in the edge node n are U I

n and M I
n, respectively. We

denote the CPU frequency of edge noden asFn, its bandwidth as
Bn, and its storage capacity as Dn. The remote cloud, referred
to as n|N|+1, can be considered an edge node with limitless
capacity.

Container: The container set is denoted as C =
{c1, c2, . . . , c|C|}. The image set is defined as I =
{i1, i2, . . . , i|I|}. A container differs from an image only by the
writable layer, so updating a container requires downloading the
new version of the related image [25]. The layer set comprising
each image is represented as L = {l1, l2, . . . , l|L|}, and dl
denotes the size of layer l.

Task: The tasks offloaded from different UEs to the edge node
are grouped into the set K = {k1, k2, . . . , k|K|}. The resources
that the task requires are assumed to be the same as those used
by the container. At time t, task k requests uk CPU resources
and mk memory resources. Additionally, dk is the data size of
task k, and tk is its release time.

For applications sensitive to latency, minimizing task latency
is a critical requirement. For example, autonomous vehicles
require immediate access to perception, planning, and control
containers to ensure safe navigation. Deploying all necessary
containers on each edge node enables rapid access to services
from nearby nodes and eliminates delays caused by transferring
container images during emergency tasks. Similarly, edge AI

TABLE I
SUMMARY OF KEY NOTATIONS

servers deploy all containers, such as recognition, understand-
ing, and processing modules, to minimize task latencies. While
this design introduces additional storage overhead, it guarantees
rapid access to critical functions. In EC, edge nodes are inter-
connected via a high-speed wired network to ensure reliable
and low-latency layer sharing during container updates, which
is common in EC deployments. In contrast, task offloading inher-
ently involves wireless UEs (e.g., smartphones or IoT devices),
necessitating a wireless uplink network [26]. The edge nodes are
designed to process incoming tasks from various UEs quickly
and efficiently through a wireless connection.

B. Container Update

Container updates involve three phases: downloading the new
version of the image, pausing the old container, and initiating

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

12318 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

the new one. Since the old container can be stopped while the
new one starts, the process time is negligible.

Image download: Layers can be shared between various
images, so only the changed layers in the new image need to
be downloaded. The size of new layers necessary for updating
container c in edge node n is:

sdown
n,c =

∑
l∈L

xc,l × (1− yn,l(t))× dl, (1)

where xc,l indicates whether container c contains layer l (xc,l =
1) or not (xc,l = 0). yn,l(t) represents the storage status of layer
l on edge node n at time t (1 if stored, 0 otherwise).

An edge node updates a container by downloading the image
from the remote cloud or loading it from other edge nodes via a
distributed file system. Edge nodes dynamically select the fastest
available source for downloading image layers. For each layer
l, the node prioritizes the source with the highest bandwidth.
If another edge node n′ already stores layer l (yn′,l(t) = 1),
the layer transferring between nodes n and n′ is considered.
Otherwise, the node downloads the layer from the cloud with
bandwidth Br. Download latency is the time required to transfer
new image layers from neighboring edge nodes or the cloud.
This collaboration minimizes download latency by leveraging
distributed layer storage across the edge-cloud environment. The
image download latency can be denoted as:

T down
n,c =

∑
l∈L

(
dl × xc,l

maxn′∈N (Br, Bn,n′ × yn′,l(t))

)
, (2)

where Br denotes the bandwidth of the remote cloud, and Bn,n′

signifies the bandwidth between edge nodes n and n′. The max
operator is used to select the maximum bandwidth from the
cloud Br and other edge nodes Bn,n′ × yn′,l(t). This ensures
that each layer is transferred from the fastest available source,
prioritizing edge nodes with existing layers to reduce reliance
on the cloud.

Container initialization: While the container update process
primarily consumes storage resources, there is an implicit de-
mand on CPU, as the extraction of the new layers utilizes this
resource [27]. For initialization latency, it describes the container
startup time proportional to CPU frequency. Thus, container
initialization latency can be obtained as:

T init
n,c =

δsdown
n,c

Fn
, (3)

where the CPU frequency of edge node n is Fn and δ is a
constant. Therefore, the total update latency for container c on
edge node n can be denoted as:

Tupdate
n,c = T down

n,c + T init
n,c . (4)

Given that the update start time of container c on node n is
tsn,c, the start time and finish time for the container update are:

tsc=min
n∈N

tsn,c, t
f
c =max

n∈N
{tsn,c + Tupdate

n,c }, (5)

where minn∈N tsn,c
represents the earliest start time of the con-

tainer update across all nodes, while maxn∈N {tsn,c
+ T update

n,c }
denotes the latest finish time. These operators capture the overall

update time, ensuring the overall process completes only after
all nodes finish their updates.

C. Task Scheduling and Computation

Computation-intensive tasks are offloaded by UEs to edge
nodes for execution. The lifecycle of a task typically involves
several stages: transferring task data (configuration files, input
files, etc.) to the edge node over a wireless connection, executing
the task in a container, and finally, the edge node returning the
result to the user [28]. ξn,k, the uplink wireless transmission rate
from task k to edge node n at time t, is denoted in [29] as:

ξn,k(t) =
Bn

Qn(t)
log

(
1 +

pkhn,k(t)

σ2

)
, (6)

where Qn denotes the number of tasks transmitted to edge node
n at time t, withBn representing the node’s bandwidth. pk corre-
sponds to the transmission power, and the channel gain between
UEs and edge node n at time t is hn,k(t) = d−αn,k [30], where
dn,k refers to the distance between them and α is the path loss
coefficient. The power of Gaussian white noise is represented
by σ. Communication latency corresponds to the time needed
to transfer task data, determined by factors such as bandwidth
contention and channel conditions. The communicating latency
can be defined as:

T comm
n,k =

∫
dk

ξn,k(t)
dt, (7)

where dk represents the data size required to execute the task.
Generally, the latency of returning the result via communication
is considered negligible and thus omitted [31], [32].

Tasks run concurrently within isolated containers. We adopt
a weighted resource allocation approach, assigning computa-
tional resources to tasks in proportion to their CPU frequency
requirements [33]. Computation latency reflects the processing
time on edge nodes, which is inversely proportional to avail-
able computation resources and current workload intensity. The
computation latency is defined as:

T comp
n,k =

∫
fk

fk
wn(t)+fk

× Un

dt, (8)

where fk denotes the CPU frequency required by task k, while
Un represents the CPU cores available on edge node n. In
addition, wn(t) is used to denote the load of edge node n at time
t. The item fk

wn(t)+fk
reflects the proportion of CPU resources

allocated to task k. As wn(t) increases, it enables tasks to utilize
a larger portion of the CPU cores Un, thereby reducing the
resource share available to each task and increasing latency.
Conversely, under lighter loads, task k receives a larger resource
fraction, minimizing latency. Edge nodes have finite CPU cores
Un, making proportional allocation critical for task scheduling.
The model adapts to real-time workload changes, rendering it
appropriate for edge environments where load balancing and
task scheduling are closely linked.

Overall, the total task latency is:

T total
k = T comm

n,k + T comp
n,k . (9)

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: LAYER-AWARE COST-EFFECTIVE CONTAINER UPDATES WITH EDGE-CLOUD COLLABORATION IN EDGE COMPUTING 12319

The release time of task k is denoted as trk, so the finish time
tfk can be denoted as:

tfk = T total
k + trk. (10)

The start time of the update on edge noden is set to tsn, and the
corresponding finish time is denoted as tfn. In real-world edge
clusters, container updates induce the modification of the image
file and the restart of the container. To ensure stability, containers
undergoing updates are prohibited from executing new tasks.
In this scenario, task execution and container update can be
considered independent of each other. When a container has
not yet initiated the update process, tasks can still be scheduled
to it, meaning these tasks can execute on the container to be
updated. However, once the container starts the update process,
the update operation will terminate all ongoing tasks, causing
them to fail. The status ok of the task k can be represented as:

ok = zn,k ×
∑
c∈C

[[tsk < tsn,c < tfk]], (11)

where [[· · ·]] is Iverson bracket, which equals 1 if the condition
is met; otherwise, it equals 0. zn,k denotes the scheduling status
of task k on edge node n (1 for scheduled, 0 otherwise).

D. Problem Formulation and Analysis

Constraints: Each offloaded task requests a portion of re-
sources, but available resources on an edge node are constrained.
Exceeding the resource limits of an edge node can negatively
impact container functionality. Therefore, it is essential to limit
the total resource allocation to containers. The resource limits
for the edge node are as follows:∑

k∈K
zn,k × uk ≤ Un(t),

∑
k∈K

zn,k ×mk ≤Mn(t), ∀n, ∀t.
(12)

If no edge node possesses adequate resources to run a task,
the task will be transferred to the remote cloud for execution,
with its state ok set to 0.

The storage capacity on an edge node for layers is limited and
must not exceed the total available storage:∑

l∈L
yn,l(t)× dl ≤ Dn(t) ∀n, ∀t. (13)

As in previous studies [34], [35], tasks are indivisible and
scheduled to a single edge node, represented as:∑

n∈N∩{n|E|+1}
zn,k = 1, ∀k. (14)

Problem formulation: To quantify the trade-offs between
update efficiency and service quality, we define two optimization
metrics: 1) Update cost Cu =

∑
c∈C(t

c
f − tcs) is modeled as the

total time spent on container updates, where tcf and tcs denote the
finish and start timestamps of updating container c, respectively.
This metric captures the cumulative time consumption induced
by update operations; and 2) Scheduling cost Cs =

∑
k∈K ok

measures service quality by penalizing task interruptions during
updates. These metrics explicitly balance the trade-off between
minimizing update time and maintaining task continuity. Our

objective is to dynamically adjust the proportion and sequence
of container updates, minimizing update time and reducing task
interruptions due to updates. The weight λ balances container
update and task scheduling costs. The problem is defined as:

Problem 1 . min C = λCu + (1− λ)Cs,

s.t. Eqs. (12)− (14),

xc,l ∈ {0, 1}, ∀c ∈ C, ∀l ∈ L,

yn,l(t) ∈ {0, 1}, ∀n ∈ N, ∀l ∈ L,

zn,k ∈ {0, 1}, ∀n ∈ N, ∀k ∈ K.

Update cost is critical in resource-constrained edge envi-
ronments, as prolonged updates strain bandwidth and delay
service deployment. Scheduling cost aligns with the number
of tasks interrupted due to container updates, where interrup-
tions degrade user experience. As a complex variation of the
bin-packing problem, traditional algorithms may not solve this
problem efficiently within a reasonable time [36]. he task arrivals
and container updates exhibit memoryless properties, which
allows the problem to be modeled as a Markov Decision Process
(MDP). RL algorithms can effectively address this complexity
and yield improved solutions [37]. We can derive a value func-
tion to assess the expected cumulative reward by utilizing the
collected states, actions, rewards, and a suitable discount factor.
Therefore, the RL agent is able to refine its policy and make
decisions prioritizing long-term objectives [11].

V. PROPOSED ALGORITHMS

A. Algorithm Settings

This subsection introduces the LECU algorithm settings.
State: At time t, the state st comprises three components: the

node state snt , the container update state sct , and the layer state
slt. Among these, the node state incorporates both the resource
and transmission states. The resource state at time t contains
available CPU, memory, and storage capacities, along with the
CPU frequency, which is defined as:

sn,rt = {Un(t),Mn(t),Dn(t),F}
={U1(t), U2(t), . . . , U|N|(t),M1(t),M2(t), . . . ,M|N|(t),

D1(t), D2(t), . . . , D|N|(t), F1, F2, . . . , F|N|}. (15)

Nodes are interconnected through wired networks [32], with
varying distances between edge nodes leading to different trans-
mission rates. The transmission state sn,bt is the transmission rate
among edge nodes, which is represented as:

sn,bt =

⎡
⎢⎢⎢⎢⎣

0 B1,2 . . . B1,|N|
B2,1 0 . . . B2,|N|

...
...

. . .
...

B|N|,1 B|N|,2 . . . 0

⎤
⎥⎥⎥⎥⎦ . (16)

The container update state includes the update start time and
image ID of the container to be updated at the current time,

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

12320 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Algorithm 1: Proposed RBA Algorithm.

which can be defined as:

sct = {tsc, IDc}. (17)

The layer state includes the distribution of layers and the
layers required for the currently updating container:

slt = {xc,1, . . . , xc,|L|, yn,1(t), . . . , yn,|L|(t)}. (18)

Thus, we define the state at time t as:

st = {sn,rt ∪ sn,bt ∪ sct ∪ slt}. (19)

Action: When container updates are required, the LECU
algorithm determines both the proportion of containers to update
simultaneously and the sequence of these updates. The action at
time t is defined as:

at = {ρ,P} ∈ A, (20)

where ρ ∈ (0, 1] represents the proportion of containers updated
simultaneously, and P = {p1, p2, . . . , p|N|} is the updating pri-
ority of each container. Here, pn ∈ P specifies the priority for
the container on node n. If the container update proportion does
not reach ρ, edge nodes with higher priorities are selected for
updates.

Reward: Our goal is to minimize the duration of updates while
reducing task interruptions caused by updates. At time t, the
reward is given by:

rt = −λ(tfc − tsc)− (1− λ)zn,k × [[tsk < tsn,c < tfk]]. (21)

The cumulative long-term reward can be written as Rt =∑T
t=0 γ

trt, with γ representing the discount factor that ranges
between 0 and 1.

B. Algorithm Design

Overview: The proposed container update framework in Fig. 2
shows that container updates occur on a large timescale, while
task scheduling operates on a small timescale. Specifically,
when a new container version is released, we invoke the LECU

Fig. 4. Overview of LECU algorithm. The policy network generates container
update decisions by embedding node states, layer distributions, and container
versions. Dual critic networks evaluate actions using MSE loss, while a replay
buffer stores transitions for batch training. Target networks enable stable policy
updates through soft updates.

algorithm to determine the container upgrade sequence. During
the task offloading process from UEs to edge nodes, the RBA
algorithm is utilized to determine task scheduling. The details
are as follows.

Algorithm 1 introduces the RBA algorithm, with inputs com-
prising the edge node set N and their associated resources. As
depicted in Lines 1 to 3, each node is scored according to its
remaining resources. Then, the edge nodes are sorted according
to their scores, as shown in Line 4. In Lines 5 to 12, the algorithm
verifies if each node has enough resources for task k. If so, the
task is allocated to that node, and the loop ceases. In the end, if
no edge node satisfies the scheduling criteria, the task is routed
to the remote cloud, as shown in Lines 13 to 14.

Fig. 4 illustrates the framework of the LECU algorithm.
It observes the states of node, container, and layer from the
environment. These states are then embedded, concatenated,
and input into the policy network, which makes the update
decisions. Then, the reward is obtained from the action taken.
As described in Algorithm 2, the update sequence queueQ1 and
task scheduling queueQ2 are initialized. QueueQ1 contains all
containers requiring updates, which are processed according to
the update priority P. Similarly, queueQ2 holds all tasks pend-
ing scheduling, which are processed in chronological order. As
shown in Lines 2 to 6, when the count of containers undergoing
updates is lower than the quantity specified by the algorithm,
edge nodes are retrieved from Q1 to update the container.
Then, as shown in Lines 7 to 12, tasks are taken from Q2.
Should the current timestamp exceed the release time of task k,
Algorithm 1 is called to schedule this task; otherwise, it is put
back into Q2. Lastly, the LECU algorithm refreshes both the
policy and target networks.

Training: Built upon a maximum entropy RL architecture,
the LECU algorithm aims to identify the optimal policy that
maximizes the expected long-term reward [38]. To reduce over-
estimation bias commonly present in Q-network-based methods,
LECU employs two target networks.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: LAYER-AWARE COST-EFFECTIVE CONTAINER UPDATES WITH EDGE-CLOUD COLLABORATION IN EDGE COMPUTING 12321

Algorithm 2: Proposed LECU Algorithm.

Algorithm 3: Training of LECU Algorithm.

To adjust the Q-network parameters φi, the LECU algorithm
leverages the Mean Squared Error (MSE) loss [39] between the
predicted Q-value Qφi

(s, a) and the calculated target value y.
The Q-networks’ loss functions are:

L(φi) = E(s,a,r,s′)∼D[(Qφi
(s, a)− y)2], (22)

where the expectation E(s,a,r,s′)∼D indicates the average value
of samples. Furthermore, the target value y is given by:

y = rt + γEa∼π′
θ′
[Q′φ′i(st+1, a)− α log π′θ′(a|st+1)], (23)

where rt denotes the instantaneous reward obtained after exe-
cuting action at in state st, which transitions to state st+1. Then,
the loss function for updating the policy network parameter θ is
formulated as:

J(θ) = Es∼D,a∼πθ
[Qφi

(s, a)− α log πθ(a|s)]. (24)

Instead of abruptly copying weights between the evaluation
networks and target networks at discrete intervals, a weighted
average is taken. The parameter τ enables the target networks to
gradually track the evaluation networks. For the target networks,
the soft update mechanism is formulated as:

φ′i ← τφi + (1− τ)φ′i, θ′ ← τθ + (1− τ)θ′. (25)

Algorithm 3 presents the training procedure of the LECU
algorithm. At the beginning of each episode, the replay bufferD
is initialized. During each time step t, transitions are collected
and stored in D. As described in Lines 3 to 7, during step t, we
first acquire the current state st, then select the action at based
on the policy, and compute the reward rt. Next, the subsequent
state st+1 is determined, and this transition is saved to the
replay buffer D. The training phase, elaborated in Lines 8–13,
involves randomly sampling a batch of experience tuples from
D and calculating the target Q-value for each tuple. Throughout
training, the Q-network parameters φi and the policy network
πθ are updated. Lastly, the target networks undergo soft updates,
and outputs are generated once all episodes are finished.

C. Computational Complexity Analysis

The LECU algorithm is composed of several modules. Their
computational complexities are explored in the following anal-
ysis. First, (19) defines the state, which has a complexity of
O(|N||L|). Second, action selection involves determining the
priority of container update of each node, leading to a complexity
of O(|N|). For the reward, computation follows (21), and its
complexity is O(1), as it remains constant irrespective of edge
node count. Finally, the node, container, and layer information
is mapped through fully-connected layers. Letting L denote
the number of hidden layers (each containing G neurons), the
complexity of this part is O(|N||I| ×G+ L×G2).

The complexity of the RBA algorithm, which includes travers-
ing each edge node and calculating the score, is O(|N|). Other
operations, such as adding residual connections, performing
normalization, and computing activation functions, generally
have a much lower impact and thus can be considered negligible.
Therefore, the total computational complexity is O(|N||I| ×
G+ L×G2).

D. Training Cost Analysis

The training complexity of the LECU algorithm is dominated
by policy updates. For each training step, the critic networks
compute gradients over mini-batches with time complexity
O(B × L×G2), where B is the batch size, L is the number
of hidden layers, and G is the number of neurons per layer.
Our experiments confirm convergence within 1500 episodes,
ensuring practical feasibility. This training phase incurs com-
putational costs related to GPU usage and time. During our
experiments, the LECU algorithm is trained for about 1.5 hours
on an NVIDIA RTX 4070 Super GPU. This training is conducted
offline before deployment, ensuring that the algorithm operates
efficiently during runtime.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

12322 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Fig. 5. Edge-cloud system implementation for container updates. A private
Docker Registry hosts multi-version images, while edge nodes share layers via
P2P protocols. The LECU agent is trained on GPUs to deploy dynamic update
policies, and the RBA algorithm schedules tasks to balance resource utilization
during updates.

VI. SYSTEM IMPLEMENTATION

Overview: Fig. 5 illustrates our edge system, including four
edge nodes and a cloud. We emulate a cloud on a server equipped
with a 10-core Intel i9-10900 K 3.70 GHz CPU, 32 GB memory,
and 1024 GB disk. Each edge node operates in separate Virtual
Machines (VMs) with 4 cores, 8 GB memory, and 40 GB disk.
Our algorithm is trained and executed on a workstation with
the NVIDIA RTX 4070 Super GPU. We also develop a task
generator for offloaded UE tasks and a version generator to
release new image versions. Each time slot is 0.5 seconds, and
the experiment consists of 1000 time slots.

Cloud: A private Docker Registry is deployed on the cloud.
Typically, the required images are downloaded from the Of-
ficial Repositories on Docker Hub. This approach may face
major issues from network fluctuations, resulting in failed image
downloads or incomplete updates. Therefore, a private Docker
Registry is deployed. This registry hosts all the images used in
our experiments. Edge nodes start the container update process
when an updated container version is issued.

Edge: Containers on four edge nodes with Docker installed
will be updated. To update a container, the process starts with
Docker Inspect to retrieve all image layers. The edge node
then uses the Layer Sharing mechanism to check and download
only the layers that are not already available locally. However,
efficient layer transmission in a distributed environment with
varying network conditions is challenging. To address this,
Layer Sharing utilizes a Peer-to-Peer (P2P) protocol, allowing
edge nodes to communicate directly and create a decentralized
network that improves stability and reliability. This approach
is especially advantageous for the Layer Transfer process in
edge-cloud collaboration, enabling more efficient downloading
of layers from the remote cloud or loading from another edge
node.

LECU algorithm comprises three components: Agent,
Buffer, and Model. During training, the Agent acquires

TABLE II
IMAGE AND LAYER INFORMATION

transitions fromBuffer to trainModel. During prediction, the
Agent loads Model to determine updates and calls the Docker
Client to download the new version of the image. However,
ensuring theModel remains accurate in a changing environment
is challenging. To address this, online learning and periodic
retraining are implemented to keep the Model up-to-date with
evolving conditions. Furthermore, the RBA algorithm receives
tasks from the Task Scheduling Queue, evaluates edge node re-
sources using Score, sorts edge nodes with Order, and schedules
tasks to the highest-scoring edge node via Docker Service. If no
edge node has sufficient resources, the task is uploaded to the
Cloud Server.

VII. PERFORMANCE EVALUATION

We analyze the LECU algorithm’s effectiveness against var-
ious baselines in this section, utilizing larger-scale simulations
and small-scale system implementations.

A. Dataset and Experiment Setup

Dataset: The container and layer data are crawled from
Docker Hub [22], including 23 images and 609 layers. Each
image has multiple versions, totaling 151 versions across all
images. On average, images contain 4.03 layers each, with
further statistical details in Table II. The task data originates from
the Alibaba Cluster Trace [5], which is collected from a large
production cluster. After preprocessing to remove missing and
unreasonable values, 156,456 tasks remain, each averaging 3.93
CPU cores and 4.21 GB of memory, with randomly generated
release times.

Parameter settings: We configure the noise power spectral
density σ takes a value of−174 dBm/Hz, while the transmission
power p as 23 dBm [40], [41]. Edge nodes exhibit transmission
rates spanning 75 to 135 Mbps, and the bandwidth linking the
remote cloud to edge nodes is set at 100 Mbps. For edge nodes,
CPU capacity falls within 80–120 cores, with CPU frequencies
ranging from 5 to 15 GHz [42]. Randomly generated tasks have
sizes spanning 10 KB to 10 MB [21]. The weighting factor λ that
balances update and scheduling costs is set to 0.6. The neural
network input is normalized to a consistent scale. Table III lists
the hyperparameters of the LECU algorithm.

Baselines: Several baselines are employed to compare the
performance. The details are as follows.

1) RU [43]: The RU algorithm temporarily removes a subset
of nodes from service to perform updates, then restores
them to operation. Like Kubernetes default settings, the
update proportion is 25% [44].

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: LAYER-AWARE COST-EFFECTIVE CONTAINER UPDATES WITH EDGE-CLOUD COLLABORATION IN EDGE COMPUTING 12323

TABLE III
HYPERPARAMETER SETTINGS FOR THE LECU ALGORITHM

2) RULS [43]: The RU algorithm incorporates layer sharing,
which significantly reduces the download size of container
updates.

3) LS [18]: The Local Search (LS) algorithm is a heuristic
method that optimizes software updates for smart vehicles,
focusing on update time-aware strategies.

4) FB [10]: The Fog Computing Based Update (FB) al-
gorithm is designed to conserve computation resources
through a resource-aware update strategy.

RU is widely adopted in production systems, making it a
practical benchmark for real-world applicability. RU can be
configured to specify the number of containers that can be up-
dated at any time during the update process. Furthermore, RULS
enhances RU by incorporating layer sharing, a key technology
in our work, to reduce layer transmission. In addition to the
rule-based or heuristic-based baselines, we also compare the
LECU algorithm with several State-of-the-Art (SOTA) DRL
algorithms. The details are as follows.

1) PPO [45]: Proximal Policy Optimization (PPO) is an
on-policy RL algorithm that limits policy updates via a
clipped objective function to ensure stable training.

2) MPO [46]: Maximum a Posteriori Policy Optimization
(MPO) combines policy optimization with probabilistic
inference, using entropy regularization and KL constraints
for efficient exploration.

3) DDPG [47]: Deep Deterministic Policy Gradient (DDPG)
is a model-free algorithm for continuous control, employ-
ing deterministic policies and target networks for stability.

4) TD3 [48]: Twin Delayed DDPG (TD3) is an enhanced
DDPG variant addressing overestimation bias via twin
critics, delayed policy updates, and target smoothing.

Detailed comparison results with DRL algorithms in Fig. 10.
Evaluation metrics: To assess the performance of the LECU

algorithm, we focus on the following evaluation metrics.
1) Update cost: It is defined as the total time spent on

container updates across all nodes, capturing the cumu-
lative latency caused by image downloads and container
initialization.

2) Scheduling cost: It measures the number of tasks inter-
rupted by container updates, emphasizing service conti-
nuity and user experience in latency-sensitive EC.

3) Total cost: It is the weighted sum of update cost and
scheduling cost.

4) Task latency: It includes communicating latency and com-
putation latency.

5) Task interruption: It indicates a task is interrupted if its
execution window overlaps with a container update on its
scheduled node.

B. Simulation Results

Performance with different numbers of edge nodes: The av-
erage total cost, comprising update cost, scheduling cost, and
total cost, is shown in Fig. 6. Specifically, Fig. 6(b) and (c)
illustrate the update and scheduling costs, respectively. For all
algorithms, the update cost increases with the growing num-
ber of edge nodes, as more nodes result in more containers
requiring updates. The LECU algorithm mitigates this increase
more effectively by focusing on downloading only the necessary
layers. The scheduling cost in our objective function quantifies
the number of tasks interrupted by updates. To minimize this, the
RBA algorithm proactively schedules tasks to edge nodes not to
be updated, reducing the likelihood of future interruptions.

The total cost associated with container updates is illustrated
in Fig. 6(a). The total cost ranking is LECU< FB<RULS<LS
< RU as the number of edge nodes increases. Specifically, the
LECU algorithm reduces the average total cost by 13%, 5%, 8%,
and 30% compared to the FB, RULS, LS, and RU algorithms,
respectively. LECU algorithm outperforms baselines across var-
ious numbers of edge nodes.

Performance with different CPU frequency: Fig. 7 shows the
total cost as the CPU frequency of edge nodes varies. The results
show that total costs decrease as CPU frequency increases due
to faster task execution, reducing the likelihood of disruption by
container updates. LECU algorithm consistently outperforms
others in total cost as the CPU frequency of edge nodes varies,
in the order: LECU < LS < RULS < FB < RU. In particular,
compared to RU, RULS, LS, and FB algorithms, the LECU algo-
rithm reduces total cost by 33%, 8%, 5%, and 11%, respectively.

Performance with different bandwidth: A decline in total cost
with increasing bandwidth is illustrated in Fig. 8. The primary
reason for this reduction is the decrease in update latency,
which is directly affected by bandwidth. The time required to
download container layers is significantly reduced as bandwidth
increases. Overall, the LECU algorithm outperforms all other
algorithms in minimizing total cost. In particular, compared to
the baseline algorithms, the LECU algorithm reduces total cost
by approximately 16%.

Convergence of LECU algorithm: The training process of the
LECU algorithm is shown in Fig. 9. With an increase in training
steps, the losses of both the policy network and the target Q-
network decrease rapidly before stabilizing. Fig. 9(a) illustrates
the reward, which initially rises sharply before leveling off. The
algorithm identifies a promising policy and fine-tunes the policy
network. Temporary declines in rewards during training may
occur when exploring new environments, which can make the
current policy less effective. However, the algorithm rapidly
readjusts, restoring normal functionality over time.

Fig. 9(b) illustrates the policy network loss, which initially
decreases before rising again. This fluctuation is due to the

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

12324 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Fig. 6. Performance with different numbers of edge nodes.

Fig. 7. Performance with different CPU frequency.

Fig. 8. Performance with different bandwidths.

Fig. 9. Reward, Policy network Loss, and Target Q-network Loss of LECU algorithm.

network producing relatively random policies early in training.
As training progresses, it learns more rational policies and
stabilizes around a specific value. Fig. 9(c) and (d) depict the
losses of the target Q-networks. As the Q-network learns and its
weights are updated based on state-action-reward transitions,
the discrepancy between the evaluation and target networks
decreases over time. This convergence leads to a reduction in the
target Q-network loss. Overall, the LECU algorithm converges

rapidly, demonstrating its ability to learn optimal policies in a
short time.

Performance against different DRL algorithms: LECU al-
gorithm is based on DRL, and we evaluate its performance
against other DRL algorithms, including PPO [45], MPO [46],
DDPG [47], and TD3 [48]. As shown in Fig. 10, the re-
sults demonstrate that LECU reduces the total cost by 20%
over baselines, due to its layer-aware update mechanism and

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: LAYER-AWARE COST-EFFECTIVE CONTAINER UPDATES WITH EDGE-CLOUD COLLABORATION IN EDGE COMPUTING 12325

Fig. 10. Compared with different DRL algorithms.

Fig. 11. Comparison with different task scheduling algorithms.

Fig. 12. Latency performance of different algorithms.

edge-cloud collaboration. The LECU algorithm combines the
RBA algorithm to achieve a lower total cost than these al-
gorithms, further demonstrating their superiority in container
updates.

Performance against different task scheduling algorithms:
In Fig. 11, we compare the number of interrupted tasks and
average task latency under four scheduling algorithms: Random,
Round-Robin (RR), Least Active Calls (LAC), and our proposed
RBA algorithm. The results demonstrate that RBA achieves the
lowest number of interrupted tasks and the shortest average
task latency. The performance gap highlights the ability of the
RBA algorithm to balance resource utilization across edge nodes
while prioritizing task continuity, making it particularly suitable
for dynamic update scenarios.

Latency performance analysis: Update latency refers to the
total time required to complete container updates, which in-
cludes download and initialization latencies. We measure both
download and initialization latencies. Fig. 12(a) compares these
components across algorithms, showing LECU reduces update
latency by 40% compared to RU, due to layer sharing and
dynamic update decision. Task latency denotes the total duration

TABLE IV
COMPUTATION RESOURCES OF DIFFERENT ALGORITHMS

required to execute a task in edge nodes, including communica-
tion and computation latencies. We evaluate task latency as illus-
trated in Fig. 12(b). LECU achieves a 25% reduction in average
task latency compared to the FB algorithm. This improvement
is attributed to its RBA algorithm, which prioritizes scheduling
tasks to edge nodes with sufficient computational resources.

Computation resources across diverse algorithms: The Ran-
dom Access Memory (RAM), Video RAM (VRAM), and execu-
tion duration are presented in Table IV using torch.profiler [49].
The RU and RULS algorithms demonstrate the shortest runtime
due to their reliance on straightforward decision-making and
sorting processes. LECU achieves performance with 20.38 ms
execution time, 73.14 Kb RAM, and 5340.50 Kb VRAM, which
are acceptable for resource-constrained edge nodes. Moreover,
the average container update interval in real-world trace is over
43.2 s [5], which vastly exceeds LECU runtime, demonstrating
that our algorithm can be run in real-time.

C. System Results

We conduct extensive simulations to validate our LECU al-
gorithm’s effectiveness, demonstrating its strong performance
under ideal conditions. However, theoretical validation alone
doesn’t fully capture its real-world behavior. Therefore, we
perform additional experiments on our deployed edge system to
evaluate the algorithm’s feasibility and effectiveness in practical
applications. For the real system experiments, we deploy 4 edge
nodes with 4 cores CPU and 8 GB memory. The experiments are
conducted within a single update cycle and involved generating
100 tasks with randomized release times distributed across 1000
time slots. The transmission rate between edge nodes varies
between 50 and 100 Mbps, while the bandwidth connecting edge
nodes and the remote cloud is capped at 80 Mbps. The following
experiments are conducted on the implemented system.

In Fig. 13, we calculate the total cost incurred by various
algorithms over a single update cycle. The experimental results
closely align with those obtained in the simulation experiments.
In this figure, the total cost of container updates for the LECU
algorithm in the real system is relatively low. These findings
further validate our prior conclusions.

Moreover, the update costs from various container updates are
quantified in the system. The Cumulative Distribution Function
(CDF) of update cost is demonstrated in Fig. 14. The LECU
algorithm has a higher proportion of low update costs than other

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

12326 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Fig. 13. System performance.

Fig. 14. CDF of the update cost.

algorithms. These results enhance the potential of our LECU
algorithm as a promising solution for container updates.

VIII. DISCUSSION

A. Feasibility of Real-Time Running

The LECU algorithm is an online optimization framework
designed for dynamic edge environments. It processes container
update and task scheduling in real-time through a two-timescale
architecture, making immediate decisions based on current layer
distributions and node resource states. Prior to actual deploy-
ment, LECU undergoes training with historical traces of con-
tainer updates and edge node load variations. This initial training
phase enables the RL model to learn effective update strategies,
significantly reducing decision latency during actual operation.
During runtime, LECU uses its pre-trained model with real-time
environmental interaction. The online nature of our algorithm,
combined with its initial training phase, ensures that it can handle
the randomness of container updates well.

In summary, the LECU algorithm operates effectively in real-
time scenarios. It utilizes historical data for initial training and
continuously adapts to edge-cloud environments via dynamic
interactions, thereby maintaining real-time responsiveness.

B. Applicability to Other Resource Allocation Problems

The components of the LECU algorithm, layer-aware re-
source optimization, RL-based decision-making, and edge-
cloud collaboration, are broadly applicable to other resource
allocation problems. For example, microservices in EC often
share dependencies. Similar to container layer reuse, edge nodes
can load shared dependencies from neighboring nodes, reducing

deployment latency. The SAC-based model in LECU can adapt
to other sequential decision-making scenarios, such as task
offloading or service migration. The edge-cloud collaboration
mechanism, which prioritizes local layer transfers over remote
cloud downloads, can also enhance cost efficiency in distributed
caching scenarios.

C. Cost-Effective Superiority of LECU

The LECU algorithm demonstrates superior cost-effective-
ness in container updates by integrating dynamic update deci-
sions, resource-balanced task scheduling, efficient layer shar-
ing, and edge-cloud collaboration. This approach significantly
enhances container update efficiency in EC while reducing
associated costs. The details are as follows.

1) Dynamic adjustment of update decision: The LECU al-
gorithm dynamically adjusts the update proportion and
sequence based on real-time node load assessments. Un-
der low-load conditions, multiple containers are updated
concurrently, significantly reducing total update time.
By balancing update latency with service continuity,
LECU minimizes the cumulative cost of updates over
time.

2) Resource-balanced task scheduling: Meanwhile, the RBA
algorithm supports this process through resource-balanced
task scheduling. It schedules tasks to nodes with the
highest residual resource scores during updates, avoiding
nodes under update. This approach reduces task interrup-
tions, directly lowering service disruption costs.

3) Benefits of layer sharing: Furthermore, LECU substan-
tially reduces update costs by leveraging layer sharing.
When updating containers that share layers with others,
only modified layers require downloading.

4) Edge-cloud collaboration: Edge-cloud collaboration op-
timally distributes image layers across available nodes.
For locally unavailable layers, the algorithm prioritizes
transfers from neighboring nodes over the remote cloud,
mitigating cloud burden and reducing latency.

IX. CONCLUSION

This paper formulated the container update problem in edge-
cloud networks with the objective of minimizing update and
scheduling costs. Specifically, we investigated layer sharing
and edge-cloud collaboration to accelerate the update process.
We proposed the LECU algorithm, built upon the SAC RL
framework, alongside a task scheduling algorithm designed
to reduce task interruptions caused by updates. A real edge
system was implemented to validate the performance of these
algorithms, and large-scale simulations were conducted to assess
their scalability. Both system implementation and simulation
outcomes confirmed that the LECU algorithm surpassed current
methods in update and scheduling cost efficiency. Future work
will address update challenges related to advanced technologies
such as large language models and digital twins, which entail
larger-scale, more frequent updates and increased resource con-
straints.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: LAYER-AWARE COST-EFFECTIVE CONTAINER UPDATES WITH EDGE-CLOUD COLLABORATION IN EDGE COMPUTING 12327

REFERENCES

[1] L. Nkenyereye, K.-J. Baeg, and W.-Y. Chung, “Deep reinforcement learn-
ing for containerized edge intelligence inference request processing in
IoT edge computing,” IEEE Trans. Services Comput., vol. 16, no. 6,
pp. 4328–4344, Nov./Dec. 2023.

[2] N. Zhao et al., “Large-scale analysis of docker images and performance
implications for container storage systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 4, pp. 918–930, Apr. 2021.

[3] Y. Chang et al., “A survey on evaluation of large language models,” ACM
Trans. Intell. Syst. Technol., vol. 15, no. 3, pp. 1–45, 2024.

[4] Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Joint resource
overbooking and container scheduling in edge computing,” IEEE Trans.
Mobile Comput., vol. 23, no. 12, pp. 10903–10917, Dec. 2024.

[5] Alibaba cluster trace program. 2017. [Online]. Available: https://github.
com/alibaba/clusterdata/

[6] Q. Hua, D. Yang, S. Qian, J. Cao, G. Xue, and M. Li, “Humas: A
heterogeneity- and upgrade-aware microservice auto-scaling framework in
large-scale data centers,” IEEE Trans. Comput., vol. 74, no. 3, pp. 968–982,
Mar. 2025.

[7] A. Buzachis, A. Galletta, A. Celesti, L. Carnevale, and M. Villari, “Towards
osmotic computing: A blue-green strategy for the fast re-deployment
of microservices,” in Proc. 24th IEEE Symp. Comput. Commun., 2019,
pp. 1–6.

[8] D. Sun, A. Fekete, V. Gramoli, G. Li, X. Xu, and L. Zhu, “R2C: Robust
rolling-upgrade in clouds,” IEEE Trans. Dependable Secure Comput.,
vol. 15, no. 5, pp. 811–823, Sep./Oct. 2018.

[9] H. Zhang et al., “An optimal container update method for edge-cloud
collaboration,” Softw.: Pract. Exp., vol. 54, no. 4, pp. 617–634, 2024.

[10] M. Al Maruf, A. Singh, A. Azim, and N. Auluck, “Faster fog computing
based over-the-air vehicular updates: A transfer learning approach,” IEEE
Trans. Services Comput., vol. 15, no. 6, pp. 3245–3259, Nov./Dec. 2022.

[11] Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Multi-user layer-
aware online container migration in edge-assisted vehicular networks,”
IEEE/ACM Trans. Netw., vol. 32, no. 2, pp. 1807–1822, Apr. 2024.

[12] L. Hu, A. Liu, M. Xie, and T. Wang, “UAVs joint vehicles as data mules for
fast codes dissemination for edge networking in smart city,” Peer-to-Peer
Netw. Appl., vol. 12, pp. 1550–1574, 2019.

[13] C. Zheng et al., “Wharf: Sharing docker images in a distributed file system,”
in Proc. 18th ACM Symp. Cloud Comput., 2018, pp. 174–185.

[14] L. Gu, J. Huang, S. Huang, D. Zeng, B. Li, and H. Jin, “LOPO: An out-of-
order layer pulling orchestration strategy for fast microservice startup,” in
Proc. IEEE Conf. Comput. Commun., 2023, pp. 1–9.

[15] Y. Shi, Y. Yang, C. Yi, B. Chen, and J. Cai, “Toward online reliability-
enhanced microservice deployment with layer sharing in edge computing,”
IEEE Internet Things J., vol. 11, no. 13, pp. 23370–23383, Jul. 2024.

[16] T. Wang et al., “Propagation modeling and defending of a mobile sensor
worm in wireless sensor and actuator networks,” Sensors, vol. 17, no. 1,
pp. 1–17.

[17] D. Zeng, H. Geng, L. Gu, and Z. Li, “Layered structure aware dependent
microservice placement toward cost efficient edge clouds,” in Proc. IEEE
Conf. Comput. Commun., 2023, pp. 1–9.

[18] M. Y. Hassan, S. Choudhury, and Z. M. Fadlullah, “On optimal scheduling
of OTA software updates for smart vehicles leveraging fog computing,” in
Proc. 17th Int. Wireless Commun. Mobile Comput., 2021, pp. 2044–2049.

[19] C. Ying, B. Li, X. Ke, and L. Guo, “Raven: Scheduling virtual machine mi-
gration during datacenter upgrades with reinforcement learning,” Mobile
Netw. Appl., vol. 27, no. 1, pp. 303–314, 2022.

[20] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
Robotica, vol. 17, no. 2, pp. 229–235, 1999.

[21] H. Cui, Z. Tang, J. Lou, and W. Jia, “Online container scheduling for
low-latency IoT services in edge cluster upgrade: A reinforcement learning
approach,” in Proc. 12th IEEE/CIC Int. Conf. Commun. China, 2023,
pp. 1–6.

[22] Docker hub. 2024. [Online]. Available: https://hub.docker.com/
[23] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge ser-

vices leveraging container layered storage,” IEEE Trans. Mobile Comput.,
vol. 18, no. 9, pp. 2020–2033, Sep. 2019.

[24] J. Lou, H. Luo, Z. Tang, W. Jia, and W. Zhao, “Efficient container as-
signment and layer sequencing in edge computing,” IEEE Trans. Services
Comput., vol. 16, no. 2, pp. 1118–1131, Mar./Apr. 2023.

[25] I. Miell and A. Sayers, Docker in Practice. New York, NY, USA: Simon
and Schuster, 2019.

[26] Z. Chen, H. H. Yang, and T. Q. Quek, “Edge intelligence over the air: Two
faces of interference in federated learning,” IEEE Commun. Mag., vol. 61,
no. 12, pp. 62–68, Dec. 2023.

[27] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-based cloud platform
for mobile computation offloading,” in Proc. 31st IEEE Int. Parallel
Distrib. Process. Symp., 2017, pp. 123–132.

[28] Y. Liang et al., “Collaborative edge server placement for maximizing QoS
with distributed data cleaning,” IEEE Trans. Services Comput., vol. 18,
no. 3, pp. 1321–1335, May/Jun. 2025.

[29] K. Qu, W. Zhuang, Q. Ye, W. Wu, and X. Shen, “Model-assisted learning
for adaptive cooperative perception of connected autonomous vehicles,”
IEEE Trans. Wireless Commun., vol. 23, no. 8, pp. 8820–8835, Aug. 2024.

[30] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[31] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[32] H. Cui, Z. Tang, J. Lou, W. Jia, and W. Zhao, “Latency-aware container
scheduling in edge cluster upgrades: A deep reinforcement learning ap-
proach,” IEEE Trans. Services Comput., vol. 17, no. 5, pp. 2530–2543,
Sep./Oct. 2024, doi: 10.1109/TSC.2024.3394689.

[33] J. Wang, J. Hu, G. Min, Q. Ni, and T. El-Ghazawi, “Online service
migration in mobile edge with incomplete system information: A deep
recurrent actor-critic learning approach,” IEEE Trans. Mobile Comput.,
vol. 22, no. 11, pp. 6663–6675, Nov. 2023.

[34] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-task trans-
fer learning: Model and practice with data-driven task allocation,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1357–1371, Jun. 2020.

[35] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, “Efficient
dependent task offloading for multiple applications in MEC-cloud system,”
IEEE Trans. Mobile Comput., vol. 22, no. 4, pp. 2147–2162, Apr. 2023.

[36] D. S. Hochba, “Approximation algorithms for NP-hard problems,” ACM
SIGACT News, vol. 28, pp. 40–52, 1997.

[37] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[38] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochas-
tic actor,” in Proc. 37th Int. Conf. Mach. Learn., PMLR, 2018,
pp. 1861–1870.

[39] O. Köksoy, “Multiresponse robust design: Mean square error (MSE)
criterion,” Appl. Math. Comput., vol. 175, no. 2, pp. 1716–1729,
2006.

[40] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[41] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, “Cooperative
task offloading in three-tier mobile computing networks: An ADMM
framework,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2763–2776,
Mar. 2019.

[42] Y. Chen, Y. Sun, C. Wang, and T. Taleb, “Dynamic task allocation and
service migration in edge-cloud IoT system based on deep reinforcement
learning,” IEEE Internet Things J., vol. 9, no. 18, pp. 16742–16757,
Sep. 2022.

[43] Performing a rolling update. 2024. [Online]. Available: https://kubernetes.
io/docs/tutorials/kubernetes-basics/update/update-intro/

[44] Kubernetes. 2024. [Online]. Available: https://kubernetes.io/
[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” 2017, arXiv: 1707.06347.
[46] A. Abdolmaleki et al., “Maximum a posteriori policy optimisation,”

2018, arXiv: 1806.06920.
[47] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-

ing,” 2015, arXiv:1509.02971.
[48] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation

error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn., PMLR,
2018, pp. 1587–1596.

[49] PyTorch documentation. 2024. [Online]. Available: https://pytorch.org/
docs/

Hanshuai Cui received the BS degree from the
School of Information Science and Engineering, Qufu
Normal University, China, in 2020. He is currently
working toward the PhD degree with the School
of Artificial Intelligence, Beijing Normal University,
China. His current research interests include mobile
edge computing, resource allocation, and reinforce-
ment learning.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

https://github.com/alibaba/clusterdata/
https://github.com/alibaba/clusterdata/
https://hub.docker.com/
https://dx.doi.org/10.1109/TSC.2024.3394689
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/
https://pytorch.org/docs/
https://pytorch.org/docs/

12328 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Zhiqing Tang (Member, IEEE) received the BS de-
gree from the School of Communication and Infor-
mation Engineering, University of Electronic Science
and Technology of China, China, in 2015, and the PhD
degree from the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, China,
in 2022. He is currently an assistant professor with
the Advanced Institute of Natural Sciences, Beijing
Normal University, China. His current research in-
terests include edge computing, resource scheduling,
and reinforcement learning.

Yuan Wu (Senior Member, IEEE) received the PhD
degree in electronic and computer engineering from
the Hong Kong University of Science and Technol-
ogy, Hong Kong, in 2010. He is currently an associate
professor with the State Key Laboratory of Internet of
Things for Smart City, University of Macau, Macau
SAR, China, and also with the Department of Com-
puter and Information Science, University of Macau.
His research interests include mobile edge computing
and edge intelligence, and integrated sensing and
communications. He was the recipient of the Best

Paper Award from the IEEE ICC’2016, IEEE TCGCC’2017, IWCMC’2021,
and IEEE WCNC’2023. He is on the editorial board of IEEE Transactions
on Wireless Communications, IEEE Transactions on Vehicular Technology, and
IEEE Transactions on Network Science and Engineering. He is the distinguished
lecturer of IEEE Vehicular Technology Society (2025–2027).

Weijia Jia (Fellow, IEEE) received the BSc and MSc
degrees from Center South University, China, in 1982
and 1984, and the master of applied sci. and PhD
degrees from Polytechnic Faculty of Mons, Belgium,
in 1992 and 1993, respectively, all in computer sci-
ence. He is currently a chair professor, director of
BNU-UIC Institute of Artificial Intelligence and Fu-
ture Networks, Beijing Normal University (Zhuhai)
and VP for Research of BNUHKBU United Interna-
tional College (UIC) and has been the Zhiyuan chair
professor of Shanghai Jiao Tong University, China.

He was the chair professor and the deputy director of the State Kay Laboratory
of Internet of Things for Smart City, University of Macau. From 1993–1995,
he joined German National Research Center for Information Science (GMD)
in Bonn (St. Augustine) as a research fellow. From 1995–2013, he worked
with the City University of Hong Kong as a professor. His contributions have
been recognized as optimal network routing and deployment, anycast and QoS
routing, sensors networking, AI (knowledge relation extractions; NLP, etc.), and
edge computing. He has more than 600 publications in the prestige international
journals/conferences and research books, and book chapters. He has received the
best product awards from the International Science & Tech. Expo (Shenzhen),
in 2011/2012 and the 1st Prize of Scientific Research Awards from the Ministry
of Education of China, in 2017 (list 2). He has served as area editor for various
prestige international journals, chair and PC member/skeynote speaker for many
top international conferences. He is the distinguished member of CCF.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 21,2026 at 06:38:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

